Evaluation Strategies of Adaptive, Anthropomorphic Robot Hand for Dexterous In-Hand Manipulation: Early Results

George Kontoudis

PhD Student Kevin T. Crofton Department of Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University

gpkont@vt.edu

December 13, 2018

Research Interests

- \blacktriangleright Design and development of anthropomorphic, adaptive robot hands
- \blacktriangleright Robust grasping with various everyday life objects
- \triangleright Dexterous in-hand manipulation
- \blacktriangleright Model-free continuous time Q-learning
- \blacktriangleright Manipulation planning based on learning techniques

Objectives

- 1. Design minimal actuation mechanism to combine various motions
- 2. Develop an adaptive, anthropomorphic robot hand
- 3. Employ less number of actuators to reduce complexity, weight, and fabrication cost
- 4. Facilitate the execution of various grasping tasks
- 5. Execute complex in-hand manipulation tasks
	- \blacktriangleright Rolling with a single finger
	- \blacktriangleright Finger interdigitation
	- \blacktriangleright Equilibrium point manipulation
	- \blacktriangleright Finger pivoting
	- \blacktriangleright Finger gaiting

Monolithic Finger Design

- \blacktriangleright Monolithic finger design
- \blacktriangleright Portions with reduced width implement flexure joints
- \blacktriangleright Three phalanges and three joints
- \blacktriangleright Two individual tendon-routing systems
- \blacktriangleright Modular design

Adaptive Anthropomorphic Robot Hand

- \blacktriangleright Based on my hand dimensions
- \blacktriangleright Exclusively off-the-shelf materials
- \blacktriangleright Utilized two parallel differential mechanisms
- \blacktriangleright Employed 4 actuators
- \blacktriangleright An actuator for finger flexion
- \blacktriangleright An actuator for finger abduction
- \blacktriangleright Two actuators for thumb opposition and flexion

Robot Hand Characteristics

Hand Configurations

Finger Strength

Definition: Finger strength is a kinetic measure of the maximum force a robotic finger can impose on its environment 1 .

- \blacktriangleright Gather the finger force exertion capabilities
- \blacktriangleright Employ either a three-axis or a single-axis load cell

Implementation Issues with Adaptive Fingers

- \blacktriangleright The suggested area above the load cell is too small
- \blacktriangleright The finger is highly adaptable and slips
- \blacktriangleright In the document a procedure is described to obtain the maximum finger force
- \blacktriangleright More interested for the worst case scenario
- \blacktriangleright For in-hand manipulation other configurations are equally important, i.e. abduction

Force Exertion Capabilities

Force experiments

- ▶ Used the FSE1001 force sensor (Variense)
- \triangleright Conducted 30 trials

Results

- Exclusively flexion (black, shaded gray)
- \blacktriangleright Flexion at maximum abduction angle (blue, shaded blue)
- \blacktriangleright Force reduction due to friction losses
- \blacktriangleright Similar force exertion capabilities

In-Hand Manipulation

Definition: In-hand manipulation is a kinematic measure of how well a robotic hand can control the pose of an object².

- \triangleright Obtain the pose of the object in Cartesian coordinates
- **Employ a reference motion capture system (MOCAP)**

Implementation Issues for In-Hand Manipulation

- ▶ MOCAP systems are from expensive (\$\$\$\$) to very expensive (\$\$\$\$\$)
- \triangleright Difficult to attach markers for some tasks that require small objects, e.g, finger pivoting
- \blacktriangleright The manipulability depends on the object shape and size, e.g., finger gaiting
- \blacktriangleright Bounds of in-hand manipulation is another measure, e.g., object rolling
- \blacktriangleright Palm exploitation may assist the manipulation task

In-Hand Manipulation Approach

Suggested Solution:

- \triangleright Employ a Kinect camera (or similar RGB-D) with simple markers for small objects
- \triangleright Embed IMU or 3-axis gyroscope sensors to the larger objects

Manipulation measures:

- \triangleright Equilibrium point manipulation $[mm]$ Translation and rotation; without regrasping
- \triangleright Object rolling [degrees] Rotation and translation; without regrasping
- \triangleright Object rotation [degrees] Rotation; without regrasping
- \triangleright Object sliding [mm] Translation; with external finger or exploit environment
- \triangleright Finger pivoting [degrees] Rotation; with external finger or exploit environment
- \blacktriangleright Finger Gaiting [contacts/rotation] Rotation; with regrasping

\blacksquare December 13, 2018 13

Finger Gaiting

- \blacktriangleright Shape of the object is critical
	- \triangleright Objects with flat surfaces are the easier objects
	- \blacktriangleright Cylindrical objects are more challenging
	- \triangleright Spheres are the most difficult objects to gait
- \blacktriangleright Palm exploitation simplifies the task
- \triangleright Object compliance is important
- \blacktriangleright Highly deformable objects are easier to gait

Object Rolling with a Single Finger

 (c)

Equilibrium Point Manipulation

Conclusions

- \triangleright The NIST grasping metrics is a very good initiative and can be really useful
- \triangleright Can be improved in the sense of:
	- \blacktriangleright More affordable
	- \blacktriangleright Provide assembly guide with at least:
		- 1. BoM with representative links of vendor
		- 2. Drawings, if not CAD files
		- 3. Assembly guide
- \blacktriangleright Provide post-experiment software
- \triangleright Create a repository towards creating a dataset from various labs or companies

Proud to use LATEX and Beamer

Thank You!