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Abstract—This paper presents an online, robust, and model-
free motion planning framework for kinodynamic systems. In
particular, we employ a Q-learning algorithm for a two player
zero-sum dynamic game to account for worst-case disturbances
and kinodynamic constraints. We use one critic, and two actor
approximators to solve online the finite horizon minimax problem
with a form of integral reinforcement learning. We then leverage
a terminal state evaluation structure to facilitate the online
implementation. A static obstacle augmentation, and a local re-
planning framework is presented to guarantee safe kinodynamic
motion planning. Rigorous Lyapunov-based proofs are provided
to guarantee closed-loop stability, while maintaining robustness
and optimality. We finally evaluate the efficacy of the proposed
framework with simulations and we provide a qualitative com-
parison of kinodynamic motion planning techniques.

Index Terms—Motion Planning, Q-learning, Game Theory.

I. INTRODUCTION

Autonomous systems have experienced rapid advancements
with the use of machine learning in decision making and
supervision. Building fully autonomous systems that include
smart perception and advanced control systems for motion
planning is still in its infancy. Motion planning is a key
research topic in autonomy and robotics [1]-[4]. An efficient
motion planning algorithm is required to operate in uncer-
tain or even unstructured environments, while ensuring safe
autonomy. In realistic systems the kinodynamic constraints
compose a challenging problem, especially for a real-time
implementation [5], [6]. Indeed, optimality is not always guar-
anteed, and requires extensive offline computations that are not
always feasible. Moreover, the dynamics are often difficult to
derive and when obtained they are unreliable and inaccurate,
because disturbances and parameter uncertainties may affect
the physics of the system [7]. To deal with such problems, a
solution is to employ simplified dynamical models, but still
compute the optimal solution offline. Our focus in this work
is on providing an online, model-free, and robust kinodynamic
motion planning algorithm to autonomously perform optimal
and safe navigation in environments with obstacles and exter-
nal disturbances.
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In high-dimensional systems, motion planning with incre-
mental sampling algorithms has been discussed in probabilistic
road-maps (PRM) [1] and rapidly-exploring random trees
(RRT) [2]. In [4], the authors proposed RRT*, an asymptoti-
cally optimal motion planning algorithm. The aforementioned
approaches are not sufficient for dynamical systems with
kinodynamic constraints. In [8], the authors introduced the
kinodynamic RRT that accounts for the physical constraints of
the system, but the control action was randomly selected. The
work of [3] presented LQR-trees, a feedback motion planning
algorithm. This approach cannot be implemented without com-
plete information of the system dynamics and needs significant
computations offline. The authors in [9] proposed the LQR-
RRT* which requires complete information of the model, yet
this is not always possible in real engineered systems. In [10],
the authors proposed a kinodynamic RRT”* that deals with
linear systems and performs asymptotically optimal motion
planning. Kinodynamic RRT* formulates a finite horizon, with
a fixed final state and a minimum fuel-time performance.
Such an approach requires the system dynamics, and provides
a closed form solution of an open-loop controller. A real-
time kinodynamic motion planning was proposed in [5]. The
authors retrieve the global path offline and compute also offline
the optimal solution of the two point boundary value problem
(TPBVP), in order to execute the motion planning online.
Game theory can potentially offer robustness guarantees for
various motion planning problems [11]. Connections between
game theory and motion planing were discussed in [12]
for planning under sensing and control uncertainties, under
environmental uncertainties, and to maintain the visibility of
a target. The authors in [13] presented a differential game
framework to compute the reachable sets, and perform motion
planning under uncertainties.

Adaptive control [14] along with game theory [15] can be
efficiently connected by employing the principles of reinforce-
ment learning [16], and approximate dynamic programming,
e.g., actor/critic structures [17]-[21]. Specifically, the critic
evaluates the cost and the actor performs a policy improve-
ment. In [22], a discrete-time Q-learning formulation was
used to solve controlled Markovian systems. However, for
continuous time systems the problem is nontrivial. In [23], a
relation of Q-learning with nonlinear control was established,
based on the observation that the Q-function is related with
the Hamiltonian that appears in the minimum principle. In
[24], a Q-learning approach for solving the model-free, infinite
horizon, continuous time problem was presented.



The contributions of this paper is threefold. First, we
formulate a two player zero-sum game for a TPBVP with a
continuous Q-learning framework without requiring the solu-
tion of the game differential Riccati equation. Next, we provide
rigorous Lyapunov-based proofs for global asymptotic stability
of the equilibrium point. Finally, we develop a terminal state
evaluation framework, a static obstacle augmentation, and
a local re-planning technique to alleviate the computational
effort and to ensure safe kinodynamic motion planning.

The remainder of this paper is organized as follows. Section
IT focuses on the problem formulation, Section III discusses
the game-theoretic structure, Section IV provides a model-free
formulation, Section V presents the motion planning structure,
and the algorithmic framework, Section VI shows the efficacy
through simulations and discusses a qualitative comparison,
while Section VII concludes the paper. The stability proof is
provided in the Appendix.

Notation: R is the set of all positive real numbers and N
is the set of natural numbers. The A(A) and the \(A) are
the minimum and the maximum eigenvalues of the matrix
A. We denote |||, as the p-norm of a vector. The vech(A4),
the vec(A), and the mat(A) are the half-vectorization, the
vectorization, and the matrization of a matrix A. The U ® V'
denotes the Kronecker product of two vectors. The & is the
Minkowski sum of two sets.

II. PROBLEM FORMULATION

Consider the following continuous-time kinodynamic au-
tonomous system,

&(t) = Az(t) + Bu(t) + Fd(t), x(0) =z, t >0,

where x(t) € X C R™ is a measurable kinodynamic state
vector, u(t) € R™ is the control input, d(t) € R? is the
disturbance input, A € R™*™ is the unknown plant matrix,
B € R™ ™ is the unknown input matrix, and ' € R"*4 is the
unknown disturbance matrix. The game has two players, the
control u(t) and the disturbance d(t) [25], [26]. The player 1
(Py) is the control u(t) that aims to minimize the performance,
while the player 2 (P5) is the disturbance d(¢) that desires to
maximize the performance.

Since we want to drive the system from an initial state xg to
a final state x(T") = x,, we define the difference between the
state 2:(t) and the state z;, as the new state Z(t) == z(t) — .
The final time is denoted by 7" € R*. Similarly, we define the
new control as, @(t) == u(t) — u;, with v, = u(T'), and the
new disturbance as, d(t) := d(t) — d, with d; = d(T). The
new system has now the form,

z(t) = AZ(t) + Bu(t) + Fd(t), %o, t > 0. ()

The finite horizon cost functional is given as,

B 1 (T _
J(z;a,d;to, T) =¢(T) + §/ TTMZ 4 aT Ru — ~?||d||*dr,
to

2

where ¢(T) := $z7(T)P(T)z(T) is the terminal cost with
P(T) € R**™ » 0 the final Riccati matrix, M € R™*" » 0,

R € R™*™ — 0 user defined matrices that penalize the state
and the control input respectively, and 7v* < v € Rt is a
disturbance rejection constant, where ~* is the smallest value
that stabilizes the system (1), [27].

Assumption 1: We assume that the unknown pair (A,B)
will be controllable and the unknown pair (v/ M, A) will be
detectable. O

We are thus interested in obtaining the saddle-point
equilibrium (@*,d*) such that, J(z;a*,d;tg,T) <
J(:]_;;’[_L*,J*;to,T) < J(H_J;’Z_L,J*;to,T), VE,E,J,
which can be described by the min-max problem
J(z;u*,d*;tg, T) = ming maxgJ(F;4,d;te,T) subject
to (1). In other words, we want to determine the value
function V*, which is defined by the minimax optimization,

Vi (@5t0,T) = 3)

17 _

min max <¢(T) + 3 / TTMZ + u"Ru — ’VQHdHQdT),
U d to

but without any information of the system dynamics, as given

in (1).

Consider the Xy C X as the obstacle closed space. The
free space is defined as, Xfee = (Xops)® = X\Xops. The
output of the RRT* will produce the global path 7(xq;, z:;) €
R2(EXn)  for § = 1,...,k with ¢ € N, that has k-sets of
i-TPBVPs. The global path 7(z¢,2:;) includes the initial
states Xy = x9,; for all ¢, with X} € RFX" © Xpee and the
final states Xg = ,; for all i, with X5 € R¥*™ C Xjee. The
algorithm also outputs an initial graph G = (V, E), where V
is the initial set of nodes and F the initial set of edges. As
a slight abuse of notation, we will refer to nodes v € V as
states ¢ € X.

Since we are solving a finite horizon optimal control
problem with free final state, we can make the following
approximation lim; ,7 2(t) ~ x,. This means that the final
state 2(7") may not obtain the exact desired state z, value.
Yet, the system may be fast enough to approximate the desired
state, and stay there, until the end of the fixed finite horizon
T. To address this problem we define the initial distance as
the n-norm of the initial state and the desired state as,

Dyo(Zo) = [|Zolln, YZo € R™. 4)

Then we measure the relative distance at time ¢ > 0 with the
n-norm of the current state and the desired states as,

D(z) = ||Z||n, YT € R". (5)

Lastly, we define the distance error of (4) and (5) as,
ed(To, T) = |Do(Zo) — D(2)|. (6)
Our work will formulate, an online implementation frame-
work of robust kinodynamic motion planning given the global

path and the initially randomly-sampled graph, with com-
pletely unknown dynamics as provided in (1).



III. TWO-PLAYER ZERO-SUM GAME

We employ the continuous-time Hamilton-Jacobi-Isaacs
(HIJT) [25] equation for the finite horizon optimal control
problem with respect to (1) and (3) that yields,

—oVr oV 1 -
_ — (T _ TR _ A2 * |2
’H(mud—at, &f) 2(36 Mz + a"Ru — 7| d*||?)
*T _ *
+8V (Agf+Ba+Fd)+aV

oz ot '’
Considering the linear system (1), let us define a value
function that is quadratic in the state Z as,

1

V(@) = 5T P(D)E, Va2 0, 7

where P(t) € R™*™ = 0 is the time varying Riccati matrix,
that can be obtained by, solving,

—P(t) =P(t)A+ ATP(t) + M +~"2P(t)FFTP(t)
— P(t)BR™'BTP(t). 8)

Theorem 1: Assume that, there exists a positive definite
P(t), t > 0 that satisfies the game Riccati equation given in
(8) with a final condition P(T") = Pr. Then the state feedback
policies,

u*(z;t) = —R™'BTP(t)z, Vz,t, 9)

and worst-case disturbance of the form

d*(z;t) = v 2FTP(t)z, VI,t, (10)

form a saddle-point equilibrium with value V* =z P(0)
Proof. The proof follows from [26]-(Corollary 17.1). [ |

IV. MODEL-FREE FORMULATION

Let us define the advantage function as,
8V* 8V*)
ot oz
where Q(7; 1, d;t) is an action-dependent value that maps Q :
R R,
Lemma 1: The solution of the problem Q*(Z;u*,d*;t) =
ming max; Q(%; @, d; t) has the same value with the functlon
V* in (7) of the min-max problem (3), where P > 0 is the

Riccati matrix found by solving (8), with a final condition
given as, P(T) = Pr.

Q7 a,d;t) = V*(Z31) + H(T; 4, d; (11)

Proof. Sub§titute (9) and (10), in (11) to obtain
O*(z;u*, d*;t) = V*(z,t). [ |

Next, we define U := [ZT @7 dT|T to obtain the Q-function
(11) in a compact quadratic form,

Qxx( ) Qxu(t)
ux (t) Quu Qud U
) Qdu Qdd
1

Qux(t
= sUTQMU = fvech(Q(t))T(U ®U), (12)

B Qxa(?)
Q(z;u,d;t) = §UT

where Qu(t) = P(t)+ P(t)+ M+ P(t) A+ ATP(t)+ P(t) B,
Qxu = P(t)B» Qxd(t) = P(t)F, qu(t) = BTP(t), Qu =R,
Qui = Qau = 0, Qux(t) = FTP(t), and Qqa — v*. We can
parametrize the control ©* given in (9) and the disturbance d*
given in (10) with respect to the Q-function, by employing the
stationarity conditions oQ@udit) _ 0, and M =0,
that yl_eld a*(i‘; J ) = _Quulqu( )

t) = —Qu Qu(t),

respectively.

A. Actor/Critic Structure

Let us define, v(t)TW, = ivech(Q(t)), where v(t) is
a bounded radial basis function of proper dimensions that
depends explicitly on time ¢ > 0. Since the ideal weight
parameters are unknown, we will be motivated by adaptive
control techniques [14] to find tuning laws for the current
weight values. Therefore, the estimated Q-function yields,

O(z; 1, d; t) = WIv(t)(U @ U). (13)
Similarly, we define the actor that approximates the control
policy with W,T u(t) :== —Q,!Qux(t), where pu(t) is a bounded
radial basis function of appropriate dimensions. Thus, the
control policy actor yields,

U(z;t) = WIu(t)z, vz € R™.
The actor to approximate the disturbance can be written as,

d(z;t) = W]E(t)z, ¥z € R™,

where W €(t) = —Qy,' Qux(t), where £(t) is a bounded radial
basis function of proper dimensions that depends explicitly on
time ¢t > 0.

(14)

5)

Remark 1: The critic and the actor approximators described
in (13), , and (14) respectively, do not include any approx-
imations errors. Therefore, we use the whole space and not
just a compact set. With this structure, the approximations
will converge to the optimal policies, thus the superscript
that denotes the ideal values of the adaptive weight estimation
renders similarly with the optimal solutions. O

We leverage the integral Bellman equation from [20], and the
result of Lemma 1 to obtain,

Q*(3(); (1), d* (£);1) =

Q" (z(t — At);u*(t — At), d*(t — At);t — At)
L[ =T N7 1 5T R& T
- i/tht(x Mz + uT Ru — ~?||d||?) dr
(16)
Q*(a(T), T) = 5#(T)P(T)2(T), (7

where At € Rt is a small time interval.

We define the critic estimation errors e, , e, € R, that we
want to eventually drive to zero by tuning the parameters of



the critic in (13). Define the first critic error e., as,

ee, =WIn(t) ((U(t) QU(t) — (Ut — At) @ U(t — At))

I i -
+= / (ZTMZ + uT Ru — ~?||d||*) dr
2 Ji—at
and the second critic error as, e., == 3zT(T)P(T)z(T) —
We(T)Tv(T)(U(T) @ U(T)). Next, we write the actor ap-
proximator error as, e, = Wi u(t)z + Qu'Qux(t)Z, where

e, € R™, and the values of Quu, qu will be obtained from the
critic weights We. Similarly, we write the disturbance errors
as, eq = WJ £(t)z + Qi Qax ()T, where eq € R, and the
values of Qdd,de will be obtained from the critic weights
W,. Then, we define the squared-norm of the errors,

A 1 1
Ky (We, We(T)) = §||€c1\\2+§||6c2||27 (18)
N 1
K> (Wa) = 5 lleall”, (19)
. L, s
K3(Wq) = §H€d|| : (20)

B. Learning Framework

The learning framework consists of three “plug-n-play”
tuning laws. We apply a normalized gradient descent technique
[14] in (18) for the critic estimation weights,

1 1

W, = — ) 21
c « 1+(7T(7) (1+0t]'0f)20'f&2 2D

where, o = v(t)(Ut) @ U®t) — Ut — At) @ U(t — At)),
o = v(T)(U(T)®U(T)), and a. € RT is a constant gain
that determines the convergence rate. The critic tuning law
(21) guarantees that as e;, — 0 and e., — 0, then Wc — W..
We derive a tuning law for the weights of the actor W, by
applying a gradient descent algorithm in (19) that yields,

2 0K,

a= Q4

(22)

= —a,Ze],
a

where o, € RT is a constant gain that specifies the conver-

gence rate. The actor tuning law (22) guarantees that as e, — 0

then W, — W,. The weights of the actor Wy for the worst-

case disturbance, by applying a gradient descent algorithm in

(20) yields,
2 8K3
Wd = —Qy =
oWy

where g € RT is a constant gain that specifies the conver-
gence rate. The actor tuning law (23) guarantees that as eq — 0
then Wd — Wy.

Next, we provide the main Theorem for the proposed
framework.

Theorem 2: Consider the system (1), with the critic, the
control actor, and the disturbance actor approximators given
by (13), (14), and (1) respectively. The weights of the critic,
the control actor, and the disturbance actor estimators are tuned
by (21), (22), and (23) respectively. Then, the origin is a
globally uniformly asymptotically stable equilibrium point of

(23)

= fadjeg,

the closed-loop system with state ¢ = [zT wI wJr WdT u
and for all initial conditions v(0), given that the critic constant
gain o is sufficiently larger than the actor gains a,, o4 and
the following inequalities hold with ¢; and d2 constants of
unity order,

/\M xul%i1 I* -2 X T *X Xu I

0< a, < A+ QR Gh — 1200k ~ XQuk),
01 (7\Il+u( )m(tmz)
MQuQT

0<ag < — AQ dQ"‘Q ;e > Q.
52/\( )y~ )

1+ T

Proof. See the Appendix. O

V. MOTION PLANNING FRAMEWORK

In this section, we discuss the structure of the proposed
model-free, online kinodynamic motion planning with Q-
learning, game-theory, and optimal sampling-based path plan-
ners. The motion planning structure is shown in Fig. 1. The
structure consists of an offline RRT* computation; an online
actor/critic structure; an online terminal state evaluation; an
online static obstacle augmentation; and an online local re-
planning.

First, we compute offline the global optimal path
7(xo,;, %r,i), using the RRT* algorithm. Then, we continue
with the online model-free learning of the optimal policy for
the worst-case disturbance. More specifically, we evaluate the
policy with a critic and we improve the policy with an actor
by considering the worst-case disturbance obtained by another
actor. The critic’s objective is to estimate the Q-function,
which is obtained from the Equations (16), and (17). The
critic approximates the o) using (13), where W, are the critic
parameters that can be computed online by (21). The control
actor computes the action % according to (14), where W, are
the actor parameters that can be estimated online by (22).
The disturbance actor computes the action d according to (1),
where TW; are the actor parameters that can be estimated online
by (23). The critic parameters include intrinsic dynamics,
which can be obtained by taking the time derivative that yields,

p=zT(t)Mz(t) — 27 (t — At)Mz(t — At) + uT(t) Ru(t)
—aT(t — At)Ru(t — At). (24)

A distance metric will be used to evaluate the final state
z;. The initial distance Dy is computed by (4). Next, the
relative distance D is obtained online at every iteration At
by (5). In the case that the distance error (6) decreases
below an admissible value of the initial distance eq < 8D,
peB={8eR|0<pB <1}, we continue to the next i-
TPBVP, by assigning the current state value as the new initial
state xg ;41 = x(t). It is to be noted that the i-TPBVP is
specified by the i-set of the initial and the final states x,
x;, which were initially provided by the global planning with
RRT™.

The RRT* algorithm is proved to compute the optimal path,
which most of the times passes very close to the obstacles.
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Fig. 1. The structure of the motion planning algorithm. The sequence
operation is clockwise, starting from the global planning. The structure
blends five stages: 1) the offline global RRT* computation, 2) the online
actor/critic structure, 3) the online terminal state evaluation, 4) the static
obstacle augmentation, and 5) the online local RRT* re-planning.

Inherently, in kinodynamic motion planning straight lines
cannot be tracked, due to the constraints imposed by the
physics of the system. Therefore, when the robot navigates
closely to the obstacle and deviates from the given global
path, then a collision may occur with the obstacle. To address
this problem we propose a static augmentation of the obstacle
space and a local re-planning strategy using the precomputed
randomly sampled nodes that were employed for the global
planning.

For the static obstacle augmentation, we compute the max-
imum deviation of the robot motion from the straight line at
every TPBVP, that we term as kinodynamic distance,
oy |To x|
Diov(Zo, T) Dolio)

Next, if the kinodynamic distance is greater than the
previously measured deviations in motion Dyy,; >
max{Drop,1, - - - s Drob,i—1 }» We compute the augmented closed
obstacle space, XpE = Xops ® Xyop, Where Xy € R? is the
kinodynamic distance space that is constructed as a rectangle
with sides 6 = 2D;o. That is a conservative approach,
because we limit the navigation considering the maximum
kinodynamic distance. Although, since we tackle the model-
free problem, the system is unknown for offline computations.
Therefore, the agent may deviate from the optimal path, yet
we guarantee collision-free navigation.

We continue on the local re-planning stage that will provide
a safe path in the open diminished free space XIm =
(AR5 = X\ XS, We start by evaluating whether the global
path collides with the augmented obstacle space. Then, if a
collision occurs, the graph G(V, E) is pruned by discarding
the nodes in the augmented obstacle space from the initial
list of nodes, View = V\Vaug, Vaug = V € Xipt. Now since
it is required to perform online the algorithm, we cannot
computationally afford to perform the RRT* even in the
diminished free state space XM Therefore, a significantly
reduced free state space needs to be specified.

The underlying idea for the local path planning problem

(25)

A loc
free Xstart

Fig. 2. The construction of the local circular space Xg;)r‘t::le and the local free

loc loc 3 loc
space X7 . The loca}ofree space X} contains the local start state zgy, and

the local goal state Tyl

exploits the precomputed nodes and the global path, toward
defining a new local free state space X[°. First, we search
for the two closest states of the initial global path outside the
area of collision with the augmented obstacle space. These two
states will serve as the local start state 2%, and the local goal
state :cg:fal, while the rest path will not be affected. If any states
of the global path are located in the augmented obstacle space

X8 we discard them from the updated list of nodes Viey.

obs
Next, we establish a circle with center point at Ojoc = (295, +
Tywy)/2 and radius rioc = [|23s, — Tyy|, that forms the local

circle " {.17 eX | Hl‘ - 0100”2S 7,.1200}
as shown in Fig. 2. Then, the local closed free path planning
space is defined as the relative complement of the augmented
obstacle space in the local circular space, X% = X1o¢ \ X3¢
To assess the X% we introduce the following definitions.

Definition 1: If A is a subset of a metric space X, and if
OA denotes the set of all its limit points, then A said to be
closure of A if A= AUOJOA. O

Definition 2: Two subsets A, B of a metric space X are
said to be separated if both ANB =0, ANB = ( hold. [

Definition 3: A set A is connected if it is not the union of
two separated sets. [

Lemma 2: For a given set of states in the open diminished
free space X2, the local start state z!%,, and the local goal
state :cngal, if there exists a sufficient, connected, and closed
local free space X% that forms a ring, based on the fixed
incremental distance e¢ of the RRT*, then we can obtain a

collision-free path with the local re-planning framework.

closed circular space X%

Proof. The proof follows from [28]. [ |

Remark 2: The determination of a significantly small local
free space X[ that is connected and guarantees the existence
of a local path 7'° from the local initial state 2%, to the local
goal state mé‘}fal is a challenging problem. This difficulty lies in
the unknown kinodynamic distances Dy, due to the model-
free approach that augments the obstacle space, the unknown
number of states that will be discarded from the initial global
path 7, and the requirements for reduced computational effort
that will allow the online implementation of the algorithm. In
this paper, we assess the local candidate path planning space

Xcl;’gd and we discuss the case of a connected space. O

Since we obtained a small local free space X% that is

guaranteed to contain the local start state x5, the local goal
state x'g‘ffal, and sufficient space for the implementation of the
path planning with incremental distance ¢, we move on the



local re-planning step with RRT*. We equip the algorithm
with the local free nodes, that is the global nodes which are
located inside the local free space, Viee = View € Xflr‘;. The
output is a local path 7'° that connects the local start state .55,
with the local goal state x}g"ocal, which along with the previously
computed global path 7 produces the new tree Tpey-

A. Motion Planning Algorithm

The algorithmic framework consists of five phases, the
offline computation of the global path planning; the online
path tracking with game-theoretic learning; a terminal state
evaluation framework; a static obstacle augmentation; and the
local re-planning procedure.

The main routine is presented in Algorithm 1. Its sub-
routines can be found in [28]. The global graph G(V, E) is
obtained offline by the RRT*, that provides all the TPBVPs
with initial and final states. Next, we continue with the on-
line implementation. The function NoCollision monitors
if there exist a collision in the entire augmented obstacle
space with the global path through the whole procedure and
returns a binary value. The function InitialDistance
calculates the distance of the initial and final state according
to (4). Then, follows the online approximation of the optimal
policy with full state feedback (lines 7-14). The function
Critic estimates the critic parameters from (21). The func-
tion Est imateQ approximates the parameters of the Q from
(13). DisturbanceActor calculates the disturbance actor
parameters from (23), that lead the Disturbance to justify
the disturbance d from (1). The ControlActor calculates
the control actor parameters from (22), that lead the function
Control to produce the control action @ from (14). Nest,
we perform the terminal state evaluation (lines 15-20). The
function KinodynamicDistance returns the deviation of
the agent from the straight line that connects the initial
and final states, by employing (25). The distance error is
calculated by the function DistanceError, which allow the
terminal state evaluation to proceed to the next problem. The
primitive Augment inflates the obstacle space by comparing
the maximum distance of the previously obtained deviations.

When a collision of the global path occurs with the aug-
mented obstacle space, then the algorithm continues to the
next phase of the online local re-planning. A critical aspect
for the feasibility of the online implementation, is to perform
the re-planning procedure sufficiently fast. Thus, we obtain
the local free space with LocalNodes, that also provides the
local free nodes for feasible local re-planning. Then, the RRT*
computes the local path, yet in a reduced space. Lastly, the
primitive Connect employs the global path and the locally
established path, to find a safe tree T, Wwith respect to the
kinodynamic constraints.

VI. RESULTS AND DISCUSSION

In this section, we demonstrate the efficiency of the pro-
posed online and robust kinodynamic motion planning tech-
nique. We also provide a qualitative comparison of our frame-
work with other kinodynamic motion planning techniques.

Algorithm 1 RRT_Q*
1 Viree = 05 Xpf < Xobs:

S
2: ga T < RRT*(gv N7 ‘/free);
3: Dgg — @;
4: while NoCollision(w) do
for i =1 to k do
Dy +InitialDistance(xy);

5
6:
7: for t € T do
8:
9

We « Critic(a, M, R, At,P(T), a);
Q < EstimateQ(W,, x,);

10: Wy <= DisturbanceActor(z;, @, aq);
11: d + Disturbance(Wd,mr);

12: Wa < ControlActor(x;, Q, ay);

13: U+ Control(Wa, Tr);

14: Return ;

15: Diop ¢ KinodynamicDistance(xg, z;, Dy);
16: eq < DistanceError(Dy, x;);

17: if e < 5Dy then

18: Toi+1 I(t),

19: break;

20: end if

21: end for

22: if Db > DN then

23: Xj&g < Augment(Xpps); Dﬁi‘g < Diop;
24: end if

25: end for

26: end while

27: Viree < LocalNodes(m, Xy, €);
28: % «— RRT*(Viree):

29: Trew  Connect(m, 7'°);

30: Return Toew;

A. Simulations

Consider now the Maxwell-slip model [29], where the
robot slips on a frictioned flat surface. While the mass m is
translating along the z-axis and the y-axis direction, a spring-
damper system models the friction with coefficients &, cx, and
ky, cy respectively. The system is described by,

Z1 T 0 0 0
il _ 4|0 0 01](fQ 0
I E I 1T T A e
Y2 Y2 o L 1
with plant matrix,

0 0 1 0
A 0 0 0 1

Sl oo-am o
0 _ Ky _Y

where 1, y; are the translations (kinematic constraints), z; =
T9, Y1 = Y2 are the velocities (dynamic constraints), and £ =
T9, Y1 = Yo are the accelerations (dynamic constraints). The
vector | f1 fg]T is the input force.

We set the finite horizon 7" = 10 s for every run and the
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Fig. 3. The online kinodynamic motion planning framework with completely
unknown dynamics and worst-case disturbance in a complex environment.
The motion planning framework performs local re-planning at three areas
according to the static obstacle augmentation and avoids obstacle collision.

admissible window 8 = 5%. The user-defined matrices are
M =1, and R = 0.11 with proper dimensions for the identity
matrix. The final Riccati matrix is P(7T") = 0.5] and the final
control action is u(7T") = 0.001. We set a, = 50, a,, = 4, and
o, = 2.5 by following Theorem 2. The small fixed value of
the internal dynamics is At = 0.05s. The initial values of VVC,
Wd, and Wa are randomly selected. The initial and the final set
of states &y, A are given by the offline computation of the
RRT*. The stiffness, and the damping coefficients are ky =
ky = 20N/m, and ¢, = ¢, = 45kg/s respectively. The mass
is m = 40kg. The state space is described by the Cartesian
space X € [0,100] x [0,100]. We consider exact knowledge
of the obstacle space X and we require full state feedback.
We compute offline the global path using RRT* with fixed
incremental distance ¢ = 2 and neighborhood radius r = 10.

The proposed framework efficiently performs robust, kin-
odynamic motion planning in challenging obstacle environ-
ments and with external disturbances, as depicted in Figure 3.
The motion of the robot is illustrated with a blue solid
line, the start state gy, With a green circle, the goal state
Zgoal With a red circle, and the global path m with a dashed
black line. The red crosses represent the discarded nodes Vg
that are located in the augmented obstacle space X..°. The
inflated space is drawn with light purple. The local start state
x'% and the local goal state x}g‘:fal are presented with red
rectangles. The feasible local path 7' is illustrated with a
red dashed line. This performance reveals that the governing
dynamics and the disturbances do not affect the performance
of the proposed motion planning technique even in challenging
obstacle environments.

B. Qualitative Comparison

In Table I we provide a qualitative comparison of the
proposed technique with other kinodynamic motion planning
works. We consider four specifications, the optimality; the on-
line implementation; the robustness; and the system’s model.
We select optimality as a basis of this comparison, yet some
approaches evaluate different performance. More specifically,
the LQR-Trees, LQR-RRT*, and our approach solve the

TABLE I
KINODYNAMIC MOTION PLANNING COMPARISON
LQR- LQR- Kinodynamic Proposed
Trees [3] RRT™ [9] RRT* [10] Solution
Optimality v v v v
Online X X X v
Robustness CL CL X v
Model-Free X X X v

minimum-energy problem as given in (2), while Kinodynamic
RRT* evaluates a minimum time-fuel performance. We also
provide Theorem 2, that guarantees closed-loop stability of
the equilibrium point. Minimum energy problems penalize the
control and the states simultaneously, while minimum time-
fuel problems penalize only the control. Thus, minimizing the
energy corresponds to better performance [15]. Online imple-
mentation can be only achieved with the proposed framework,
as it requires the computation of three simple gradient descent
laws given by (21), (22), (23), and the local re-planning at a
relatively small free space without any re-sampling. The other
works need to solve the Riccati equation that inherits extensive
offline computation and comprises the model of the system,
which for the finite time horizon is a nonlinear PDE and
must be integrated backwards in time. Therefore, the Ricatti
equation yields extensive offline computation. The infinite
horizon case is not ideal for motion planning, as the time is
always a requirement for real systems. We consider robustness
as a mean to reject disturbance. Our solution implements
closed-loop feedback, considers disturbance with a two-player
zero-sum game, and approximates the worst-case disturbance
with an actor. Note that LQR-Trees and LQR-RRT* exploit
closed-loop controllers, that provide some level of robustness,
yet they do not explicitly model disturbances in the system.
Kinodynamic RRT* does not reject disturbances and they
make use of open-loop control. The proposed framework is
model-free, as we approximate the optimal policy in (13)
without any information of the system dynamics. To this end,
our technique is suitable for any unmanned vehicle, while the
other works require the system’s model for their calculations.

VII. CONCLUSION

This paper proposed an online kinodynamic motion plan-
ning framework. We employed a game-based Q-learning ap-
proach to approximate the optimal policy for the worst-case
disturbance of a continuous linear system with a finite horizon
performance. We discussed the mathematical formulation that
guarantees asymptotic stability and optimality of kinodynamic
motion planning for systems with completely unknown dy-
namics. We also presented the algorithmic framework, we
proposed a terminal state evaluation that reduces significantly
the computational effort, and a static obstacle augmentation
along with and a local re-planning framework that to facilitates
the online and collision-free implementation. Simulation ex-
amples validated the efficiency of the proposed framework and
a qualitative comparison outlined the benefits of our approach.

Future research efforts will focus on the extension of the



online kinodynamic motion planning algorithm in 3D under-
water environments with moving obstacles.
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APPENDIX

For the theoretical analysis we define the weight estimation
error for the critic WC = W, — WC, for the control actor
W, = Wa—Wa, and for the disturbance actor Wd = Wd—Wd.
The estimation error dynamics of the critic yields,

W, =— a.

The estimation error dynamics of the control actor becomes,

. o ~ L /,L(t)@qu_l
Wy = =22 ()T W, — B2 ———
2 = —TTTu(t)TW, — uTT 11+ p(8)Tp(t)]2

Next, the estimation error dynamics of the disturbance yields,

o ()Qu(—)
W= meads e T~ T e e
where Qg = —y 2 and Qu, = R.

Lemma 3: Considering any control input «(¢) € U, then the
estimation error dynamics of the critic W, has an exponentially
stable equilibrium point at the origin that is bounded by,
[Well< ||[We(to)||kie"2—%) where k1,k2 € RT. The
signal A(t) == % needs to be persistently exciting
(PE) at [t,t+ Tpg|, where Tpg € R the excitation period and
if there exists a # € R such that 51 < ftHTPE A(T)A(T)TdT.

Proof. The proof follows from [24]. [ |

Proof of Theorem 2. Consider the Lyapunov function,
1, .~ 1 - - |
L(h;t) = V*(:‘c;t)+§HWcH2+§tr{WaTWd}+§tr{WdTWd} >0,

for all ¢ > 0, where v = [z7 wI WrI WdT]T is the
augmented state, and £ : R™ x R™ x }Rw
R™*™ — R. The orbital derivative for the closed-loop dy-
namics by using u yields, £ = T} + T + T3 + T where,

Ty, = ZTP(t)z + 2T P(t)(AZ + Bi), 27)

7 .UJ(t)quRil }
11+ ()T

£(00ul=) "

T, = —adtr{ VIZETE(H)T Wy + Wdeme



It is easy to see that,

a ~
Ty < = |Well?, (28)
de(sl (t)R 1 —n2
T < ——||20W/ u( W Iy ,
£(t )( )2 e
Cvd52 Y 2
Ty < — || TE®) Wal 2+ )"
425 erere) 17
(30)
The estimated control action @ and disturbance d result,
t :Wam(t)of 31)
= (QXUQ;} + :u( ) )
Quu qul‘ - WT ( )‘f
=u* — WaTM( ) T, (32)
(33)
and similarly the estimated disturbance becomes,
d =d* — WJE(t)z. (34)

Using the Riccati equation (8), the estimated control and
disturbance (31), (33), and Young’s inequality, the (27) yields,

1 1—
T3 < — (A0 + QuB™ QL = 1 QuQl) — 57(QuQL)
1—
- SMQLQW) 7% (35)
Next, from (28), (29), (30), and (35) we obtain,

£(w,1) < [ S+ QuA™QT, ~ 7 Qul) — sNQu@l)
Q01 ~ p(t)R~1 Qg0 £(t) (=) 2
- 1A< )|\2)_ d2A(| )

l\D\H

[T+ u(t)Talt T+E@T 0N
— SNQLQuW) |l S I P S e ) Wl
- §||$va(t) TWall?= W (yst). (36)

Considering the inequality in (2) then [Z(w; t) is non-positive
for all ¢ and t > ¢y. From Wi(v;t) = Wa(y;t) =
V*(@,t) + | We| P+ 3t {WIT W} + Lae{ W] Wy} > 0, we get
Wi(y;t) < L(;t) < Wa(e;t). In this way, we can conclude
that the origin ). = 0 is uniformly stable according to the Lya-
punov stability theorem. Since L(1;t) is lower-bounded and
non-increasing, inequality (36) is also bounded, which implies
that £(1);t) is uniformly continuous. According to Barbalat’s
lemma, L£(v;t) — 0 as t — oo. Since W3(1;t) is positive
definite, so asymptotic stability holds from the Lyapunov
stability theorem. Next, W7 (¢);t) is radially unbounded with
respect to || Z|, ||Wel|, || Wal| ||[Wal| and globally properties also
hold. Therefore, the equilibrium at the origin ¥, = 0 of the
closed-loop system is globally uniformly asymptotically stable
[30]. |
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