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Abstract— In this paper, we present a data-driven itera-
tive algorithm for accurate prediction of underwater acoustic
communication performance at unvisited sites. The prediction
algorithm consists of two steps: i) estimation of the covariance
matrix; and ii) prediction of the communication performance.
The importance of the covariance estimation is highlighted with
a multi-stage, model-based iterative methodology that produces
unbiased and robust results. The efficiency of the framework
has been validated with synthetic data.

I. INTRODUCTION

Coordination of multiple autonomous underwater agents
requires effective communication for various cooperative
missions [1]. For agents that operate underwater, inter-
vehicle communication is usually accomplished using un-
derwater acoustic (UWA) signals. In the majority of the
literature, the communication links—interconnecting multi-
ple underwater vehicles—are treated as deterministic, range-
dependent functions [2], [3]. Indeed, the communication
performance is strongly tied to the vehicle range, yet the
performance is also dependent on environmental effects,
including multi-path effect and background noise [4]. In
addition to exchange of data, acoustic communication can
provide vehicle range information to improve underwater
navigation [5].

Our goal in this work is on predicting the UWA com-
munication performance at unvisited locations by using
previous measurements, even if the locations are beyond
the observation area, i.e. extrapolation. We employ a two-
step methodology that is comprised of: i) the estimation of
covariance function and its parameters; and ii) the prediction
of the communication performance and its corresponding
variance. Accurate predictions of anticipated communication
performance can be exploited to maintain connectivity in
a network of mobile agents and plan better utilization of
communication resources. Applications with multiple mobile
nodes, such as autonomous underwater vehicles (AUVs),
include underwater exploration, mine reconnaissance, and
tactical surveillance. Our general approach may be applicable
to terrestrial networks, such as aerial and ground communi-
cation using WiFi. The main idea is to leverage advances
in spatial statistics and UWA communication modeling,
to provide a realistic statistical prediction of inter-vehicle
communication performance for teams of marine robots.
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Related work: In underwater wireless sensor networks
kriging [6] (equivalent to Gaussian processes [7], [8]) has
been used for several applications. Horner et al. [9], proposed
a methodology, based partially on ordinary kriging to gen-
erate local and global acoustic communication performance
maps. A distributed ordinary kriging methodology was used
in [10] to estimate coverage holes in large-scale wireless
sensor networks. In [11], the acoustic communication per-
formance of micro AUVs was assessed with field trials.
In [12], a methodology that combines ordinary kriging and
compressive sensing methods, was utilized for prediction of
acoustic intensity. Prediction of received signal strength has
been used in wireless communications for radio propagation
channels. In [13], the authors employ a maximum-likelihood
technique to estimate the parameters of the covariance func-
tion, logarithmic transformation to estimate the underlying
mean, and compressive sensing for prediction with sparse
data. The authors in [14], proposed an ordinary kriging
prediction framework with detrended data to build radio
environment maps, and they also considered positional error
for the measurements. In [15], we formulated the UWA
communication performance problem using multivariate or-
dinary kriging. However, in these works it is assumed that
the latent process is stationary leading to the formulation
of ordinary kriging, that ignores model-based parameters. In
addition, kriging has been used in wireless communications
for the statistical modeling of the environment, yet without
a selection method for the the covariance function.

Contributions: The contribution of this paper is twofold.
First, we formulate the UWA communication performance
problem as a non-stationary random field and propose model-
based basis functions to recover stationarity. Second, we
introduce an iterative technique with statistical selection
of the covariance function and robust estimation of the
covariance parameters to identify the most suitable model
of the underlying latent process.

Structure: Section II formulates the UWA channel prob-
lem, Section III discusses the parameter estimation of the
covariance and the spatial prediction, Section IV describes
the overall framework and the algorithm, Section V provides
simulations and results, and Section VI concludes the paper.

II. UNDERWATER ACOUSTIC CHANNEL

A. Foundations

Basic notions of random fields are discussed in [16]. A
random field is a stochastic process indexed in the Euclidean
space. Let Z(x) be a random field with a covariance matrix
Cov[Z(x), Z(x + h)] � 0 for all x,x + h ∈ D ⊂ Rm,



where x ∈ Rm denote the spatial coordinates, h is the
separation vector, and m is the dimension of the coordinates,
e.g. m = 2 for planar coordinates. The variogram is
a statistical measure of spatial autocorrelation, 2γ(h) :=
E[(Z(x + h) − Z(x))2], where γ(h) is the semivariogram.
The random field is intrinsically (strongly) stationary if both
E[Z(x + h) − Z(x)] = 0 and Var[Z(x + h) − Z(x)] =
2γ(h) for all x, x + h ∈ D are satisfied. An intrinsically
stationary random field with a constant mean E[Z(x)] =
µ and Cov[Z(x), Z(x + h)] = C(h) is called second-
order (weakly) stationary, where the function C(·) is the
covariance function. Second-order stationarity implies the
Gaussian assumption. When the semivariogram function is
bounded, then the covariance function can be constructed
by C(h) = γ(∞) − γ(h). Note that C(·) is a stationary
covariance function, depending only on the separation vector
h and not on local position x. A bounded semivariogram
implies γ(∞) = suph γ(h) = σ2 + τ2 < ∞ is non-
negative and represents the sill of the semivariogram with
σ2 the partial sill and τ2 the nugget. The nugget represents
the variance of the measurement error. When the variogram
depends only on the displacement vector norm, i.e. 2γ(h) =
2γ(‖h‖), then the variogram is isotropic.

B. Problem Formulation

We consider the problem of UWA communication of
two vehicles. In Fig. 1, we illustrate two cases of UWA
communication between two vehicles at range r, with xt
the position of the transmitting vehicle and xr the position
of the receiving vehicle. The first case is shown in Fig. 1-
(a) where the success of the communication event depends
solely on a maximum communication range Q. This means
that if the vehicle range exceeds the communication range
r > Q, then the communication cannot be accomplished.
In practice, this binary approach is unrealistic, as multiple
factors may affect the communication of two vehicles, such
as scattering, motion-induced Doppler effect, and change of
environmental conditions. To this end, we propose multi-
dimensional communication performance maps for various
ranges as illustrated in Fig. 1-(b). For the evaluation of the
communication performance we employ signal-to-noise-ratio
(SNR) measurements.

Let the SNR measurements be modeled by,

Y (x; v) = µ(x; v) + Z(x; v) + ε(x), (1)

where Y (x; v) ∈ Rn is the measurement vector describing
a non-stationary random field at spatial coordinates x ∈
R2, µ(x; v) ∈ Rn is the deterministic mean (or spatial
trend), Z(x; v) ∼ N (0,Σ(x; v)) ∈ Rn is a second-order
stationary random field with Σ(x; v) its covariance matrix,
and ε ∼ N (0, τ2In) is an iid zero-mean Gaussian random
field. The mean µ is the spatial trend that represents large-
scale variability, the second-order stationary random field Z
captures medium-scale variability, and the white noise ε is
the small-scale variation of the sensor. The surrogate variable
is denoted v and is used to represent model dependence, not
explicitly accounted for spatial coordinates x. In Section II-
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Fig. 1. Communication scenarios of two autonomous underwater vehicles
(AUVs) at range r. (a) The communication success relies on a maximum
communication range Q. (b) The communication performance using signal-
to-noise ratio (SNR) is predicted for specific vehicle ranges.

C, we identify a surrogate variable from an UWA propagation
channel model.

Assumption 1: The deterministic mean is decomposed by
a linear combination of unknown parameters expressed by
µ(x; v) = X(x; v)β, where X(x; v) ∈ Rn×p represents the
matrix of known basis functions and β ∈ Rp the vector of
the unknown regressor coefficients.

Since the measurements Y are non-stationary, we seek to
detrend the measurements, i.e. remove the mean Y − µ, to
obtain a stationary random field. Next, with the detrended
measurements the covariance matrix Σ is estimated with
an iterative scheme. After estimating the covariance matrix
Σ, we employ the original measurements Y to perform
predictions. A critical component for detrending is the basis
functions X, thus we are inspired by the propagation model
to design X and accurately detrend the measurements.

C. Communication Performance

To approximate the communication performance between
two agents we use the SNR. In principle, the higher the
SNR, the more likely is to detect the signal. Let the power
of the transmitted signal to be constant, then the SNR yields,
SNR = PTG/PN, where PT denotes the power of the
transmitted signal, G is the channel gain, and PN is the
noise power. To statistically model the channel gain G we
employ [17]. The gain G follows a log-normal distribution
logG ∼ N (Ḡ, σ2

G), where Ḡ represents the mean of the
log channel gain and σ2

G its variance. On the decibel scale,
the source level takes the form of Sl(f) = 10 logPT and
the noise level yields NL(f, ω) = 10 logPN. By neglecting
variations of water pressure, the gain on the decibel scale
g = 10 logG is Gaussian and expressed as,

g(r) = ḡ(r) + ν, (2)

where ν(t) ∼ N (0, σ2
ν) is a zero-mean Gaussian field, r is

the range between vehicles. The mean follows,

ḡ(r) = g0 − k010 log
r

rref
, (3)

where g0 is a constant gain, rref is reference range (e.g.,
1 m in our case), and k0 is the path loss exponent. Note
that (1) has identical structure with the model of the UWA



propagation channel model (2). Thus, using (3) we choose
v to be the range between transmitting and receiving node,
i.e. v = r, and the SNR measurements (1) are expressed as,

Y (x; r) = X(x; r)β + Z(x; r) + ε(x). (4)

The specific goal of our UWA performance prediction appli-
cation is summarized in Problem 1.

Problem 1: Predict the communication performance Ŷ
and the corresponding variance Var[Ŷ ] at unvisited locations
x0, provided a set of communication performance measure-
ments Y at locations x and the vehicle range r.

III. PARAMETER ESTIMATION AND PREDICTION

In this section, we formulate basis functions X and use
ordinary least squares to estimate the spatial trend µ. Then,
we remove the trend by subtracting the mean µ from the
measurements Y . The detrended measurements Y − µ are
employed to estimate the parameters of multiple variogram
functions with a maximum likelihood-based method. Next,
we use the Bayesian information criterion to select the most
suitable variogram function among multiple candidates. With
the selected variogram model we construct the covariance
matrix Σ and use generalized least squares to improve the
accuracy of the spatial trend estimator µ. The method iterates
until the parameters of the variogram function converge.
Finally, we employ the estimated covariance matrix and
the original measurements Y to predict the communication
performance and its variance with universal kriging.

A. Spatial Trend Modeling

In this section, we seek basis functions X to model the
spatial trend µ and detrend the measurements Y − µ and
retrieve a stationary random field. The random field in (4) is
non-stationary due to the spatial trend. Thus, the original
measurements cannot be used to estimate the parameters
of the covariance function. A precise model of the trend
is of paramount importance for spatial extrapolation. The
obvious choice for the elements of the basis function X
is to employ spatial coordinates as covariates. However,
surrogate variables—arising from the physical model of the
system—are useful covariates to interpret the behavior of
the spatial variation [18]. In spatial statistics, polynomial
basis functions X(x) = [1, x, y, xy, x2, y2] are usually used.
However, polynomial basis functions do not behave well for
extrapolation, due to unboundedness, i.e. as ‖x‖→ ∞ then
X(x) → ∞. Alternatively, Gaussian radial basis functions
(RBF) provide suitable extrapolation results. A Gaussian
RBF is given by,

Xl(x; cl, σ
2
G,l) = exp

˜

− (x− cl)2

2σ2
G,l

¸

, (5)

where cl is the center of each measurement, e.g., cl = 0
for zero mean measurement error ε (4). The corresponding
variance is denoted σ2

G,l and in practice is a constant value
σ2

G,l = σ2
G for all l measurements. From (3), it is deduced

that the range of the vehicles has a linear-log relationship
to the mean. Hence, our proposed hybrid basis function

combines Gaussian RBF incorporating spatial coordinates (5)
and linear-log range,

X(x; r) = [1, exp

ˆ

− (x− cx)2

2σ2
x

˙

, exp

ˆ

− (y − cy)2

2σ2
y

˙

,

r, log r]. (6)

At the initial stage, generalized least squares (GLS) cannot
be used for data detrending, as the covariance is unknown.
Thus, the mean parameters are initially estimated by the
ordinary least squares (OLS),

pβ
(1)

OLS = X(x; r)†Y (x; r), (7)

where X† = (XᵀX)−1Xᵀ, X† ∈ Rp×n is the Moore-
Penrose pseudoinverse of X. The residual measurements (or
detrended data) yield,

Ỹ (x; r) = Y (x; r)−X(x; r)pβ
(1)

OLS. (8)

Assumption 2: The random field of the underlying latent
process is second-order stationary after detrending Ỹ .

Assumption 3: The variogram function is isotropic after
detrending.

B. Semivariogram

In this section, we present three commonly used semi-
variogram functions and an optimization method to estimate
the initial parameters. A robust estimator of the experimental
semivariogram function is proposed in [19], which yields,

γ̂CH(h) =

´
∑

N(h)|Ỹ (x+h)−Ỹ (h)|1/2

card(N(h))

¯4

0.914 + 0.988
2 card(N(h)) + 0.090

card(N(h))2

, (9)

where N(h) = {(o, p) | xo − xp = h} is the set
of measurements at distance h and card(·) represents set
cardinality. Note that we use the residual measurements Ỹ
(8). The robustness relies on a transformation which ensures
that the fourth root of the transformed distribution produces
small skew.

Next, we provide three isotropic semivariogram functions
that will be used as candidate models. The spherical model,

γs(h;θ) =

τ
2 + σ2, ‖h‖≥ α,

τ2 + σ2

ˆ

3‖h‖
2α
− 1

2

´

‖h‖
α

¯3
˙

, ‖h‖≤ α, (10)

where the semivariogram parameter vector θ = [τ2 σ2 α]ᵀ ∈
Θ contains the nugget, the partial sill, and the semivariogram
range with Θ = {θ ∈ R3 | τ2 ≥ 0, σ2 ≥ 0, α ≥ 0}. Second,
the exponential model,

γe(h;θ) = τ2 + σ2
´

1− exp
{
− ‖h‖

α

}¯
. (11)

Finally, we consider the Matérn semivariogram function with
fixed smoothing parameter at κ = 3/2 to obtain a mixed
polynomial-exponential model,

γpe(h;θ) = τ2 + σ2

ˆ

1−
´

1 +

?
3‖h‖
α

¯

exp
{
−

?
3‖h‖
α

}˙
,

(12)



The next step is to formulate an optimization problem to
fit the semivariogram models γ (10), (11), (12) and derive
the corresponding parameter vector θ. We utilize a weighted
least squares (WLS) approach [20] which has the form of,

pθ
(0)

CWLS = arg min
θ∈Θ

Ng∑
g=1

card(N(hg))

ˆ

pγCH(hg)

γ(hg;θ)
− 1

˙2

, (13)

where Ng is the total number of the separation vectors hg .
The parameter estimation (13) relies on the residual mea-

surements (8) which incorporate measurement bias. Hence,
the estimation is sensitive to the bias of the mean.

C. Restricted Maximum Likelihood

In this section, we seek an unbiased estimator for the pa-
rameter vector θ and a strategy to narrow down the parameter
space Θ. An alternative bias-free approach of the maximum
likelihood is the restricted maximum likelihood estimation
(REML) [21], [22] which makes use of the error contrasts
to remove the mean dependence from the variance estimates.
The main idea is to transform the residual measurements Ỹ
from (8) with a matrix A ∈ Rn×(n−p) such that, AᵀX = 0
and E[AᵀỸ ] = 0, where X is the basis function (6). In
other words, each column vector of matrix A is orthogonal
to all columns of X. Let us define the error contrast,
W := AᵀỸ to obtain W ∼ N (0,AᵀΣ(θ)A). Although
A is not unique, a matrix that satisfies the properties yields,
A = In −X(XᵀX)−1Xᵀ. Apparently, A does not depend
on the estimated mean parameters pβOLS. The log-restricted
likelihood function is defined by,

L(θ|W ) = −1

2

´

(n− p) log(2π) + log|XᵀX|− log|Σ(θ)|

− log|XᵀΣ(θ)X|−Ỹ ᵀΠ(θ)Ỹ
¯

, (14)

Π(θ) = Σ(θ)−1 −Σ(θ)−1X(XᵀΣ(θ)−1X)−1XᵀΣ(θ)−1,
n is the measurement vector size, and p is the rank of X.
Next, the log-restricted likelihood (14) is maximized with
respect to θ ∈ Θ to obtain the estimated parameter vector pθ.
To reduce the search of the parameter space Θ, we propose
to use the parameter estimate pθ

(0)

CWLS (13) as a center value
of the initial set of parameters in the optimization. So far
we have computed three covariance parameter vectors pθ
corresponding to three candidate models (10), (11), (12). The
next step is to find which of these models is the best fit to
our data with a statistical model selection technique.

D. Bayesian Information Criterion

The Bayesian information criterion (BIC) [23] is a statis-
tical model selection methodology which is defined as,

BIC(Mk) := −2 lnL(pθk | Ỹ ,Mk) + q lnn, (15)

where M = {Mk = Σ(pθk) | k = 1, . . . ,K} is the set
of candidate models, pθk denotes the REML estimates of
θk, q = 3 is the dimension of the parameter space Θ,
L(pθk | Ỹ ,Mk) represents the likelihood corresponding to the
density function f(Ỹ ,Mk | pθk), and n is the measurement
size of the vector Ỹ . In our case K = 3 corresponds to

three candidate semivariogram functions (10), (11), (12). In
principle, the smaller the BIC the more suitable the candidate
model. The advantage of the BIC is consistency. That is, if
the true model is not listed among the candidate models,
the BIC selects the most parsimonious model closest to the
true model, by computing the marginal log-likelihood with
Laplace approximation.

Since the BIC (15) is computed in the log-scale, its
evaluation may be ambiguous. Thus, we employ the posterior
density of the BIC [24] which is approximated by,

P (Mk | Ỹ ) ≈
exp

´

− 1
2∆k

¯

∑K
k=1 exp

´

− 1
2∆k

¯ , (16)

where ∆k = BIC(Mk)−BIC? denotes the BIC difference of
a candidate model with the minimum BIC candidate model
BIC? = minMk∈M BIC(Mk). Essentially, P (Mk | Ỹ ) is
a probability mass function, that provides a probability of
suitability of each model to the real model.

E. Iterative Parameter Estimation

For the iterative parameter estimation we utilize the esti-
mated covariance matrix Σ(pθ

(1)
) as selected by the BIC.

The covariance matrix allows the implementation of the
generalized least squares (GLS) to improve the estimation
of the mean. The parameters of the GLS estimator follow,

pβ
(2)

GLS =

ˆ

XᵀΣ
´

pθ
(1)

¯−1
X

˙−1

XᵀΣ
´

pθ
(1)

¯−1
Y. (17)

Subsequently, the residual measurements (8) yield,

Ỹ (x; r) = Y (x; r)−X(x; r)pβ
(2)

GLS. (18)

In addition, the GLS mean estimation facilitates a more
accurate determination of the covariance function. To this
end, we employ the detrended measurements (18) and iterate
the method. The method terminates when,

‖pθ
(s)
− pθ

(s−1)
‖≤ η (19)

where η ∈ R+ is a small threshold. At every iteration we
expect lower BIC values (15). Practically, after the second
iteration the algorithm terminates [25, pp. 196–200], [26].

F. Prediction Technique

Let us now describe the universal kriging (UK) technique
[6], [27]. UK is the generalized form of kriging and con-
siders spatially varying mean. More specifically, provided
measurements Y ∈ Rn the prediction follows,

pY (x0; r) =

n∑
i=1

ωiY (xi; r) = ωᵀY (x; r), (20)

where x0 is the location of interest, ω = [ω1 . . . ωn]ᵀ ∈ Rn
are the weights we seek to obtain, and Y are the raw mea-
surements (1), i.e. not the residuals Ỹ . Next, we formulate the
unconstrained minimization problem with multiple Lagrange
multipliers λUK ∈ Rp to include the universality conditions
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Fig. 2. The structure of the communication performance predictor is a
two-step method. The first step is to estimate the covariance matrix and the
second to predict the communication performance.

ωᵀX = Xᵀ
0 . The solution is provided by,

ωUK = Γ−1UKγUK, (21)

where ωUK = [ωᵀ λᵀ
UK]ᵀ ∈ Rn+p is a stacked vector that

contains the weights ω and the Lagrange multipliers λUK to
minimize the mean square prediction error. The non-singular
matrix ΓUK ∈ R(n+p)×(n+p) captures the redundancy of
measurements and is given by,

ΓUK :=

„

Γ X
Xᵀ 0p×p



,

The semivariogram vector γUK ∈ Rn+p considers the close-
ness of the measurements to the location of interest x0,

γUK =rγ(x0,x1) . . . γ(x0,xn) 1 X2(x0) . . . Xp(x0)s
ᵀ

:=

„

γ0

X0



.

The unique solution of (21) yields the decoupled coefficients,

ωᵀ =
´

γ0 + X(XᵀΓ−1X)−1(X0 −XᵀΓ−1γ0)
¯ᵀ

Γ−1,

(22)
and the Lagrange multipliers,

λUK = (XᵀΓ−1X)−1(XᵀΓ−1γ0 −X0)ᵀ. (23)

With (22), (23) the variance is computed by,

σ2
UK(pY (x0)) = Xᵀ

0λUK + ωᵀγ0. (24)

Note that the solution can be also expressed with respect to
the covariance matrix Σ.

IV. SPATIAL PREDICTION FRAMEWORK

A. Structure

The two-step methodology is shown in Fig. 2. We start
by collecting measurements of communication performance
(SNR) and vehicle range. The first step is to estimate the co-
variance matrix and the second to predict the communication
performance at unvisited locations.

The covariance estimation comprises of three modules: i)
the data detrending; ii) the parameter estimation; and iii)

Algorithm 1 Communication Performance Prediction
Input: Y , x, r, x0, n, p, q, γ, η
Output: pY , Var[pY ]

1: pθ
(0)
← initialConditions(Y )

2: Σ(pθ
(0)

)← In; k ← 0;
3: X← basis(x; r);
4: for s = 1 to S do
5: pβ

(s)
← GLS(Y,X,Σ(pθ

(s−1)
));

6: Ỹ (s) ← detrend(Y,X, pβ
(s)

);
7: for each γ ∈ C do
8: pθ

(s−1)

k ← CWLS(Ỹ , γ, pθ
(s−1)

);
9: pθ

(s)

k ← REML(Ỹ ,X, n, p, γ, pθ
(s−1)

k );
10: Mk ← Σ(pθ

(s)

k );
11: BICk ← BIC(Ỹ , n, q, pθ

(s)

k ,Mk);
12: k ← k + 1;
13: end for
14: BIC? ← minMk∈M{BIC(Mk)};
15: for k = 1 to K do
16: ∆k ← diffBIC(BICk,BIC?);
17: end for
18: for k = 1 to K do
19: P (Mk | Ỹ )← postBIC(∆k);
20: end for
21: Σ(pθ

(s)
)← maxMk∈M{P (Mk | Ỹ )};

22: if ‖pθ
(s)
− pθ

(s−1)
‖≤ η then

23: break;
24: end if
25: end for
26: pY ,Var[pY ]← UK(Y, r,X,x0,Σ(pθ

(s)
));

the iterative technique. The data detrending includes the
hybrid basis function formulation (6), and OLS computation
(7). Next, the detrended measurements are used to compute
the candidate semivariogram models (10), (11), (12). The
estimation module computes the covariance parameters to be
used as initial conditions, by employing the robust experi-
mental semivariogram (9) and a WLS optimization (13). The
next stage is the REML estimation (14) that results in three
parameter vectors. The last stage of the estimation module
considers the selection of the most suitable covariance model
among the three candidates with the posterior BIC (16). The
last module describes an iterative technique for the selection
of the covariance matrix. Since we obtained a covariance
matrix, the mean estimates can be improved by computing
the GLS (17). Subsequently, we recompute the residuals and
run the estimation module to obtain a new covariance matrix.
The method iterates until the parameters of the covariance
converge (19). The second step uses the measurements, the
location of interest, the model-based basis functions, and
the covariance matrix from the previous step to solve the
universal kriging (21). Finally, we predict the SNR at the
location of interest (20) and its corresponding variance (24).

B. Algorithm

The main routine of the communication performance
predictor is presented in Algorithm 1. The
initialConditions module assigns initial values



to the semivariogram parameter vector pθ
(0)

. The initial
covariance matrix estimate Σ(pθ

(0)
) is set equal to the

identity matrix. Next, the algorithm proceeds to the iterative
parameter estimation. We consider 3 semivariogram models
C = {γs, γe, γpe} (10), (11), (12) at each iteration. In our
case, the basis is designed for spatial extrapolation (6).
Then, the GLS function implements (17) to estimate the
mean regressor parameters pβ

(s)
. Note, that in the first

iteration, the initial covariance matrix is the identity matrix,
and thus, the algorithm implements the OLS (7). The
function detrend computes the residual measurements
(or detrended data) Ỹ (s) (8). With the detrended data, the
function CWLS computes initial values for the estimation
of the semivariogram parameter vector pθ

(s−1)
k by solving a

WLS optimization problem (13). Next, the REML module
implements the REML (14) to estimate the semivariogram
parameter vector pθ

(s)

k . The BIC function calculates the BIC
(15) towards a model selection procedure. The diffBIC
computes the difference of each candidate with the lowest
BIC? and then the postBIC calculates the posterior
BIC (16). The iterative procedure is terminated when the
covariance parameters converge to an η-neighborhood (19)
(e.g., after two iterations in our case). Finally, we utilize the
estimated covariance matrix Σ(pθ

(s)
) and the original data

Y to solve the universal kriging (20), (24) and obtain SNR
prediction pY and its variance Var[pY ].

V. SIMULATIONS AND RESULTS

A. Simulation Setup

The simulation environment is developed with a well-
established, statistical UWA channel model that incorporates
34 parameters and includes contribution from multipath,
motion-induced Doppler, surface scattering, and large-scale
variability of the channel geometry [17]. This channel model
has been exhaustively compared to experimental data from
multiple underwater missions, which varied in location,
season, time duration, and weather conditions. Moreover,
the experimental data reported in [17] demonstrate very
close match of the measurement histogram to the Gaussian
assumption of the statistical model. Similarly to our case, one
of their reported missions in [17, PS experiment] considers
mobile agents. Note that experimental results from our field
trials verify the fidelity of the simulation [28].

In addition to the channel model, we inject local ambient
noise with non-zero Gaussian distributions [4]. The channel
gain (2) is computed for signal frequency f = 25 kHz,
bandwidth B = 5 kHz, surface height 100 m, and vehicle
depths z1 = 80 and z2 = 50 m. We set the source level
Sl = 180 dB which is a realistic value for UWA acoustic
modems in such frequency f . The large-scale parameters,
i.e. path gain and propagation delay, are computed by the
BELLHOP model [29]. We consider two vehicles whose
trajectories are shown in Fig. 3. The black solid line and
the dotted black line represent the paths of agent 1 and 2
respectively. Two cases were considered: i) the long-distant

Long-distant Prediction Short-distant Prediction

Fig. 3. The color map depicts the ambient noise distribution. The solid red
lines separate the areas of collected signal-to-noise ratio (SNR) measure-
ments from the unvisited areas. Each agent collects 75 measurements for
long-distant prediction and 250 measurements for short-distant prediction.

prediction; and ii) the short-distant prediction. In the long-
distant case, each agent collects 75 SNR measurements and
range r. We seek to predict the SNR at 260 and 259 unvisited
location for agent 1 and 2. In the short-distant case, each
agent collects 250 SNR measurements and range r. We seek
to predict the SNR at 85 and 84 unvisited location for agent
1 and 2. In the range-SNR plots (middle and bottom row
in Fig. 3), the red shaded areas correspond to the unknown
SNR regions, which we pretend to not know a priori. After
predicting the SNR, we compare to the true values.

The evaluation of the prediction is accomplished with
two metrics, the mean average prediction error, MAPE =
1/nu

∑nu

u=1|pY (x0,u) − Y (x0,u)|, and the root mean square
prediction error, RMSPE = {1/nu

∑nu

u=1(pY (x0,u) −
Y (x0,u)2}1/2, where nu is the number of unvisited locations.

B. Simulation Results

We perform 24 simulations including two scenarios, three
biases, and four prediction cases to evaluate the accuracy and
robustness of our method. The scenarios are: i) 150 data and
519 unvisited locations (long-distant); and ii) 500 data and
169 unvisited locations (short-distant). At each scenario we
investigate the effect of the bias to the covariance estimation,
i.e. robustness, by adding a systematic error (bias) to the
measurements. The added biases are: i) 10; ii) −10; and
iii) 0. We perform prediction with four techniques: i) OLS
with a polynomial basis; ii) OLS with hybrid basis; iii) GLS
with hybrid basis; and iv) UK with hybrid basis. Note that
both OLS methods are covariance-free techniques (7), while



TABLE I
COVARIANCE ESTIMATION & PREDICTION ASSESSMENT

Cases Model Selection, Prediction Error Values of the Non-Stationary Process

& Covariance Unknown Covariance Estimated Covariance

Known Data Unknown Bias Parameters OLS (Polynomial) OLS (Hybrid) GLS (Hybrid) UK (Hybrid)

BIC-Posterior-Model MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE

150
519

−10 313 - 99% - Matérn 9.13 11.61 6.41 7.89 6.35 7.97 7.22 8.10
0 σ2 = 32.93 15.34 18.43 12.52 14.54 7.72 9.01 6.94 7.95

Long-distant 10 α = 1124 25.24 27.29 22.46 23.68 15.87 17.28 13.35 14.13

500
169

−10 1048 - 100% - Matérn 10.16 11.24 5.51 7.10 4.70 6.24 12.67 13.06
0 σ2 = 81.02 4.04 4.81 5.77 6.58 7.10 8.13 2.90 4.15

Short-distant 10 α = 1495 9.89 10.95 14.65 15.37 16.36 17.12 7.34 7.98

Fig. 4. Absolute local error of zero bias for each agent with four predictors.
(a) Long-distant case of agent 1. (b) Long-distant case of agent 2. (c) Short-
distant case of agent 1. (d) Short-distant case of agent 2.

the GLS and UK make use of the estimated covariance. In
other words, we compare: i) standard polynomial basis to
the proposed hybrid basis for the case of OLS; ii) OLS to
GLS using the proposed hybrid basis; and iii) the proposed
technique to the other three methods. The results are listed
in Table I. Next, we illustrate the propagation of absolute
error (Fig. 4) in eight simulations on each agent including
both scenarios with zero bias for all prediction techniques.

We observe in Table I that the added bias does not
affect the covariance matrix estimation, resulting in the same
BIC value, semivariogram model, and covariance parameters.
Thus, the proposed method is robust, in the sense that it
successfully removes the bias from the covariance estimation.
Although in all simulation cases the Matérn model (12) is se-
lected according to the posterior distribution of the BIC (16),
it is recommended to follow the statistical model selection
technique, as for different applications, other semivariogram
models may represent the latent process more accurately.

Next, we compare the basis functions of the OLS tech-
niques. Clearly, in the long-distant case, the proposed OLS

hybrid basis function outperforms the OLS polynomial in
terms of lower MAPE and RMSPE values. Furthermore, in
Fig. 4-(a), (b) we observe bounded behavior for long-distant
predictions with the OLS hybrid, while the OLS polynomial
produces significantly higher absolute errors at distant loca-
tions from the acquired measurements. Although for short-
distant predictions the OLS polynomial technique appears
lower error values, the unbounded behavior advocates to an
unreliable methodology for extrapolation.

The covariance estimation allows the implementation of
GLS and UK. The covariance-based methods (GLS and UK)
outperform the covariance-free methods (OLS) and demon-
strate bounded behavior in all cases. Particular, GLS and
UK result in significantly lower MAPE and RMSPE from
OLS methods (Table I), emphasizing the impact in prediction
accuracy of the proposed covariance estimation method.

Next, we compare the covariance-based methods. For zero
bias the UK improves the prediction in terms of RMSPE
comparing to the GLS over 12% for the long-distant case and
49% for the short-distant case. Similar prediction improve-
ments are reported for positive bias, but not for the negative
bias cases. Naturally, one direction of bias (-10 dB) favors
the parsimonious techniques of OLS and GLS. Interestingly,
the UK errors remain consistent with low fluctuations even
at areas of high local ambient noise, as illustrated in Fig. 4-
(a), (b). In Fig. 4-(c), agent 1 demonstrates local deviation,
due to high local ambient noise. Yet, agent 2 yields almost
zero absolute error values, as shown in Fig. 4-(d). The
proposed model-based UK technique does not exceed 12
dB of local absolute error in any case—even for long-distant
prediction—and produces much lower MAPE and RMSPE
values, leading to an accurate and reliable methodology for
communication performance prediction.

Another powerful tool of UK is the variance of the predic-
tion. Essentially, every predicted value is characterized by a
Gaussian probability distribution, interpreting the uncertainty
of predicted value. In Fig. 5, the mean prediction values
along with the corresponding standard deviation are pre-
sented. In the long-distant case, the first error off the standard
deviation appears after 130 and 180 unvisited locations for
agents 1 and 2 respectively. The longer the distance of
the unvisited location from the observation area, the higher



Fig. 5. Mean prediction values for universal kriging with corresponding
standard deviation. (a) Long-distant case of agent 1. (b) Long-distant case of
agent 2. (c) Short-distant case of agent 1. (d) Short-distant case of agent 2.

the uncertainty of the prediction. In the short-distant case,
agent 1 reports the first error off the standard deviation
after 60 predictions beyond the observation area, while
agent 2 demonstrates no errors from the standard deviation.
Interestingly, the short-distant case produces higher variance
values from the long-distant case. This reveals that when
the vehicles collect measurements from high ambient noise
regions the uncertainty of the prediction increases.

VI. CONCLUSION

This paper proposes a model-based, data-driven frame-
work for prediction of UWA communication performance
in AUVs beyond the observation area. We show that the
proposed basis function yields bounded error values, even
with simple prediction methods for long-distant cases. For
subsea environments with high ambient noise, the Matérn
model is the most suitable to describe the latent process
of communication performance. In the majority of the sim-
ulated cases the proposed methodology with model-based
universal kriging outperforms the compared techniques. In
high ambient noise environments, we observe high prediction
uncertainty of communication performance for even short-
distant prediction cases. Ongoing work focuses on the anal-
ysis of field data [28] and on decentralized methods [30] to
implement kriging in multi-robot systems.
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