
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Scalable, Federated Gaussian Process Training for
Decentralized Multi-Agent Systems
GEORGE P. KONTOUDIS1, (Member, IEEE), and DANIEL J. STILWELL2, (Senior Member, IEEE)
1Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401 USA (e-mail: george.kontoudis@mines.edu)
2Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail: stilwell@vt.edu)

Corresponding author: George P. Kontoudis (e-mail: george.kontoudis@mines.edu).

This work was supported by the Office of Naval Research via grants N00014-18-1-2627 and N00014-19-1-2194.

ABSTRACT Gaussian process (GP) training of kernel hyperparameters still remains amajor challenge due to
high computational complexity. The typical GP training method employs maximum likelihood estimation to
solve an optimization problem that requires cubic computations for each iteration. In addition, GP training in
multi-agent systems requires significant amount of inter-agent communication that typically involves sharing
of local data. In this paper, we propose scalable optimization algorithms for federated training using Gaussian
processes (GPs) in decentralized multi-agent systems. To decentralize the implementation of GP training
with maximum likelihood estimation, we employ the alternating direction method of multipliers (ADMM).
We provide a closed-form solution of the decentralized proximal ADMM for the case of GP hyperparameter
training using the separable squared exponential kernel. Federated learning is promoted in decentralized
networks by prohibiting local data exchange between agents. Moreover, we extend a centralized GP training
method by augmenting local datasets to improve the GP training estimation accuracy with large-scale multi-
agent systems. The efficiency of the proposed methods is illustrated with numerical experiments.

INDEX TERMS Gaussian processes, multi-agent systems, federated learning.

I. INTRODUCTION

TEAMS of agents have received considerable attention in
recent years, as they can address tasks that cannot be

performed efficiently by a single entity. Multi-agent systems
are attractive for their inherent property of collecting simulta-
neously data from multiple locations—a group of agents can
collect more data than a single agent during the same time
period. Central to machine learning (ML) methodologies is
the collection of large datasets in order to ensure reliable train-
ing. To this end, networks of agents favor learning techniques
due to their data collection capabilities. However, they face
major challenges including limited computational resources
and communication restrictions. A typical approach to ad-
dress these challenges relies on centralizing the collected data
in a single node (e.g., cloud or data center), which requires
high computational and storage resources. However, gather-
ing data on a central server may cause network traffic con-
gestion and security/privacy issues. To ensure data privacy,
a promising solution is federated learning (FL) [1]. FL aims
to implement ML techniques in centralized or decentralized
networks, but without real data communication to comply
with the General Data Protection Regulation (GDPR) of the
EU / UK [2]. For certain applications, such as in GPS-denied

environments, it is unfeasible to implement ML algorithms
in a centralized network, as distant nodes may not be able to
establish communication directly with the central node due to
communication range limitations or bandwidth [3]. Yet, even
if we manage to collect all data in a central node, the time and
space complexity for rapid updates of the ML models require
resources that are not available to agents operating in the field.
Our aim in this work is to develop fully decentralized algo-

rithms for approximate Gaussian process (GP) training that
relax the computation and communication requirements with
no data sharing and achieve similar performance to central-
ized GP training methods. We propose the first decentralized
methods to estimateGP hyperparameters withmaximum like-
lihood estimation, based on the alternating direction method
of multipliers (ADMM) [4]. The decentralized GP training
concept is presented in Fig. 1. Let us consider an unknown
spatial field, where each agent samples the environment and
maintains a local dataset. The proposed decentralized GP
training methods (middle row in Fig. 1) consist of three steps:
i) train a local GP surrogate model based on the information
of local datasets; ii) decentralized coordination of local GP
models; and iii) decentralized aggregation of a global GP
model. Step (ii) requires the solution of a distributed opti-

VOLUME XX, 2024 1

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

FIGURE 1. Decentralized GP training in multi-agent systems using federated learning. The exploration area of interest is an unknown spatial field. The
unknown field can be of higher input dimension, i.e. D > 2, but for illustrative reasons we depict a 2D input environment. Same colored circles
correspond to a local dataset of the matching colored agent. Each agent trains a local GP model using its dataset. The agents coordinate to produce a
global GP model with no data exchange that promotes federated learning.

mization problem with ADMM. The proposed generalized
decentralized GP training (bottom row in Fig. 1) requires
three steps: i) communication of local datasets to generate the
local augmented datasets; ii) train a local GP surrogate model
based on local augmented datasets; and iii) decentralized
coordination of local augmented GP models to produce the
global augmented GP model. We also extend a centralized
method [5] by augmenting local datasets to improve the GP
hyperparameter estimation accuracy for the case of large fleet
multi-agent systems.

Gaussian processes [6], [7] are used in various multi-agent
applications [8]–[18], but their major disadvantage is the poor
scalability with the number of observations. In particular,
provided N observations, the training entails O(N 3) and
the prediction requires O(N 2) computations. Although GP
training is significantly more expensive than GP prediction,
the majority of research is focused on improving the GP
prediction scalability by assuming a priori knowledge of the
hyperparameters. This is a strong assumption and in practice
leads to inaccurate regression and deteriorates the adaptability

of GPs. Another limitation for the implementation of GPs in
multi-agent systems is the communication [3]. For centralized
GPs, every agent has to communicate to a central node.
However, excessive communication is challenging in decen-
tralized networks, because the agents can pass messages only
within a range [19], which may vary in space and time [20].

Two major research directions for GP approximations are
based on global and local approaches [21]. Global approx-
imation methods promote sparsity by using either a subset
of Nsub observations or by introducing a set of Nsub pseudo-
inputs, where Nsub ≪ N to perform GP training with a much
smaller dataset [22], [23]. Sparse GPs have been used in
mobile sensor networks to model spatial fields [9]. In [8],
a GP with truncated observations is proposed, and in [10]
a subset of observations is used for traffic modeling. These
methods require global knowledge of the observations, which
increases inter-agent communications. Also, the interpolation
property is not retained with pseudo-input methods.

The second research direction uses local approximation
methods to reduce the computational burden of GP training.

2 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

A local approximate method with maximum likelihood esti-
mation (MLE) is the factorized GP training [24] (FACT-GP).
That is a centralized algorithm which is based on a server-
client structure. The main idea is to assume statistical inde-
pendence between clients, which results in the approximation
of the inverse covariancematrix by the inverse of a block diag-
onal matrix. To this end, a significant reduction in computing
the inverse of multiple covariance matrices is achieved at
the cost of excessive communication overhead. More specif-
ically, every local entity transmits multiple inverted blocks
of the covariance matrix per MLE iteration. Multiple stud-
ies revealed that the alternating direction method of multi-
pliers (ADMM) [4] is appealing in centralized multi-agent
missions [25], [26]. Xu et al. [27] reformulated the FACT-
GP method by using the consensus ADMM [4] (c-GP). The
c-GP method reduces the communication overhead of GP
training, but requires high computational resources to solve
a nested optimization problem at every ADMM-iteration.
Subsequently, the authors in [5] employed the inexact proxi-
mal ADMM [28] to alleviate the computation demand (apx-
GP). However, both ADMM-based factorized GP training
methods (c-GP and apx-GP) require a centralized network
topology and perform poorly with large fleet multi-agent sys-
tems. In [29], the authors introduced an efficient centralized
methodology for large fleet multi-agent systems termed as
generalized factorized GP training (g-FACT-GP). The latter
entails additional communication between agents to enrich
local datasets with a global random dataset that violates the
requirements of federated learning.

Federated GP learning has recently received attention.
In [30], the authors presented an module-driven GP method
where each module is characterized by a local sparse GP
model. Then, a global sparse GPmodel is trained with no data
exchange between modules. The main idea is an extension
of FACT-GP training [24], but with stochastic variational
inference. The authors in [31] derived convergence bounds for
a federated GP method that employs an aggregation strategy
and stochastic gradient descent. This federated GP method
has also been applied to multi-output GPs [32]. All these fed-
erated GP methods are distributed, but require a central entity
for the aggregation. Our focus with federated GP training is
on decentralized networks with inter-agent communication.

In [33] we present preliminary results of this work. In
particular, we discuss the main concept of DEC-c-GP and
DEC-apx-GP. This paper introduces a decentralized general-
ized GP training method (DEC-gapx-GP) that can be used
in large-scale multi-agent systems. In addition, we discuss
an improved centralized GP training method (gapx-GP) that
extends [5] for large-scale multi-agent systems. Finally, we
provide a rigorous proof for DEC-apx-GP in Appendix C, de-
rive the computation, space, and communication complexity
of all proposed methods (gapx-GP, DEC-c-GP, DEC-apx-GP,
DEC-gapx-GP), and provide additional numerical examples
that illustrate the efficiency of our methods.

The contribution of this paper is the formulation of de-
centralized GP training methods (DEC-c-GP, DEC-apx-GP,

and DEC-gapx-GP). The proposed decentralized methods
cover a broad spectrum of multi-agent missions for GP train-
ing and they simultaneously achieve similar GP model ac-
curacy with centralized GP training methods [5], [24], [29]
and global GPs [6]. The first method (DEC-c-GP) is compu-
tationally expensive, but provides accurate model estimation
for small and medium fleet sizes. Next, we derive a closed-
form solution for the GP hyperparameter optimization prob-
lem (DEC-apx-GP). The latter enables scalable computations
with significantly faster GP training than global GPs and
achieves accurate model estimation for small and medium
fleet sizes. Both DEC-c-GP and DEC-apx-GP require no data
exchange to promote federated learning. The third decen-
tralized GP training method (DEC-gapx-GP) addresses the
GP training problem for large-scale multi-agent systems by
allowing partial data exchnage to provide global informa-
tion to local datasets. Lastly, we propose a centralized GP
training method (gapx-GP) to improve the accuracy of GP
hyperparameter estimation for the case of large fleet multi-
agent systems, while maintaining scalable computations.
In Section II we overview GP training and discuss the fac-

torized GP training, Section III discusses existing centralized
GP training techniques, and Section III-B proposes a new
centralized GP training algorithm. In Section IV, we propose
methods for decentralized GP training, Section V provides
numerical experiments, and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we discuss the foundations of algebraic graph
theory, overview GP training [6], describe the factorized GP
training method [24], and state the problem.

A. FOUNDATIONS
The notation here is standard. The set of all positive real num-
bers R>0 and the set of all non-negative real numbers R≥0.
We denote by In the identity matrix of n× n dimension. The
vector of n zeros is represented as 0n and the matrix of n×m
zeros as 0n×m. The superscript in parenthesis y(s) denotes the
s-th iteration of an estimation process. The cardinality of the
set K is denoted card(K), the absolute values is denoted |·|,
the L2 norm is denoted ∥·∥2, and ∥·∥∞ denotes the infinity
norm. The notation λ(F) denotes the minimum eigenvalue of
matrix F . The i-th element of a vector x is denoted xi and x i
denotes the vector x of agent i. A collection of elements of a
vector x ∈ RN is denoted {xi}Ni=1.
The communication complexity is denoted by O(·) and

describes the total number of bits required to be transmitted
over the course of the algorithm up to convergence [19,
Chapter 3]. Time and space complexity are also denoted by
O(·) and provide themaximum computations to be performed
and space to be occupied at any instant of an algorithm
respectively. All complexities are calculated with respect to
the total number of observations N , the input dimension D,
and the number of agentsM . In addition, the communication
complexity considers the iterations required for an algorithm
to converge send.

VOLUME XX, 2024 3

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

Suppose a network consists of M agents that can perform
local computations. The network is described by an undi-
rected graph G = (V, E), where V = v1, . . . , vM is the set
of nodes and E ⊆ V × V the set of edges. Nodes represent
agents and edges their communication. The neighbors of the
i-th node are denoted Ni = {vj ∈ V | (vi, vj) ∈ E}. The
adjacency matrix of G is denoted A = [aij] ∈ RM×M , where
aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. We consider
a decentralized network topology described by a path graph
that represents the most parsimonious connected graph [34].
This means that as we increase network connectivity the per-
formance of the proposed algorithms will improve, because
we test our methods on the worst case network topology.

Assumption 1. [35] A graph G is strongly connected if for
every pair of distinct agents (vi, vj) there exists a path.

B. GAUSSIAN PROCESS TRAINING

Let the observations be modeled by,

y(x) = f (x) + ϵ, (1)

where x ∈ RD is the input location with D the input space
dimension, f (x) ∼ GP(0, k(x, x′)) is a zero-mean GP with
covariance function k : RD × RD → R, and ϵ ∼ N (0, σ2

ϵ)
is the i.i.d. measurement noise with variance σ2

ϵ > 0. We use
the separable squared exponential (SSE) covariance function,

k(x, x′) = σ2
f exp

{
−1

2

D∑
d=1

(xd − x′d)
2

l2d

}
, (2)

where σ2
f > 0 is the signal variance and ld > 0 the length-

scale hyperparameter at the d-th direction of the input space.
The goal of GPs is to infer the underlying latent function f
given data D = {X , y}, where X = {xn}Nn=1 the inputs,
y = {yn}Nn=1 the outputs, and N the number of observations.

1) Training

A GP is trained to find the hyperparameter vector θ =
(l1, . . . , lD, σf , σϵ)

⊺ ∈ Θ ⊂ RD+2 that maximizes the
marginal log-likelihood,

L = log p(y | X) = −1

2

(
y⊺C−1

θ y+ log|Cθ|+N log 2π
)
,

where Cθ = K + σ2
ϵ IN is the positive definite covariance

matrix with K = k(X ,X) ⪰ 0 ∈ RN×N the positive semi-
definite correlation matrix. The minimization problem em-
ploys the negative marginal log-likelihood (NLL) function,

(P1) θ̂ = argmin
θ

y⊺C−1
θ y+ log|Cθ| (3a)

s.to θ > 0D+2. (3b)

The bound constraints (3b) on the lengthscales ld ensure that
the correlation matrix is positive semi-definite. First-order
iterativemethods (e.g., conjugate gradient descent) or second-
order iterative methods with approximated Hessian (e.g., L-
BFGS-B) are widely used to tackle (P1) in (3). Both optimiza-

tion approaches require the computation of the gradient,

∂L(θ)
∂θ

=
1

2
tr

{(
C−1

θ − C−1
θ yy⊺C−1

θ

) ∂Cθ

∂θ

}
. (4)

The partial derivative of the covariance matrix ∂Cθ/∂θ de-
pends on the covariance function. For our covariance function
selection (2), the partial derivative is provided in Appendix A.

2) Complexity
The time complexity of the training is O(N 3) for computing
the inverse of the covariance matrix of (P1) in (3). Note that
only the inverse of the covariance matrix C−1

θ is required to
be computed for the training (P1) in (3) and not the logarithm
of its determinant log|Cθ| [6, Appendix A.4]. The inverse
computation of the covariance matrix is performed repeatedly
in the optimization (P1) to find the hyperparameters θ̂. After
solving (P1) and obtaining the hyperparameter vector θ̂, we
store the inverse C−1 and N observations, which results in
O(N 2 + DN) space complexity.

C. FACTORIZED GP TRAINING (FACT-GP)
Let each agent i to collect local observations and form the
local dataset {Di = {X i, yi}}Mi=1 corresponding to Ni obser-
vations for M agents with

∑M
i=1 Ni = N and global dataset

D = ∪M
i=1Di. All local datasets have the same number of

observations, i.e., Ni = Nj = N/M for all i, j ∈ V with
i ̸= j. In practice, even if all agents have access to the global
dataset D, the GP computational complexity (Section II-B2)
is prohibitive if D is large. Factorized GP training (FACT-
GP) [24], [36] assumes a centralized topology, where every
entity i communicates to a central node with significant com-
putational and storage resources. The centralized topology
arises several problems: i) security and robustness, as the
central node is vulnerable to malicious attacks or even failure;
ii) traffic network congestion, when all agents communicate
their local datasets with the central entity; and iii) privacy,
because a single entity has access to the global dataset. In
addition, for certain cases (e.g., multi-robot systems), distant
agents may be subject to communication range limitations,
thus the centralized topology may not be feasible.

Assumption 2. Every agent i can communicate only with
agents in its neighborhood Ni and the communication shall
not include any data exchange.

Assumption 3. Every agent i can communicate only with
agents in its neighborhood Ni and the communication shall
include partial exchange of the local dataset Di.

Assumption 2 prohibits the communication of any obser-
vation, whereas Assumption 3 allows the communication of
a subset of the local dataset Di. This distinction has been
made to propose different methodologies in case that partial
communication of the local dataset is permitted.

Assumption 4. All local sub-models Mi are statistically
independent and local datasets represent distinct areas.

4 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

TABLE 1. Time, Space, and Communication Complexity of GP Training and Factorized GP Training Methods

FULL-GP [6] FACT-GP [24] g-FACT-GP [29]

Local Time - O(N 3/M3) O(8(N 3/M3))
Space - O(ξ) O(2ξ + 2(N 2/M2))

Global

GD Space - O(DM + 2M) O(DM + 2M)
Comm - O(send(DM + 2M)) O(send(DM + 2M))

Final
Time O(N 3) - -
Space O(N 2 + DN) O(N 2/M) O(4(N 2/M))
Comm - O(N 2/M) O(4(N 2/M))

ξ = N 2/M2 + D(N/M).

Remark 1. Assumption 4 is a standard assumption in dis-
tributed optimization and leads to problems with a global
decomposed objective function that is the sum of all local
objective functions [37], [38]. The distinction in areas of
local datasets ensures that agents cannot gather information
from the same input locations with different observations.

The factorized GP training relies on Assumption 4. This
implies that the global marginal likelihood can be approxi-
mated by the product of local likelihoods, which leads to,

p(y | X) ≈
M∏
i=1

pi(yi | X i), (5)

where pi(yi | X i) ∼ N (0,Cθ,i) is the local marginal like-
lihood of the i-th node with local covariance matrix Cθ,i =
K i + σ2

ϵ INi and K i = k(X i,X i) ∈ RNi×Ni . Moreover, the fac-
torized approximation (5) yields a block diagonal approxima-
tion of the covariance matrix C−1

θ ≈ diag(C−1
θ,1, . . . ,C

−1
θ,M).

Subsequently, the global marginal log-likelihood is approxi-
mated by L ≈

∑M
i=1 Li (Remark 1) which results in,

log p(y | X) ≈
M∑
i=1

log pi(yi | X i),

with local marginal log-likelihood Li = log pi(yi | X i),

Li = −1

2

(
y⊺i C

−1
θ,i yi + log|Cθ,i|+Ni log 2π

)
. (6)

The gradient of the global log-likelihood in FACT-GP is
computed by∇θL =

∑M
i=1 ∇θLi [5], [27]. The optimization

uses the local negative marginal log-likelihood (LNLL),

(P2) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log|Cθ,i| (7a)

s.to θi > 0D+2, ∀i ∈ V, (7b)

where θi = {l1,i, . . . , lD,i, σf ,iσϵ,i} the local hyperparameters
of agent i. Similarly to (3), constraint (7b) imposes positivity
on the agreed hyperparameters for all agents i ∈ V .
The computation of (6) for the FACT-GP (7) yields

O(N 3
i) = O(N 3/M3) time complexity for each local entity

to invert the local covariance matrix C−1
θ,i . Additionally, for

the storage of the local inverted covariance matrix and the

local observations O(N 2
i + DNi) = O(N 2/M2 + D(N/M))

space is needed. The factorized training requires communi-
cation from every node i to the central node. Provided that
the central node implements gradient descent, every node
communicates the local gradient of LNLL ∇θLi at every
iteration s. That is O(send(D+ 2)M) = O(send(DM + 2M))
total communications from all agents to the central node,
where send is the total number of iterations to reach con-
vergence. Additionally, the central node needs to store at
each iteration: i) the hyperparameter vector on the previous
iteration {θ(s)i }Mi=1 from all M nodes; and ii) their gradi-
ent of LNLL {∇θLi}Mi=1, which results in O((D + 2)M +
(D + 2)) = O(DM + 2M) space complexity. Finally, after
the optimization algorithm converges, each node communi-
cates the local inverted covariance matrix C−1

θ,i that yields
O(MN 2

i) = O(N 2/M) communications to the central node.
All local inverted covariance matrices need to be stored in
the central node leading to O(N 2/M) space complexity. A
computational complexity comparison between FULL-GP
and FACT-GP is provided in Table 1. Since Ni = N/M < N ,
FACT-GP requires less time and space than FULL-GP.

D. PROBLEM DEFINITION
Problem 1. Under Assumption 2 and 3, solve the optimiza-
tion problem (P2) in (7) to estimate the GP hyperparmeters
θ̂ for a connected decentralized network topology (Assump-
tion 1) with independent local GP models (Assumption 4).

Problem 1 is twofold with partial data exchange and no
data exchange between agents. In particular, Assumption 2
allows no data exchange to satisfy federated learning, whereas
Assumption 3 relaxes the problem by allowing partial data
exchange. Both versions of Problem 1 consider a connected
decentralized network (Assumption 1) and take the indepen-
dence approximation assumption between local datasets (As-
sumption 4). Recent advancements in distributed GP training
[5], [27] have addressed the centralized version of Problem 1.
In Section III we review [5], [27] and propose an extension for
centralized networks. However, the main focus of this paper
is on decentralized networks without requiring a central coor-
dinator with massive computational and storage capabilities.
In Section IV, we propose the first decentralized methods to
perform GP training for both versions of Problem 1.

VOLUME XX, 2024 5

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

III. CENTRALIZED GP TRAINING

In this section, we discuss two existing centralized GP train-
ing methods [5], [27] that reduce the computational complex-
ity of FACT-GP (7) based on the alternating direction method
of multipliers (ADMM) [4]. Next, we propose a centralized
GP training method that is efficient for large fleet multi-
agent systems. In addition, we derive all computational and
communication complexities to compare existing methods
with the proposed centralized method.

The following Assumptions are required for first-order
approximations and convergence properties.

Assumption 5. A function f : RN → R is Lipschitz continu-
ous with positive parameter L > 0 if it satisfies,

∥∇f (x)−∇f (y)∥2≤ L∥x − y∥2, ∀x, y. (8)

Assumption 6. A function f : RN → R is strongly convex
with positive parameter m > 0 if it satisfies,

(∇f (x)−∇f (y))⊺ (x − y) ≥ m ∥x − y∥22 , ∀x, y. (9)

Remark 2. Assumption 6 requires the local log-likelihood
function Li to be strongly convex. Usually Li is nonconvex
with respect to the hyperparameters θi [6], [39], [40]. This
is a well known issue of GP training with MLE. A common
trick to address the nonconvexity problem is to use multiple
starting points to the optimization [6], [41], [42]. However, as
we increase the dataset size, the local log-likelihoods tend to
be unimodal distributions [39], and thus Assumption 6 holds.

A. EXISTING CENTRALIZED GP TRAINING METHODS

To address the centralized factorized GP training problem (7)
an exact consensus ADMM and an inexact proximal consen-
sus ADMMhave been used in [5], [27]. Using the logarithmic
transformation, (7) can be expressed as,

(P3) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log|Cθ,i| (10a)

s.to θi = z, ∀i ∈ V, (10b)

where θi = {l1,i, . . . , lD,i, σf ,iσϵ,i} is the local vector of
hyperparameters of agent i, and z ∈ RD+2 is an auxiliary
variable. In other words, constraint (10b) implies that every
agent i is allowed to have its own opinion for the hyperpa-
rameters θi, yet at the end of the optimization all agents must
agree on the global vector value z. Recognize that (10) has
the same formulation with the exact consensus ADMM prob-
lem [4]. Thus, after formulating the augmented Lagrangian,

the consensusGP training (c-GP) iterative scheme [27] yields,

z(s+1) =
1

M

M∑
i=1

(
θ
(s)
i +

1

ρ
ψ

(s)
i

)
, (11a)

θ
(s+1)
i = argmin

θi

{
Li(θi) +

(
ψ

(s)
i

)⊺ (
θi − z(s+1)

)
+

ρ

2

∥∥∥θi − z(s+1)
∥∥∥2
2

}
, (11b)

ψ
(s+1)
i = ψ

(s)
i + ρ

(
θ
(s+1)
i − z(s+1)

)
, (11c)

where ψi ∈ RD+2 is the vector of dual variables of node i,
s ∈ Z≥0 is the iteration number, and ρ > 0 is the penalty
constant term of the augmented Lagrangian.
Let sendnest be the number of iterations required from the

nested optimization (11b) to converge. The computational
complexity of c-GP is cubic in the number of local observa-
tions O(sendnestN

3
i) = O(sendnest(N

3/M3)). The nested optimiza-
tion problem (11b) requires the evaluation of the local log-
likelihood Li(θi) at every internal iteration snest which entails
cubic computations to invert the local covariance C−1

θ,i (6).
The communication complexity to transmit all local hyperpa-
rameter vectors yields O(sendM(D+ 2)). After convergence,
every agent i transmits the local inverted covariance C−1

θ,i re-
quiringO(MN 2

i) = O(N 2/M) communications. Every agent
i occupies O(N 2

i + 3(D + 2) + D(N/M))) = O(N 2/M2 +

DN/M) memory to store C−1
θ,i , θ

(s)
i , z(s), ψ(s)

i , and Di.
The major disadvantage of c-GP is the time complexity

of the nested optimization problem (11b). To address this
issue, the authors in [5] employed the proximal consensus
ADMM [28] and derived an analytical solution for the case
of centralized factorized GP training to form the analytical
proximal GP training (apx-GP). Note that apx-GP employs
a first-order approximation (linearization) on the local log-
likelihood Li around z(s+1),

Li(θi) ≈ ∇⊺
θLi

(
z(s+1)

)(
θi − z(s+1)

)
+
Li
2

∥∥∥θi − z(s+1)
∥∥∥2
2
,

(12)
where Li > 0 is a positive Lipschitz constant that satisfies
Assumption 5 of the local log-likelihood function Li for all
i ∈ V . The apx-GP iteration steps [5] are given by,

z(s+1) =
1

M

M∑
i=1

(
θ
(s)
i +

1

ρ
ψ

(s)
i

)
, (13a)

θ
(s+1)
i = z(s+1) − 1

ρ+ Li

(
∇θLi

(
z(s+1)

)
+ψ

(s)
i

)
(13b)

ψ
(s+1)
i = ψ

(s)
i + ρ

(
θ
(s+1)
i − z(s+1)

)
, (13c)

where the gradient of the local log-likelihood ∇θLi has sim-
ilar structure to the the gradient of the log-likelihood (4).
The only difference on the workflow of apx-GP and c-GP is
that the second step of θ(s+1)

i is computed analytically (13b),
while the former incorporates a nested optimization problem
(11b) at every ADMM-iteration.

The space and communication complexity of apx-GP is
identical to c-GP. The time complexity of apx-GP entails

6 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

TABLE 2. Time, Space, and Communication Complexity of Centralized GP Training Methods

c-GP [27] apx-GP [5] gapx-GP (proposed)

Local Time O(sendnest(N
3/M3)) O(N 3/M3) O(8(N 3/M3))

Space O(ξ) O(ξ) O(2ξ + 2(N 2/M2))

Global ADMM Comm O(sendc-GPM(D+ 2)) O(sendapx-GPM(D+ 2)) O(sendgapx-GPM(D+ 2))

Final Comm O(N 2/M) O(N 2/M) O(4(N 2/M))

ξ = N 2/M2 + D(N/M).

O(N 3
i) = O(N 3/M3) computations, significantly reduced

from O(sendnestN
3/M3) of c-GP. In other words, there is no

nested optimization problem in apx-GP (13). Thus, apx-GP
requires just one inversion of the local covariance matrixC−1

θ,i
per ADMM-iteration instead of sendnest inversions per ADMM-
iteration of c-GP. Both c-GP and apx-GP inherit fast conver-
gence properties of the exact consensus ADMM [4] and the
inexact proximal consensus ADMM [28].

A disadvantage of both centralizedmethods (c-GP (11) and
apx-GP (13)) is that they are based on factorized GP training
and thus they inherit poor approximation capabilities when
the number of agent increases. In other words, for a bounded
space of interest, Assumption 4 is violated as we increase
the number of sub-models Mi. In what follows, we seek to
improve the approximation error for large scale multi-agent
systems by inheriting global information to all local Di.

B. PROPOSED CENTRALIZED GP TRAINING
The first method we propose is a centralized factorized GP
training technique that extends apx-GP with a local aug-
mented datatset D+i for all i ∈ V . The goal is to limit the
approximation error of apx-GP for large fleet sizes inherited
by Assumption 4 at the cost of allowing partial data exchange
(Assumption 3). Data exchange leads to larger datasets that
entail higher computations. In other words, we aim to improve
GP hyperparameter estimation accuracy for centralized large
fleet networks with higher yet reasonable computations. Our
methodology is termed as generalized apx-GP (gapx-GP).

The main idea of gapx-GP is to equip every agent with
a new dataset that has global information on the underly-
ing latent function. Every agent i selects randomly without
replacement Ni/M data from its local dataset Di to form
the local sample dataset D−i ∈ RNi/M ⊂ Di. Then, the
local sample datasets are communicated to every other agent
(Assumption 3) to compose the communication datasetDc =
{D-i}Mi=1 = {X c, yc}. Next, every agent i fuses the communi-
cation dataset Dc ∈ RNi with its local dataset Di to form the
local augmented dataset D+i = Di ∪ Dc ∈ R2Ni . The local
augmented dataset D+i is a new dataset for every agent i that
includes the local dataset Di and the communication dataset
Dc, providing a global representation. Note that in [29], the
communication dataset Dc is randomly selected from the full
dataset D, while we consider a slight variation for decentral-
ized networks. In other words, the communication datasetDc

is selected by the local datasets Di and then fused through

Algorithm 1 gapx-GP
Input: Di(X i, yi), k(·, ·), ρ, Li,Ni, V , TOLADMM

Output: θ̂, C−1
θ , D+i

1: for each i ∈ V do ▷ Local Sample Dataset
2: Dc,i ← Sample(Di)
3: communicate Dc,i to central node
4: end for
5: scatter Dc = {Dc,i}Mi=1 from central node to every agent
6: for each i ∈ V do ▷ Local Augmented Dataset
7: D+i ← Di ∪ Dc

8: end for
9: repeat ▷ ADMM Optimization
10: communicate θ(s)i to central node
11: z(s+1) ← prim-2(θ(s)i ,ψ

(s)
i , card(V)) (13a)

12: scatter z(s+1) from central node to every agent
13: for each i ∈ V do
14: θ

(s+1)
i ← prim-1(θ(s)i , z(s+1),ψ

(s)
i , ρ, Li,D+i) (13b)

15: ψ
(s+1)
i ← dual(θ(s+1)

i , z(s+1),ψ
(s)
i , ρ) (13c)

16: end for
17: until ∥θ(s+1)

i − z(s+1)∥2< TOLADMM, for all i ∈ V
18: for each i ∈ V do ▷ Local Augmented Covariance Inversion
19: θ̂ ← θendi

20: C−1
θ,+i ← invert(k,X+i, θ̂)

21: communicate C−1
θ,+i to central node

22: end for
23: C−1

θ ← diag(C−1
θ,+1,C

−1
θ,+2, . . . ,C

−1
θ,+M) ▷ Block Diagonal

24: Return θ̂, C−1
θ , D+i

information exchange. Next, we implement the apx-GP (13),
but now every agent is equipped with the local augmented
dataset D+i (Algorithm 1).
The local time complexity of gapx-GP yieldsO((2Ni)3) =

O(8(N 3/M3)) computations to invert the local augmented
covariance matrix Cθ,+i = K+i + σ2

ϵ I2Ni ∈ R2Ni×2Ni .
The total communication overhead is the same with c-GP
and apx-GP. After convergence, each agent i communicates
the local augmented covariance matrix C−1

θ,+i that entails
O(M(2Ni)2) = O(4(N 2/M)) communications. The space
complexity of every agent i yields O((2Ni)2 + 3(D + 2) +
D(2Ni)) = O(4(N 2/M2) + 2D(N/M)) to store the local
augmented covariance matrix, the optimization variables at
the previous iteration, and the local augmented dataset.
In Table 2, we list the time, space, and communication

complexity for all centralized factorized GP training methods
based on ADMM. The proposed method is more demanding
in space than c-GP. In terms of time complexity, gapx-GP is
more affordable than c-GP, because the nested optimization

VOLUME XX, 2024 7

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

GP

...

D2

GP GP

+M

D+M

+ +

Agent 1 Agent 2

GP

GP

GP2

Agent M

GP

GPM

GP

D2
...

Agent 1 Agent 2

GP GP+2

DM

Agent M

D1

+1

D+1 D+2

D1 DM

+

...

(a) DEC-c-GP &
DEC-apx-GP (b) DEC-gapx-GP

GP

1

FIGURE 2. The structure of the proposed decentralized GP training
methods. Blue dotted lines correspond to communication (strongly
connected). a) Every agent i has access to the local dataset Di . b) Every
agent i has access to Di . Next, they communicate to form the local
augmented dataset D+i which comprises of Di (local color) and the
global communication dataset Dc (gray color).

of the latter (11b) takes on average more than eight iterations
to converge, i.e., sendnest > 8, but more demanding than apx-GP.
The proposed method supports Assumption 4, and thus we
expect to produce more accurate hyperparameters.

Proposition 1. [28, Theorem 2.10] Consider a strongly
connected decentralized network (Assumption 1) where
the agents are allowed to communicate partially their
datasets (Assumption 3). Let Assumption 4 hold for the
local sub-models Mi and Assumption 6 hold for all lo-
cal log-likelihoods Li (6), then the gapx-GP converges
lims→∞∥θ(s)i − z(s)∥D= 0 to a stationary solution
(θ⋆i , z

⋆,ψ⋆
i) for all agents i ∈ V . □

Proposition 1 implies that the convergence properties of the
optimization scheme (13) hold for gapx-GP to address (P3)
in (10). In other words, the proposed centralized gapx-GP
equipped with the local augmented datasets D+i converges
to the optimal hyperparameters θ⋆i for all agents i ∈ V .

IV. PROPOSED DECENTRALIZED GP TRAINING
In this section, we introduce three methods to address Prob-
lem 1 based on the edge formulation of ADMM [43] that
yields parallel updates and decentralizes the factorized GP
training. Algorithmic implementation details are discussed
for all proposed methods. In addition, we provide a time,
space, and communication complexity analysis.

The edge formulation is a variation (10) for decentralized
networks. Let Assumption 1 hold, then (10) yields,

(P4) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log|Cθ,i| (14a)

s.to θi = τ ij, ∀i ∈ V, j ∈ Ni, (14b)

θj = τ ij, ∀i ∈ V, j ∈ Ni, (14c)

where τ ij are auxiliary variables. Constraints (14b) and (14c)
imply that every agent i is allowed to have its own opinion

Algorithm 2 DEC-c-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, α, sendDEC-c-GP

Output: θ̂, C−1
θ,i

1: initialize p(0)i = 0
2: for s = 1 to sendDEC-c-GP do ▷ ADMM Optimization
3: for each i ∈ V do
4: communicate θ(s)i to neighborsNi

5: p(s+1)
i ← duals(p(s)i ,θ

(s)
i , {θ(s)j }j∈Ni , ρ) (15a)

6: θ
(s+1)
i ← prim(p(s+1)

i ,θ
(s)
i , {θ(s)j }j∈Ni , ρ, α,Di) (15b)

7: end for
8: end for
9: for each i ∈ V do ▷ Local Covariance Inversion
10: θ̂ ← θendi

11: C−1
θ,i ← invert(k,X i, θ̂)

12: end for
13: Return θ̂, C−1

θ,i

Algorithm 3 DEC-apx-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, κi, sendDEC-apx-GP

Output: θ̂, C−1
θ,i

1: Identical to Algorithm 2 with (15b) replaced by (19b)

for the hyperparameters θi, yet at the end of the optimization
all agents in the neighborhood Ni must agree on the neigh-
borhood values τ ij. The edge formulation requires each node
i to store and update variables for all of its neighbors Ni.
Conversely, one can employ the node formulation that relaxes
the storage capacity, as each agent i is required to store and
update variables of itself [44]. In addition, the group ADMM
[45] offers a decentralized optimization method, yet for a
specific graph topology. Thus, we find the edge formulation
more suitable for decentralized GP training.

A. PROPOSED DEC-C-GP
The first proposed method is based on the decentralized
consensus ADMM [46] to perform GP training (DEC-c-GP).
After rendering the augmented Lagrangian for (P4) in (14) we
obtain the decentralized consensus ADMM iterative scheme,

p(s+1)
i = p(s)i + ρ

∑
j∈Ni

(
θ
(s)
i − θ(s)j

)
, (15a)

θ
(s+1)
i = argmin

θi

{
Li(θi) + θ

⊺
i p

(s+1)
i +

ρ
∑
j∈Ni

∥∥∥∥∥θi − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 , (15b)

where ρ > 0 is the penalty term of the augmented Lagrangian
and p(s)i =

∑
j∈Ni

(u(s)ij + v(s)ij) is the sum of the dual variables

u(s)ij and v(s)ij corresponding to constraints (14b) and (14c).

Note that (15a) imposes initial values p(0)i = 0.
The workflow is as follows. Every agent i communicates

to its neighbors j ∈ Ni the current estimate of the hyperpa-
rameters θ(s)i . After each agent gathers all θ(s)j vectors from
its neighborhood, then the sum of the dual variables vector

8 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

TABLE 3. Time, Space, and Communication Complexity of Decentralized GP Training Methods

DEC-c-GP DEC-apx-GP DEC-gapx-GP

Local
Time O(sendnest(N

3/M3)) O(N 3/M3) O(8(N 3/M3))
Space O(ξ) O(ξ) O(2ξ + 2(N 2/M2))
Comm O(sendDEC-c-GP(D+ 2)) O(sendDEC-apx-GP(D+ 2)) O(sendDEC-gapx-GP(D+ 2))

ξ = N 2/M2 + D(N/M).

is updated (15a) to obtain p(s+1)
i . Next, every agent i solves

a nested optimization problem (15b) to compute θ(s+1)
i . The

method iterates until it reaches a predefined maximum iter-
ation number sendDEC-c-GP. The main routine of DEC-c-GP is
provided in Algorithm 2. The proposed method is decentral-
ized, requiring exclusively neighbor-wise communication as
shown in Fig. 2-(a). Note that the inter-agent communications
do not involve any data exchange which satisfies Assumption
2. Provided that the graph topology is connected (Assump-
tion 1), then DEC-c-GP (15) addresses Problem 1.

Proposition 2. [46, Proposition 2] Consider a strongly
connected decentralized network (Assumption 1) where the
agents are not allowed to communicate their datasets (As-
sumption 2). Let Assumption 4 hold for the local sub-models
Mi and Assumption 6 hold for all local log-likelihoodsLi (6),
then the DEC-c-GP (15) converges to a stationary solution
lims→∞ θ

(s)
i = θ⋆ for all agents i ∈ V . □

Proposition 2 implies that the convergence properties of the
optimization scheme (15) hold for DEC-c-GP to address (14).
In other words, the proposed decentralized DEC-c-GP con-
verges to the optimal hyperparameters θ⋆i for all i ∈ V .

Remark 3. A disadvantage of the proposed DEC-c-GP is the
cubic computations on the number of local observations for
every iteration of the nested optimization. That is because at
every ADMM iteration we need to solve the nested optimiza-
tion problem (15b) which entails the computation of Li (6)
that involves the inversion of the local covariance matrix
C−1

θ,i .

B. PROPOSED DEC-APX-GP

To address the computational scalability of DEC-c-GP (Re-
mark 3) we employ the decentralized inexact proximal con-
sensus ADMM [47] and derive an analytical solution to
perform GP training (DEC-apx-GP). A proximal step is
taken based on a first-order approximation on the local log-
likelihood Li around θ

(s),

Li(θi) ≈ ∇⊺
θLi

(
θ
(s)
i

)(
θi − θ(s)i

)
+

κi
2

∥∥∥θi − θ(s)i ∥∥∥2
2
,

(16)
where κi > 0 is a penalty parameter of the proximal term
for all i ∈ V and ∇⊺

θLi can be computed as in (20). After
rendering the augmented Lagrangian in (14) we obtain the
decentralized inexact proximal consensus ADMM iterative

scheme,

p(s+1)
i = p(s)i + ρ

∑
j∈Ni

(
θ
(s)
i − θ(s)j

)
, (17a)

θ
(s+1)
i = argmin

θi

{
∇⊺

θLi

(
θ
(s)
i

)(
θi − θ(s)i

)
+

κi
2

∥∥∥θi − θ(s)i ∥∥∥2
2
θ⊺i p

(s+1)
i +

ρ
∑
j∈Ni

∥∥∥∥∥θi − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 . (17b)

The linearization (16) allows the evaluation of the local log-
likelihood function Li (6) at a fixed point θ(s)i and not at the
optimizing variable θi. To this end, the nested optimization of
(17b) entails significantly less computations than (15b), be-
cause we need to compute ∇⊺

θLi(θ
(s)
i) just one time in (17b)

and not at every iteration of the nested optimization problem
(15b) (Remark 3). In the following Theorem, we extend [47]
by deriving a closed-form solution for the nested optimiza-
tion (17b) that reduces significantly the computations.

Theorem 1. Consider a strongly connected decentralized
network (Assumption 1) where the agents are not allowed to
communicate their datasets (Assumption 2). Let Assumption 4
hold for the local sub-modelsMi, Assumption 6 hold for all
local log-likelihoods Li (6), and allow the penalty term of the
first-order approximation κi to be sufficiently large,

κi >
L2
i

m2
i
− ρλ(D+ A) > 0, ∀i ∈ V. (18)

Then, the nested optimization for the hyperparameter update
(17b) admits a closed-form solution, resulting in the iterative
optimization scheme of DEC-apx-GP,

p(s+1)
i = p(s)i + ρ

∑
j∈Ni

(
θ
(s)
i − θ(s)j

)
, (19a)

θ
(s+1)
i =

1

κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+

(
κi + card(Ni)ρ

)
θ
(s)
i − p(s+1)

i

)
, (19b)

that converges to a stationary (θ⋆i , p
⋆) for all agents i ∈ V .

Proof. The proof is provided in Appendix C. □

Remark 4. The condition to select the penalty parameter κi
(18) depends on the graph topology as the minimum eigen-
value of the degree and adjacencymatrix is requiredλ(D+A).

VOLUME XX, 2024 9

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

FIGURE 3. Five random function generations of the synthetic GP with known hyperparameter values θ = (1.2, 0.3, 1.3, 0.1)⊺ for N = 8, 100 data.

Algorithm 4 DEC-gapx-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, κi, sendDEC-gapx-GP

Output: θ̂, C−1
θ,+i, D+i

1: for each i ∈ V do
2: Dc,i ← Sample(Di)
3: Dc ← flooding(Dc,i)
4: D+i = Di ∪ Dc

5: end for
6: C−1

θ,+i ← DEC-apx-GP(D+i, k, ρ,Ni, κi, sendDEC-gapx-GP)

7: Return θ̂, C−1
θ,+i, D+i

Thus, the stronger the network connectivity, the faster the
convergence of the proposed DEC-apx-GP (19).

The workflow of DEC-apx-GP is similar to DEC-c-GP,
yet the hyperparameter update step (19b) is performed an-
alytically without requiring a nested optimization update as
in (15b) or (17b). Implementation details are given in Al-
gorithm 3 and the structure is illustrated in Fig. 2-(a). The
gradient of the local log-likelihood ∇θLi is provided in Ap-
pendix B-(20).

Remark 5. A disadvantage of both decentralized methods
DEC-c-GP and DEC-apx-GP is the poor approximation ca-
pabilities when the number of agents increases. In particular,
Assumption 4 is violated as we increase the number of sub-
models Mi, which leads to inaccurate GP hyperparameter
estimation for large fleet multi-agent systems.

C. PROPOSED DEC-GAPX-GP
Wepropose to extend the computationally efficient DEC-apx-
GP method (Section IV-B) with a local augmented dataset
D+i for all i ∈ V to address the poor approximation capa-
bilities of (19) when the network has large number of agents
(Remark 5). The idea is similar to the centralized gapx-GP
method (Section III-B). In order to reduce the approximation
error, we relax Assumption 2 by allowing partial exchange of
local subsets of data (Assumption 3). We term the proposed
method as generalized DEC-apx-GP (DEC-gapx-GP).

Since the network has a decentralized topology, flooding
[48] is employed to broadcast the local sample datasets Dc,i

and form the communication dataset Dc. The rest is a direct
application of DEC-apx-GPwith the local augmented datatset
D+i for all i ∈ V . Algorithm 4 presents the implementation
details of DEC-gapx-GP. We show the structure of the pro-

posed method in Fig. 2-(b). The communication dataset Dc

is illustrated in gray for every agent. The larger rectangular
blocks represent the double size of local augmented datasets
D+i ∈ R2Ni when compared to the local datasetsD1, . . . ,DM .
Larger circular objects indicate that the augmented covari-
ance matrices Cθ,+i ∈ R2Ni×2Ni of DEC-gapx-GP have
double dimension, when compared to the local covariance
matrices Cθ,i ∈ RNi×Ni for all i ∈ V of DEC-c-GP and DEC-
apx-GP. Note that DEC-gapx-GP inherits the properties of
DEC-apx-GP (Theorem IV-B).

D. TIME, SPACE, AND COMMUNICATION COMPLEXITY
Let the total number of iterations for the nested optimization
problem (15b) be sendnest. The time complexity of every agent
i is dominated by the inverse of the local covariance matrix
C−1

θ,i for every iteration of the nested optimization problem
(15b), which results in O(sendnestN

3
i) = O(sendnest(N

3/M3))
computations. The gradient for the nested optimization is
provided in Appendix B. Moreover, every agent i occupies
O(N 2

i + DNi + (D + 2) + (card(Ni) + 1)(D + 2)) =
O(N 2/M2 + D(N/M) + (card(Ni) + 2)(D + 2)) memory
to store C−1

θ,i , Di, p
(s)
i , θ(s)i , and {θ(s)j }j∈Ni . The total number

of communications for each agent is O(sendDEC-c-GP(D + 2)) to
transmit the hyperparameters to its neighbors. The complex-
ity of DEC-c-GP is presented in Table 3 along with the other
two proposed decentralized GP training methods.
The local time complexity of DEC-apx-GP is reduced to

O(N 3
i) = O(N 3/M3) for the inversion of the local co-

variance matrix C−1
θ,i just once at every ADMM iteration.

The space complexity is identical to DEC-c-GP and the total
communications entailO(sendDEC-apx-GP(D+2))messages. The
complexity of DEC-apx-GP is provided in Table 3 along with
DEC-c-GP and another decentralizedGP trainingmethod that
is presented in the following Section.
The local time complexity of DEC-gapx-GP entails

O((2Ni)3) = O(8(N 3/M3)) computations to invert the local
augmented covarianceCθ,+i = K+i+σ2

ϵ I2Ni ∈ R2Ni×2Ni . The
proposed method requiresO((2Ni)2+D(2Ni)+(card(Ni)+
2)(D + 2)) = O(4(N 2/M2) + 2D(N/M) + (card(Ni) +

2)(D+2)) space to storeC−1
θ,+i,D+i, p

(s)
i , θ(s)i , and {θ(s)j }j∈Ni .

The total communication overhead isO(sendDEC-gapx-GP(D+2)).
In Table 3, we list the time, space, and communication

complexities for the proposed decentralized factorized GP
trainingmethods. TheDEC-c-GP is themost computationally

10 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

FIGURE 4. Accuracy of GP hyperparameter training using N = 8, 100 data for four fleet sizes and 50 replications. The true values are demonstrated with a
black dotted line. The existing GP training methods are shown in blue boxes. and the proposed in maroon coloured boxes.

FIGURE 5. Accuracy of GP hyperparameter training using N = 32, 400 data for four fleet sizes and 50 replications. The true values are demonstrated with
a black dotted line. The existing GP training methods are shown in blue boxes and the proposed in maroon boxes.

expensive method, but it requires less communications than
the other methods to converge. Therefore, the DEC-c-GP
method favors applications with significant computational
resources on the local nodes. Note that this method can
also be extended with local augmented dataset D+i for all
i ∈ V . Next, the DEC-apx-GP is the computationally most
affordable method. The DEC-gapx-GP stands between the
two former methods on time complexity, but requires more
space and it is designed for large fleet multi-agent systems.

V. NUMERICAL EXPERIMENTS
In this section, we perform numerical experiments to illustrate
the efficiency of the proposed methods. Synthetic data with
known hyperparameters values are employed to evaluate the
GP training methods in four aspects: i) hyperparameter esti-
mation accuracy; ii) computation time per agent; iii) commu-
nications per agent; and iv) comparison with centralized GP
training techniques. All numerical experiments are conducted
in MATLAB on an Intel Core i7-6700 CPU @3.40 GHz.
We conduct 2,000 numerical experiments where we gener-

VOLUME XX, 2024 11

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

TABLE 4. Time & Communication Rounds of GP Training Methods

N = 8, 100 N = 32, 400

M Method Time [s] Comms Time [s] Comms
send send

FULL-GP 2,114.2 - - -

4

FACT-GP [24] 75.9 186.0 2,361.9 196.0
g-FACT-GP [29] 332.1 160.0 >3,000 -
c-GP [27] 404.1 141.4 - -
apx-GP [5] 26.8 43.6 817.6 45.2
gapx-GP 67.3 39.7 2,074.2 42.1

DEC-c-GP 414.1 100 - -
DEC-apx-GP 61.9 100 1,821.3 100
DEC-gapx-GP 328.1 100 >3,000 -

10

FACT-GP [24] 9.8 179.6 228.2 194.2
g-FACT-GP [29] 31.8 131.8 1,035.6 155.2
c-GP [27] 92.1 193.8 - -
apx-GP [5] 3.8 47.8 88.8 46.8
gapx-GP 15.1 42.2 522.2 44.3

DEC-c-GP 82.4 100 - -
DEC-apx-GP 8.4 100 188.8 100
DEC-gapx-GP 38.5 100 1,123.4 100

20

FACT-GP [24] 2.6 172.6 46.6 226.2
g-FACT-GP [29] 7.0 127.2 199.4 167.6
c-GP [27] 31.4 127.8 - -
apx-GP [5] 1.3 56.2 18.3 49.8
gapx-GP 4.1 50.6 85.8 45.6

DEC-c-GP 30.4 100 - -
DEC-apx-GP 2.2 100 36.9 100
DEC-gapx-GP 8.1 100 185.8 100

40

FACT-GP [24] 0.5 139.6 9.1 160.0
g-FACT-GP [29] 1.8 112.2 30.9 128.6
c-GP [27] 8.9 66.6 - -
apx-GP [5] 0.3 56.4 4.6 54.4
gapx-GP 1.2 51.2 17.9 49.2

DEC-c-GP 9.1 100 - -
DEC-apx-GP 0.5 100 8.2 100
DEC-gapx-GP 2.5 100 36.4 100

ate datasets by using the observation model (1) and the sep-
arable squared exponential kernel (2) with hyperparameters
θ = (l1, l2, σf , σϵ)

⊺ = (1.2, 0.3, 1.3, 0.1)⊺. In particular, we
have two dataset sizes (N = 8, 100 and N = 32, 400) for five
generative random functions and perform 50 replications on
each function. An example of five generative GP functions for
N = 8, 100 data is presented in Fig. 3. Note that the smaller
the length-scale l, the more wiggly is the random function.
Since l2 < l1, the profile of the generative GP functions
is more uneven along the y-axis rather than the x-axis. We
equally partition the space of interest S = [0, 2]2 (Remark 1)
along the x-axis according to fleet sizesM = {4, 10, 20, 40},
and assign local datasets that lie in the corresponding local
space. We compare the global GP training FULL-GP; the
centralized FACT-GP [24], g-FACT-GP [29], c-GP [27], and
apx-GP [5]; to the proposed centralized (gapx-GP) and decen-
tralized (DEC-c-GP, DEC-apx-GP, DEC-gapx-GP) methods.
All decentralized GP training methods follow a path graph
topology that is the most parsimonious connected network.
Thus, we study the worst case scenario in terms of network

TABLE 5. Comparison of Centralized and Decentralized GP Training

M Method Hyperparameter Computational Commu-
Accuracy Scalability nications

FULL-GP Good Bad -

4

FACT-GP [24] Good Good Moderate
g-FACT-GP [29] Good Moderate Moderate
c-GP [27] Moderate Moderate Moderate
apx-GP [5] Good Best Good
gapx-GP Best Good Best

DEC-c-GP Moderate Moderate Moderate
DEC-apx-GP Good Best Moderate
DEC-gapx-GP Best Moderate Moderate

10

FACT-GP [24] Good Good Bad
g-FACT-GP [29] Best Moderate Moderate
c-GP [27] Moderate Bad Bad
apx-GP [5] Good Best Good
gapx-GP Best Good Best

DEC-c-GP Bad Moderate Moderate
DEC-apx-GP Bad Best Moderate
DEC-gapx-GP Best Good Moderate

20

FACT-GP [24] Good Best Bad
g-FACT-GP [29] Best Good Moderate
c-GP [27] Bad Bad Moderate
apx-GP [5] Moderate Best Good
gapx-GP Best Good Best

DEC-c-GP Bad Moderate Moderate
DEC-apx-GP Bad Best Moderate
DEC-gapx-GP Best Good Moderate

40

FACT-GP [24] Moderate Best Moderate
g-FACT-GP [29] Best Good Moderate
c-GP [27] Bad Moderate Good
apx-GP [5] Bad Best Good
gapx-GP Best Good Best

DEC-c-GP Bad Moderate Moderate
DEC-apx-GP Bad Best Moderate
DEC-gapx-GP Best Good Moderate

connectivity (Remark 4). All methods start from the same
initial vector value (l(0)1 , l(0)2 , σ

(0)
f , σ

(0)
ϵ)⊺ = (2, 0.5, 1, 1)⊺.

The penalty parameter of the augmented Lagrangian is set to
ρ = 500, the decentralized ADMM tolerance TOLADMM =
10−3, the positive Lipschitz constant of the approximation
(12) Li = 5, 000, and the regulation positive constant of the
approximation (16) κi = 5, 000 for all i ∈ V . For the nested
optimization of c-GP (11b) and DEC-c-GP (15b) we use
gradient descent with step size α = 10−5. All decentralized
GP training methods terminate after send = 100 predeter-
mined communication rounds, yielding identical communi-
cation complexity (Table 3). Any algorithm that takes over
3,000 s to be executed is terminated.
In Fig. 4, we show the boxplots of the estimated hyper-

parameters using N = 8, 100 data. Blue boxes illustrate
existing GP training methods and maroon boxes represent the
proposed GP training methods. The corresponding average
computation time per agent and the communication rounds
are shown in Table 4. Provided the communication rounds
send, the communication complexity can be computed accord-
ing to Table 1, 2. For the case ofM = 4 agents, all centralized

12 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

methods provide accurate hyperparameters estimates except
of the c-GP on l1. In terms of computation time, c-GP is
the more demanding method, whereas FACT-GP, apx-GP,
and gapx-GP converge very fast, outperforming FULL-GP
by two orders of magnitude for similar or even better level
of accuracy. The least communication rounds are achieved
by the proposed methodology gapx-GP which results in the
lowest communication complexity. Regarding the decentral-
ized methods, both DEC-apx-GP and DEC-gapx-GP produce
accurate hyperparameter estimates, whereas DEC-c-GP is
inaccurate on l1. DEC-apx-GP requires less computation time
per agent than the other two decentralized methods. As we
increase the number of agents (M = 10 and M = 20
agents), the hyperparameter estimation accuracy deteriorates
for all centralized methods except of the proposed gapx-GP.
In addition, gapx-GP results in the lowest communication
complexity and in competitive computation time per agents,
outperformed only by apx-GP. Regarding the decentralized
GP training methods, the hyperparameter estimation of DEC-
gapx-GP is the most accurate. Both DEC-apx-GP and DEC-
c-GP provide reasonable estimates for all hyperparameters
other than l1. The lowest computation per entity is measured
for DEC-apx-GP, while themost accurate methodDEC-gapx-
GP requires four times more computations than DEC-apx-
GP. For M = 40 agents, the proposed gapx-GP produces
the most accurate hyperparameter estimates with only g-
FACT-GP competing. However, g-FACT-GP requires more
computation time per agent and exchanges double the amount
of messages to converge than the proposed gapx-GP. From the
proposed decentralized methods, DEC-gapx-GP is accurate
(Remark 5) for larger fleet sizes and requires reasonable local
computations (Table 4).

We present the boxplots of the estimated hyperparameters
using N = 32, 400 data in Fig. 5, and in Table 4 we list
the computation time per agent as well as the communication
rounds. The FULL-GP, c-GP, and DEC-c-GPmethods are not
implemented forN = 32, 400 data, as we expect significantly
high computation time (Remark 3). For M = 4 agents,
both g-FACT-GP and DEC-gapx-GP exceeded the time limit
of 3,000 s for convergence. Among the feasible centralized
methods forN = 32, 400 data, apx-GP and gapx-GP aremore
accurate than FACT-GP. All methods are computationally
expensive as each agent i is assigned with Ni = 32, 400/4 =
8, 100 data, yet apx-GP is the fastest. Regarding the decentral-
ized methods, DEC-apx-GP is the only feasible method and
produces accurate hyperparameter estimates. As we increase
the number of agents (M = 10 and M = 20 agents),
the number of data is distributed to local agents, and thus
g-FACT-GP and DEC-gapx-GP can be implemented. Since
the number of data is high, all centralized methods produce
accurate hyperparameters estimates. Yet, apx-GP is compu-
tationally more efficient. Although the proposed gapx-GP
requires more time to converge, the communication overhead
is the least. Among the decentralized methods, DEC-gapx-
GP is more accurate, but computationally more demanding
than DEC-apx-GP. For the case of M = 40 agents, the most

accurate centralized hyperparameter estimator is the gapx-
GP with the lowest information exchange requirements. The
fastest centralized method is the apx-GP, yet its accuracy is
moderate. Regarding the decentralized methods, DEC-gapx-
GP remains accurate and requires reasonable computation
time.

In Table 5, we compare qualitatively all methods, where
the proposed methods are shown in magenta font. Overall,
for N = 8, 100 the proposed gapx-GP is the most accu-
rate centralized GP training method, especially as the fleet
size increases. Moreover, gapx-GP requires reasonable com-
putations and it is the most efficient method with respect
to communication. Among the proposed decentralized GP
trainingmethods, DEC-gapx-GP is themost accuratemethod,
yet DEC-apx-GP produces competitive hyperparameter es-
timates for medium and small fleet size. DEC-apx-GP is
the fastest decentralized GP training method, while DEC-
gapx-GP is more demanding with reasonable computational
resources. In principle, as we increase the number of agents,
the computation is distributed and thus yields lower computa-
tion time per agent. Note that the hyperparameter estimation
accuracy improves as we obtain more data which leads to
higher accuracy for N = 32, 400 data. Some techniques are
not scalable for the larger dataset N = 32, 400, especially
when the fleet size is small M = 4. However, for larger
fleet size the distribution of data facilitates the execution of
most methods. Among the centralized methods, apx-GP is ac-
curate and requires significantly less computational time for
small fleet size, but as we increase the number of agents the
proposed gapx-GP becomes computationally more efficient
and remains accurate. Similarly, DEC-apx-GP is accurate
and computationally less demanding for small fleet size, but
DEC-gapx-GP becomesmore computationally efficient as we
distribute the data to more agents.

VI. CONCLUSION AND FUTURE WORK

This paper proposes decentralized methods to implement GP
training in networks that cover a broad spectrum of multi-
agent learning applications. The proposed methods can be
employed for various fleet sizes with different computation
and communication capabilities.We use distributed optimiza-
tion methods of ADMM to aggregate local GP models. A
closed-form solution of the decentralized ADMM is derived
for the case of GP hyperparameter training with maximum
likelihood estimation. DEC-apx-GP is shown to achieve com-
petitive accuracy in hyperparameter estimates for small and
medium fleet sizes, whereas DEC-gapx-GP produces accu-
rate hyperparameter estimates for all fleet sizes with reason-
able computations of local entities. Additionally, we propose
a centralized GP training method, the gapx-GP, that improves
the accuracy of hyperparameter estimates for medium and
large fleet sizes, entails reasonable computations, and re-
quires little information exchange.

VOLUME XX, 2024 13

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

A. PARTIAL DERIVATIVE OF SSE COVARIANCE FUNCTION
The partial derivative of the covariance matrix in (4) is
computed with respect to each hyperparameter as ∂Cθ/∂θ =
(∂Cθ/∂l1, ∂Cθ/∂l2, . . . , ∂Cθ/∂lD, ∂Cθ/∂σf , ∂Cθ/∂σϵ)

⊺ ∈
R(D+2)N×N . Using the SSE kernel (2) we obtain,[
∂Cθ

∂ld

]
ij
= σ2

f

[
exp

{
−1

2

D∑
d=1

(xdi − xdj)2

l2d

}
(xdi − xdj)2

l3d

]
ij

=
[K]ij

[
(xdi − xdj)2

]
ij

l3d
,

where ∂Cθ/∂ld ∈ RN×N . For the signal variance we get,[
∂Cθ

∂σf

]
ij

= 2σf

[
exp

{
−1

2

D∑
d=1

(xdi − xdj)2

l2d

}]
ij

=
2[K]ij
σf

,

where ∂Cθ/∂σf ∈ RN×N . Note that we express the partial
derivatives as functions of the correlation matrix K , because
it has already been computed to construct the covariance
matrix, i.e., Cθ = K + σ2

ϵ IN . Lastly, for the noise variance
∂Cθ/∂σϵ = 2σϵIN ∈ RN×N .

B. GRADIENT FOR NESTED PROBLEM OF DEC-C-GP
Let the objective for the nested optimization problem (15b) of
the DEC-c-GP to beKi = Li(θi)+θ

⊺
i p

(s+1)
i +ρ

∑
j∈Ni

∥θi−
(θ

(s)
i + θ

(s)
j)/2∥22, then its gradient yields,

∂Ki

∂θ
= ∇θLi(θi) + p(s+1)

i + 2ρ
∑
j∈Ni

θi −
θ
(s)
i + θ

(s)
j

2
.

The gradient of the local log-likelihood ∇θLi yields,

∂Li(θi)

∂θ
=

1

2
tr

{(
C−1

θ,i − C−1
θ,i yiy

⊺
i C

−1
θ,i

) ∂Cθ,i

∂θ

}
, (20)

where ∂Cθ,i/∂θ is derived in Appendix A for the SSE covari-
ance function (2).

C. PROOF OF THEOREM 1
Let us employ the local objective of (17b) as,

Qi(θi) =∇⊺
θLi

(
θ
(s)
i

)(
θi − θ(s)i

)
+

κi
2

∥∥∥θi − θ(s)i ∥∥∥2
2
+

θ⊺i p
(s+1)
i + ρ

∑
j∈Ni

∥∥∥∥∥θi − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

.

where Qi : RD+2 → R. Factor out the optimizing parame-
ter θi to obtain,

Qi(θi) =∇⊺
θLi

(
θ
(s)
i

)
θi − c1 +

κi
2

(
θ⊺i θi − 2θ⊺i θ

(s)
i + c2

)
+ θ⊺i p

(s+1)
i + Ti

=θ⊺i

(
∇θLi

(
θ
(s)
i

)
− κiθ

(s)
i + p(s+1)

i

)
+

κi
2
θ⊺i θi + Ti,

(21)

where Ti = ρ
∑

j∈Ni
∥θi − (θ

(s)
i + θ

(s)
j)/2∥22, c1 =

−∇⊺
θLi(θ

(s)
i)θ

(s)
i , and c2 = θ

⊺(s)
i θ

(s)
i . Note that c1, c2 are

constants with respect to θi and thus irrelevant to the opti-
mization (14). For any strongly connected graph topology, Ti
can be expressed as,

Ti = ρ
∑
j∈Ni

∥∥∥∥∥θi − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

= ρ
∑
j∈Ni

θ⊺i θi − θ
⊺
i

(
θ
(s)
i + θ

(s)
j

)
+ c3

= ρcard(Ni)θ
⊺
i θi − ρ

∑
j∈Ni

θ⊺i θ
(s)
i + θ⊺i θ

(s)
j

= ρcard(Ni)θ
⊺
i θi − ρcard(Ni)θ

⊺
i θ

(s)
i − ρθ⊺i

∑
j∈Ni

θ
(s)
j

= card(Ni)ρθ
⊺
i θi − ρθ⊺i

card(Ni)θ
(s)
i +

∑
j∈Ni

θ
(s)
j

 ,

(22)

where c3 = (1/4)(θ
(s)
i +θ

(s)
j)⊺(θ

(s)
i +θ

(s)
j) is a constant and

thus ignored. The local objective Qi results in,

Qi(θi) = θ
⊺
i

(
∇θLi

(
θ
(s)
i

)
− κiθ

(s)
i + p(s+1)

i

)
+

κi
2
θ⊺i θi

+ card(Ni)ρθ
⊺
i θi − ρθ⊺i

card(Ni)θ
(s)
i +

∑
j∈Ni

θ
(s)
j


= θ⊺i

(
∇θLi

(
θ
(s)
i

)
−

(
κi + card(Ni)ρ

)
θ
(s)
i

+ p(s+1)
i − ρ

∑
j∈Ni

θ
(s)
j

)
+

(κi
2

+ card(Ni)ρ
)
θ⊺i θi.

(23)

Next, we show that the local objective Qi (23) is a convex
function in a quadratic form [49] by computing its Hessian,

HQi =
∂2Qi

∂θ2i
= (κi + 2card(Ni)ρ) ID+2 ≻ 0.

Since the local objective Qi is convex and quadratic, we
can obtain a closed-form solution by computing the first
derivative,

∂Qi

∂θi
=∇θLi

(
θ
(s)
i

)
−

(
κi + card(Ni)ρ

)
θ
(s)
i + p(s+1)

i

− ρ
∑
j∈Ni

θ
(s)
j + 2

(κi
2

+ card(Ni)ρ
)
θi,

and then setting ∂Qi/∂θi = 0 to obtain,

θi =
1

κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+

(κi + card(Ni)ρ)θ
(s)
i − p(s+1)

i

)
.

The rest proof is a direct consequence of [47, Theorem 1].

14 VOLUME XX, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

REFERENCES
[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and

D. Bacon, ‘‘Federated learning: Strategies for improving communication
efficiency,’’ in arXiv preprint arXiv:1610.05492, 2016.

[2] E. Horvitz andD.Mulligan, ‘‘Data, privacy, and the greater good,’’ Science,
vol. 349, no. 6245, pp. 253–255, 2015.

[3] J. Gielis, A. Shankar, and A. Prorok, ‘‘A critical review of communications
in multi-robot systems,’’ Current Robotics Reports, pp. 1–13, 2022.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 2011, vol. 3,
no. 1.

[5] A. Xie, F. Yin, Y. Xu, B. Ai, T. Chen, and S. Cui, ‘‘Distributed Gaus-
sian processes hyperparameter optimization for big data using proximal
ADMM,’’ IEEE Signal Processing Letters, vol. 26, no. 8, pp. 1197–1201,
2019.

[6] C.E. Rasmussen and C. K. Williams, Gaussian processes for machine
learning, 2nd ed. Cambridge, MA, USA: MIT Press, 2006.

[7] R. B. Gramacy, Surrogates: Gaussian process modeling, design and op-
timization for the applied sciences. Boca Raton, FL, USA: Chapman
Hall/CRC, 2020.

[8] Y. Xu, J. Choi, and S. Oh, ‘‘Mobile sensor network navigation using
Gaussian processes with truncated observations,’’ IEEE Transactions on
Robotics, vol. 27, no. 6, pp. 1118–1131, 2011.

[9] D. Gu and H. Hu, ‘‘Spatial Gaussian process regression with mobile sensor
networks,’’ IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1279–1290, 2012.

[10] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, ‘‘Gaussian process decentral-
ized data fusion and active sensing for spatiotemporal traffic modeling
and prediction in mobility-on-demand systems,’’ IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 3, pp. 901–921, 2015.

[11] W. Luo and K. Sycara, ‘‘Adaptive sampling and online learning in multi-
robot sensor coverage with mixture of Gaussian processes,’’ in IEEE
International Conference on Robotics and Automation, 2018, pp. 6359–
6364.

[12] T. N. Hoang, Q. M. Hoang, K. H. Low, and J. How, ‘‘Collective online
learning of Gaussian processes in massive multi-agent systems,’’ in AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 7850–7857.

[13] M. Tavassolipour, S. A. Motahari, and M. T. M. Shalmani, ‘‘Learning of
Gaussian processes in distributed and communication limited systems,’’
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 8, pp. 1928–1941, 2020.

[14] G. P. Kontoudis and D. J. Stilwell, ‘‘Prediction of acoustic communication
performance in marine robots Using model-based kriging,’’ in American
Control Conference, 2021, pp. 3779-3786.

[15] G. P. Kontoudis and D. J. Stilwell, ‘‘Model-based learning of underwater
acoustic communication performance for marine robots,’’ Robotics and
Autonomous Systems, vol. 142, pp. 103811, 2021.

[16] V. Suryan and P. Tokekar, ‘‘Learning a spatial field in minimum time with a
team of robots,’’ IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1562–
1576, 2020.

[17] G. P. Kontoudis and D. J. Stilwell, ‘‘Decentralized nested Gaussian pro-
cesses for multi-robot systems,’’ in IEEE International Conference on
Robotics and Automation, 2021, pp. 8881–8887.

[18] M. Santos, U.Madhushani, A. Benevento, andN. E. Leonard, ‘‘Multi-robot
learning and coverage of unknown spatial fields,’’ in IEEE International
Symposium on Multi-Robot and Multi-Agent Systems, 2021, pp. 137–145.

[19] F. Bullo, J. Cortes, and S. Martinez, Distributed control of robotic net-
works: A mathematical approach to motion coordination algorithms.
Princeton University Press, 2009, vol.27.

[20] G. P. Kontoudis and D. J. Stilwell, ‘‘A comparison of kriging and cokriging
for estimation of underwater acoustic communication performance,’’ in
International Conference on Underwater Networks & Systems, 2019, pp.
1–8.

[21] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, ‘‘When Gaussian process meets big
data: A review of scalable GPs,’’ IEEE Transactions on Neural Networks
and Learning Systems, vol. 31, no. 11, pp. 4405–4423, 2020.

[22] J. Quiñonero-Candela and C. E. Rasmussen, ‘‘A unifying view of sparse
approximate Gaussian process regression,’’ Journal of Machine Learning
Research, vol. 6, pp. 1939–1959, 2005.

[23] E. Snelson and Z. Ghahramani, ‘‘Sparse Gaussian processes using pseudo-
inputs,’’ in Advances in NeurIPS, 2006, pp. 1257–1264.

[24] M. Deisenroth and J. W. Ng, ‘‘Distributed Gaussian processes,’’ in Inter-
national Conference on Machine Learning, 2015, pp. 1481–1490.

[25] T. Halsted, O. Shorinwa, J. Yu and M. Schwager, ‘‘A Survey of Distributed
Optimization Methods for Multi-Robot Systems,’’ in arXiv preprint
arXiv:2103.12840, 2021.

[26] V.-A. Le, L. Nguyen and T. X. Nghiem, ‘‘ADMM-based adaptive sampling
strategy for nonholonomic mobile robotic sensor networks,’’ IEEE Sensors
Journal, vol. 21, no. 13, pp. 15369–15378, 2021.

[27] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, ‘‘Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verification,’’
IEEE Journal on Selected Areas in Communication, vol. 37, no. 6, pp.
1291–1306, 2019.

[28] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,’’ SIAM Journal on Optimization, vol. 26, no. 1, pp. 337–364,
2016.

[29] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, ‘‘Generalized robust Bayesian
committee machine for large-scale Gaussian process regression,’’ in Inter-
national Conference on Machine Learning, 2018, pp. 3131–3140.

[30] P. Moreno-Muñoz, A. Artés, and M. Alvarez, ‘‘Modular Gaussian pro-
cesses for transfer learning,’’ in Advances in Neural Information Process-
ing Systems, vol. 34, 2021, pp. 24730–24740.

[31] X. Yue and R. Al Kontar, ‘‘Federated Gaussian process: Convergence, au-
tomatic personalization and multi-fidelity modeling,’’ IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

[32] S. Chung and R. Al Kontar, ‘‘Federated multi-output Gaussian processes,’’
Technometrics, vol. 66, no. 1, pp. 90–103, 2024.

[33] G. P. Kontoudis and D. J. Stilwell, ‘‘Decentralized Federated Learning
using Gaussian Processes,’’ in International Symposium on Multi-Robot
and Multi-Agent Systems, 2023, pp. 1–7.

[34] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Effective graph resistance,’’
Linear algebra and its applications, vol. 435, no. 10, pp. 2491–2506, 2011.

[35] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[36] J. W. Ng and M. P. Deisenroth, ‘‘Hierarchical mixture-of-experts
model for large-scale Gaussian process regression,’’ in arXiv preprint
arXiv:1412.3078, 2014.

[37] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z.
Lin, and K. H. Johansson, ‘‘A survey of distributed optimization,’’ Annual
Reviews in Control, vol. 47, pp. 278–305, 2019.

[38] Y. Zheng and Q. Liu, ‘‘A review of distributed optimization: Problems,
models and algorithms,’’ Neurocomputing, vol. 483, pp. 446–459, 2022.

[39] D. J. C. Mackay, ‘‘Introduction to Gaussian processes,’’ NATO ASI series.
Series F: Computer and System Sciences, pp. 133–165, 1998.

[40] F. Pérez-Cruz, S. Van Vaerenbergh, J. J. Murillo-Fuentes, M. Lázaro-
Gredilla, and I. Santamaria, ‘‘Gaussian processes for nonlinear signal
processing: An overview of recent advances,’’ IEEE Signal Processing
Magazine, vol. 30, no. 4, pp. 40–50, 2013.

[41] Z. Chen and B. Wang, ‘‘How priors of initial hyperparameters affect Gaus-
sian process regression models,’’ Neurocomputing, vol. 275, pp. 1702–
1710, 2018.

[42] S. Basak, S. Petit, J. Bect, and E. Vazquez, ‘‘Numerical issues in maximum
likelihood parameter estimation for Gaussian process interpolation,’’ in
International Conference on Machine Learning, Optimization and Data
Science, 2021.

[43] W. Shi, Q. Ling, K.Yuan, G.Wu, andW.Yin, ‘‘On the linear convergence of
the ADMM in decentralized consensus optimization,’’ IEEE Transactions
on Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[44] A. Makhdoumi and A. Ozdaglar, ‘‘Convergence rate of distributed ADMM
over networks,’’ IEEE Transactions on Automatic Control, vol. 62, no. 10,
pp. 5082–5095, 2017.

[45] A. Elgabli, J. Park, A. S. Bedi, M Bennis, and V. Aggarwal, ‘‘GADMM:
Fast and Communication Efficient Framework for Distributed Machine
Learning,’’ Journal of Machine Learning Research, vol. 21, no. 76, pp.
1–39, 2020.

[46] G. Mateos, J. A. Bazerque, and G. B. Giannakis, ‘‘Distributed sparse linear
regression,’’ IEEE Transactions on Signal Processing, vol. 58, no. 10, pp.
5262–5276, 2010.

[47] T.-H. Chang, M. Hong, and X. Wang, ‘‘Multi-agent distributed optimiza-
tion via inexact consensus ADMM,’’ IEEE Transactions on Signal Pro-
cessing, vol. 63, no. 2, pp. 482–497, 2014.

[48] D. M. Topkis, ‘‘Concurrent broadcast for information dissemination,’’
IEEE Transactions on Software Engineering, vol. SE-11, no. 10, pp. 1107–
1112, 1985.

[49] S. Boyd and L. Vandenberghe,Convex optimization. Cambridge University
Press, 2004.

VOLUME XX, 2024 15

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated Gaussian Process Training for Decentralized Multi-Agent Systems

GEORGE P. KONTOUDIS (M’22) received the
M.S. and PhD degrees in Mechaincal Engineering
and Electrical Engineering at Virginia Tech, in
2018 and 2021 respectively.

From January 2022 to December 2023, he
was a Postdoctoral Research Associate in the
Aerospace Engineering Department at the Univer-
sity of Maryland, College Park. Since 2024, he is
an Assistant Professor with the Mechanical Engi-
neering Department, Colorado School of Mines.

His research interests include multi-agent systems, Gaussian processes, mo-
tion planning, and optimal control.

DANIEL J. STILWELL is a professor at the Bradley
Department of Electrical & Computer Engineering
at Virginia Tech. He obtained a B.S. in Electrical
Engineering from the University of Massachusetts
at Amherst, and M.S. and Ph.D. degrees in Elec-
trical Engineering from Johns Hopkins University.
His research interests include robotics, control the-
ory, and estimation.

16 VOLUME XX, 2024

	Introduction
	Preliminaries and Problem Statement
	Foundations
	Gaussian Process Training
	Training
	Complexity

	Factorized GP Training (FACT-GP)
	Problem Definition

	Centralized GP Training
	Existing Centralized GP Training Methods
	Proposed Centralized GP Training

	Proposed Decentralized GP Training
	Proposed DEC-c-GP
	Proposed DEC-apx-GP
	Proposed DEC-gapx-GP
	Time, Space, and Communication Complexity

	Numerical Experiments
	Conclusion and Future Work
	Partial derivative of SSE covariance function
	Gradient for nested problem of DEC-c-GP
	Proof of Theorem 1

	REFERENCES
	George P. Kontoudis
	Daniel J. Stilwell

