
Bounded Rational RRT-QX: Multi-Agent Motion Planning in Dynamic
Human-Like Environments Using Cognitive Hierarchy and Q-Learning

Josh Netter 1, George P. Kontoudis 2, and Kyriakos G. Vamvoudakis 1

Abstract— This paper presents a multi-agent motion planning
algorithm for human-like navigation in dynamic environments.
A cognitive hierarchy approach is used to model the motion of
autonomous agents. We discuss potential levels of rationality
and introduce a method to predict them in real-time. The
rationality level prediction is achieved by observing the kinody-
namic distance (KD) of other agents. An offline training phase
is required to learn the maximum KD from multiple boundary
value problems. Collision avoidance is ensured by introducing
artificial obstacles in the environment based on the predicted
levels of rationality. The motion planning is then carried out
using RRT-QX. The effectiveness of the bounded rational motion
planning algorithm is illustrated in simulations.

I. INTRODUCTION

Recent developments in artificial intelligence have signif-
icantly advanced the capabilities of mobile robots. However,
navigation remains a key problem for autonomous vehicles,
while obstacle avoidance and safe path planning are consid-
ered necessary for applications of robotics [1]. Safe motion
planning is difficult in dynamic environments, where the
environment changes over time. This is particularly true in
multi-agent environments, where an autonomous robot must
navigate past other agents both with unknown destinations
and path planning frameworks depending on their level of
rationality. To avoid these other agents, it is crucial to quickly
identify other agents in the environment and to classify their
motion planning methodology. The robot must also be able
to adjust these classifications online to account for changes
in other agent’s motions, and must accommodate online path
replanning to utilize these observations to avoid collisions.
Our focus in this work is on exploring how varying levels of
rationality affect the path planning of agents navigating an
environment, as well as identifying these levels of rationality
in autonomous robots with only knowledge of its motion.

Related work: Rapidly-exploring Random Tree (RRT) [2],
is a sampling-based path planning algorithm to navigate
high-dimensional static environments. RRT is probabilisti-
cally complete. It is expanded upon with RRT‹, which is
shown to be asymptotically optimal in static environments
[3]. The main drawback of RRT‹ is the computational
complexity that does not allow for rapid replanning in
dynamic environments. An extension of RRT‹ for dynamic

1J. Netter and K. G. Vamvoudakis are with the Daniel Guggenheim
School of Aerospace Engineering, Georgia Institute of Technology, USA
(email: jnetter6@gatech.edu, kyriakos@gatech.edu).

2G. P. Kontoudis is with the Bradley Department of Electrical and
Computer Engineering, Virginia Tech, USA (email: gpkont@vt.edu).

This work was supported in part, by NSF under grant Nos. CAREER
CPS-1851588, CPS-2038589, SATC-1801611, and by NASA ULI under
grant number 80NSSC20M0161.

environments, referred to as RRTX, is introduced in [4],
[5]. This algorithm provides asymptotically optimal motion
planning and replanning in dynamic environments. However,
this approach requires the dynamics of the system. Following
this, RRT-QX is proposed in [6] as a sampling-based algo-
rithm for navigating an unpredictable dynamic environment
using a model-free Q-learning controller. This approach,
however, does not account for multi-agent environments.

In a multi-agent environment, it is critical to model the
motion of other agents in order to optimize path planning
and ensure safety. This is primarily looked at through the lens
of robots sharing environments with one or several humans,
who are presumed to all have similar planning techniques
[7]. In [8], human motion in an environment is estimated
using an intent-driven model, yet does not consider a denser
environment with additional agents necessitating further path
replanning for some agents present, nor does it consider
agents with differing levels of intelligence. Human motion
in an environment was also modelled in [9] by considering
each human as a player in a non-zero sum game, and learning
from human motion examples. This was then used to guide
an agent in [10]. Similarly, this work does not consider
online motion past additional obstacles, or with agents with
varying levels of intelligence. Robot navigation through an
environment with numerous human agents is considered
in [11], where human motion is modeled with interacting
Gaussian processes. This work considers the influence of
multiple other agents, but all still are assumed to operate
with the same level of intelligence. A model for avoiding
collisions accounting for varying levels of intelligence and
cooperation is proposed in [12], but in this work agents are
capable of communicating to jointly avoid a collision.

The kinodynamic motion problem is introduced in [13].
The kinodynamic distance (KD) of an agent is defined in
[14], [15] as the distance between an agent and its planned
path. Bounded rationality is presented in [16], referring to
agents making decisions with imperfect information of their
environment. Following from bounded rationality, cognitive
hierarchy is a method of describing the relative intelligence
of multiple players in a game [17] which is also extended
for cyber-physical systems [18], but has not been applied to
a multi-agent motion planning problem.

Contributions: The contributions of this is threefold. First,
we consider and propose models of agent motion planning
behavior in a multi-agent environment for several levels of
agent rationality. Second, we implement these models on
agents using a path-planning algorithm for online navigation
through dynamic environments to measure effectiveness in

obstacle avoidance. Lastly, we employ an algorithm using
each agent’s KD to predict the level of rationality.

II. PROBLEM FORMULATION

Consider an environment containing N agents with dif-
ferent capabilities. Each agent can be described as a linear-
time-invariant system,

9xiptq � Axiptq �Buiptq; xip0q � xi;0; t ¥ 0

where xiptq P X � Rn is the measurable state vector, uiptq P
U � Rm is the control input, and A P Rnˆn and B P Rnˆm
are plant and input matrices, respectively, for each agent i �
1; : : : ; N . Let us define the difference of an agent’s current
state xiptq and its goal state xi;g as �xiptq, and define,

9�xiptq � A�xiptq �Buiptq; t ¥ 0: (1)

We seek to guide an agent i in the environment from its
initial state, xi;0, to an individual goal state xi;g. We employ
a finite horizon cost function,

Jp�xi;0; ui; t0; T q � �pT q�
1

2

» T

t0

�

�x|
iM �xi�u

|
iRui

�

d�; (2)

where �pT q :� p1{2qx|
i pT qP pT qxipT q is the terminal

cost with a symmetric, positive-definite final Riccati matrix
P pT q P Rnˆn ¡ 0, and M P Rnˆn ' 0, R P Rmˆm ¡ 0 are
user-defined matrices to penalize the state and control input,
respectively. Our goal is to obtain the optimal control u‹i p�x; tq
such that Jp�xi;0;u‹i ; t0; T q ⁄ Jp�xi;0;ui; t0; T q is satisfied for
all �xi. To this end, we formulate the minimization problem
Jp�xi;0;u‹i ; t0; T q � minui

Jp�xi;0;ui; t0; T q subject to (1).
Subsequently, the value function gets the form of,

V p�xi; t0; T q � min
uiPU

#

�pT q�
1

2

» T

t0

�

�x|
iM �xi�u

|
iRui

�

d�

+

:

(3)

Assumption 1. The matrix pair (A, B) is controllable and
the pair (M1{2, A) is detectable. l

In addition, consider an agent’s closed dynamic obstacle
space as Xobs;i � X . The free space of the environment
Xfree;i, conversely, is defined as the complement of the
obstacle space Xfree;i � X zXobs;i. In a dynamic environment,
both the obstacle space and free space evolve in time. Define
�Xobs;i :� fpXobs;i; tq as the variation of the obstacle space
in the environment, where fp�q is unknown.

To minimize its cost, the agent will efficiently search
the environment by randomly constructing a space-filling
tree, and use it to find its global path �ipxi;0;k; xi;g;k; tq P
R2pKˆnq for k � 1; :::;K where K P N is the number
of boundary value problems (BVPs) in the path. The path
�ipxi;0;k; xi;g;kq includes the initial states Xi;0 � xi;0;k for
all i, where Xi;0 P RKˆn � Xfree;i, as well as the goal states
Xi;g � xi;g;k for all i, where Xi;g P RKˆn � Xfree;i. As the
obstacle space Xobs;i evolves in time, �i adapts using a goal-
to-start replanning, and K changes accordingly. RRTX also
provides an initial graph Gi � pVi; Eiq, where Vi is the initial

set of nodes, and Ei is the initial set of edges. The global
path �i in the graph is given by Ti � pVT ;i; ET ;iq � Gi.

We shall next connect the game-theoretic formulation to
the motion planning problem. For each BVP provided by
RRTX for an agent i, we seek to drive the system to the
goal state. For the k-th BVP, define the initial distance as
the distance from the initial state xi;0;k and goal state xi;g;k,

D0p�xi;0;kq :� ||xi;0;k � xi;g;k|| � ||�xi;0;k||;@xi;0 P Rn; (4)

and the relative distance as,

Dp�xiq :� ||xi � xi;g;k|| � ||�xi||;@xi;0 P Rn:

Since the game-theoretic problem utilizes a
free-final state, xipT q will approximate the desired state xi;g
to reduce the total navigation time [19]. We assume that xi;g
is reached when the agent reaches the close neighborhood
around xi;g. In other words, the agent is considered to
have reached its final state when Dp�xiq ⁄ �D0p�xi;0;kq
where � P R is a user-defined window to determine the
neighborhood. Upon reaching this goal state neighborhood,
the agent continues to its pk � 1q-th BVP.

When RRTX calculates a collision-free path �i, it selects
only straight lines as edges in the set Ei. However, the robot’s
true trajectory is subject to both kinodynamic constraints
(1) and the optimal performance constraints (2). The actual
trajectory thus deviates from the chosen path �i, which
may result in collisions when the agent i passes closely
by obstacles. We reduce this risk by adopting an obstacle
augmentation strategy. Let us define the KD as,

Drob;ip�xiq :�
|�xi;0;k � �xi|

Di;0;k
; (5)

to find the difference between the agent’s current location
and the straight path determined by the pair pxi;0;k; xi;g;kq.
We then use this distance to form an augmented obstacle
space X aug

obs;i based on the maximal KD Dkin
rob;i,

X aug
obs;i :� Xobs;i ‘ Xkin;i (6)

where Xkin;i is the space of a compact set bounded by a circle
centered on the origin with a radius of Rkin

rob;i. As Rkin
rob;i is

updated, the augmented obstacle space X aug
obs;i is recalculated,

and RRTX will accordingly plan a collision-free path further
from each obstacle with all newly-invalid nodes and their
descendants pruned.

Each agent is operating without knowledge of the other
agents’ planned motions, and instead limited to its own
observations of other agents’ states. Therefore, each agent’s
motion planning is a problem with bounded rationality. Each
agent i’s knowledge of the environment is limited to the
location of obstacles and other agents within a perception
radius r around xiptq and constructs an individual obstacle
space Xobs;iptq using the locations of perceived obstacles
as well as the other perceived agents. To ensure optimal
motion planning and to mitigate the risk of colliding with the
other agents making up its obstacle space, each agent also
forms a predicted obstacle space X̂obs;i which is added to the
obstacle space, considered by the motion planning algorithm,

to form X tot
obs;i � X aug

obs;i Y X̂obs;i. This is the obstacle space
ultimately used to construct a path using RRTX. To form
this predicted obstacle space, each agent adopts a level-
k rationality cognitive hierarchy approach to anticipate the
motion of the other agents.

Definition 1. Level-k rationality is a cognitive hierarchy
model of strategies where an agent using a level-k strategy
assumes all other agents employ a level-(k � 1). l

Our goal is to describe the potential levels of rationality
present in each agent in the environment, and then to develop
an algorithm to reliably estimate the level of each agent in
the environment by observing its motion.

III. MODEL-FREE FORMULATION

The Hamiltonian associated with (1) and (3) is,

Hp�xi;ui;
BV ‹

Bx

BV ‹

Bt
q :�

1

2
p�x|
iM �xi � u

|
iRuiq

�
BV ‹

Bx

|

pA�xi �Buiq �
BV ‹

Bt
; @�xi; ui:

Since the system (1) is linear, the optimal value function can
be written in the form of,

V ‹p�xi; tq � p1{2q�x
|
i P ptq�xi; (7)

where P ptq P Rnˆn ¡ 0 is the symmetric positive-definite
Riccati matrix calculated by,

� 9P ptq � P ptqA�A|P ptq�M �P ptqBR´1B|P ptq: (8)

Therefore, the optimal control is computed as,

u‹i p�xi; tq � �R
´1B|P ptq�xi; @�xi; t:

Let us now define the Q-function for an agent i as

Qip�xi;ui; tq :� V ‹p�xi; tq �
1

2
p�x|
iM �xi � u

|
iRuiq

��x|
i P ptqpA�xi �Buiq �

1

2
�x|
i

9P ptq�xi;
(9)

where Qip�xi;ui; tq P R is an action-dependent value. We
next define the augmented state Ui :� r�x|

i u|
i s

| P Rpn`mq
to express (9) in compact form as,

Qip�xi;ui; tq �
1

2
U|
i

�

Qxxptq Qxuptq
Quxptq Quu

�

Ui �:
1

2
U|
i

�QiptqUi;

(10)

where Qxxptq � 9P ptq � P ptq � M � P ptqA � A|P ptq,
Qxuptq � Quxptq � P ptqB, and Quu � R, with Qi :
Rn`m � Rpn`mqˆpn`mq Ñ R. By using the stationar-
ity condition BQip�xi;ui; tq{Bui � 0, we find a model-
free expression of the optimal control u‹i as, u‹i p�xi; tq �
arg minui

Qip�xi;ui; tq � �Q
´1
uu Quxptq�xi.

Lemma 1. The minimization problem Q‹i p�xi;u‹i ; tq :�
minui

Qip�xi;ui; tq results the same solution to (3)
Q‹i p�xi;u‹i ; tq � V ‹p�xi; tq from (7), where P ptq ¡ 0 (8).

Proof. The proof follows from [15].

Each agent shall use an actor/critic structure in order to
approximate its optimal control for each BVP. The structure
used is described in detail in Section IV of [15].

IV. COGNITIVE HIERARCHY AND MOTION PLANNING
FRAMEWORK

A. Levels of rationality

Let us consider the scenario where the agents navigate
in a bounded space X with no perfect rationality. To this
end, we consider the cognitive hierarchy theory of “level-k”
reasoning (Definition 1). Under this framework, each agent
is assigned an individual time-invariant rationality level of
k. An agent operating with level-k reasoning assumes that
every other agent in the environment operates at level-(k�1).
By predicting the strategies resulting from different levels of
rationality and observing the motions of other agents, each
agent i forms a predicted obstacle space at time t, X̂obs;iptq.
This predicted obstacle space is incorporated into the agent’s
total perceived obstacle space used for motion planning. To
determine the levels of rationality, we presume each agent
in the environment seeks to minimize its cost-to-go to its
individual goal state while avoiding collisions.

B. Level-0 Policy

To describe higher levels of rationality, we find the level-
0, or “anchor,” policy. The anchor can be defined as either
a random approach or a naive approach where the agent is
unable to detect any other agents. As random navigation is
often ineffective, we consider the naive approach. A level-
0 agent i will ignore the other agents in the environment,
and construct the obstacle space Xobs;i using solely perceived
non-agent obstacles. In other words, X̂obs;i � t?u. Then, the
agent plans its motion to its goal state using RRTX which
seeks the optimal path according to,

�‹i pxi;0; xi;gq � min
�pxi;0;xi;gqPXfree;i

d�pxi;0; xi;gq; (11)

constrained by the dynamics (1), where d� is the length of
the path between xi;0 and xi;g. An example of the predicted
behavior of a level-0 agent i in a multi-agent environment
with no other obstacles is shown in Fig. 1-(a).

C. Level-1 Policy

Similarly to a level-0 agent, a level-1 agent j traversing the
environment seeks to drive to its goal state by constructing its
obstacle space Xobs;j , and conducting online motion planning
to find the optimal path �‹pxi;0; xi;gq using RRTX. Level-
1 agents additionally seek to predict the motion of other
agents in the environment, and use this to construct the
predicted obstacle space X̂obs;jptq to form their total obstacle
space X tot

obs;j . In this case, the agent i anticipates level-0
behavior from all other agents. A level-1 agent is not aware
of the path that a level-0 agent may be following, as the
bounded rationality of the problem dictates that no agent
knows another’s current or future goal states. Thus, the level-
1 agent will instead need to avoid collision by avoiding all
possible collisions with level-0 agents.

Consider the distance between a level-0 agent i and level-1
agent j as Dijpxi; xjq � ||xi�xj ||. Let us define a collision
between i and j as occurring at time t if Dijpxiptq; xjptqq ⁄
dcol, where dcol P R` is a user-defined distance based

Fig. 1. Increasing levels of rationality of agents. (a) A level-0 agent i, travelling optimally (directly) to its goal. (b) A level-1 agent j travelling to its
goal while avoiding an agent i. (c) A level-2 agent k travelling to its goal while presuming that another agent j will avoid a possible collision.

on the radii of the agents to represent when the agents
have physically collided. We assume that agent j is familiar
with the kinodynamic constraints of agent i, and with the
kinodynamic constraints present on agent i. Hence, agent j
constructs the potential future state space X̂i, which consists
of all states agent i can reach within a given time-frame ts.
Agent i then generates obstacles over this space, augments
them to account for the maximal KD Dkin

rob;j , incorporates
them into the predicted obstacle space X̂obs;j , and finds the
optimal policy,

�‹j pxj;0; xj;gq � min
�pxj;0;xj;gqPpXfree;jzX̂obs;jq

d�pxj;0; xj;gq;

constrained by (1). This space is rapidly updated by j as i
traverses the environment to ensure its accuracy.

Theorem 1. Consider a level-1 agent j that is familiar
with the kinodynamic constraints of a different agent i. In
addition, the level-1 agent j can observe that agent’s i state,
velocity, and trajectory. Then, agent j can plan a motion that
is guaranteed to avoid a collision with i.

Proof. Consider a collision between the agents i and j. A
collision necessitates that at some time t, Dpxiptq; xjptqq ⁄
dcol. However, because of the predicted obstacle space of
agent j X̂obs;j , the free space of agent j Xfree;j contains
no potential states of j x̂j such that DpX̂i; x̂jq ⁄ dcol, and
therefore j’s motion planning will not enter these points.
Thus, the theorem is true by contradiction.

Following Theorem 1, the level-1 agent plans an asymp-
totically optimal path minimizing its path length through the
environment while ensuring that it safely avoids all other
agents present. An example of this is shown in Fig. 1-(b).

D. Higher Level Policies

A level-2 agent k assumes level-1 behavior from all other
agents, and must choose its predicted obstacle space X̂obs;k

such that it avoids all collisions with these agents. It then
seeks to find the optimal path �‹pxk;0; xk;gq similarly to
agents of a lower level. However, Theorem 1 states that if
all other agents in the environment are level-1 agents, then
their motion planning will avoid collisions regardless of the
actions of agent k. Thus, to find the optimal possible path,
the agent k chooses X̂obs;k � t?u in order to maximize
Xfree;k. It then finds the optimal policy,

�‹kpxk;0; xk;gq � min
�pxk;0;xk;gqPXfree;k

d�pxk;0; xk;gq:

Theorem 2. Consider a level-0 agent i and level-2 agent k
placed in identical environments with a shared initial state
and goal state x0 and xg, respectively. Then, both agents
have the same optimal path.

Proof. Consider the optimal path of agents i and k, where
�‹i � �‹k. This implies that min�px0;xgqPXfree;i

d�px0; xgq �
min�px0;xgqPXfree;k

d�px0; xgq. However, as X aug
obs;i � X aug

obs;k,
then Xfree;i � Xfree;k. Thus, there exists no optimal path �‹

such that �‹ P Xfree;i; R Xfree;k or vice versa. Therefore, the
theorem is true by contradiction.

An example of level-2 path planning is shown in the third
image of Fig. 1. The level-2 policy being identical to the
level-0 policy also indicates that the level-3 policy is identical
to the level-1 policy. This alternating pattern repeats for all
higher levels of rationality. Therefore, to model all levels
of rationality of each agent, we only need to consider two
levels: level-0 and level-1.

E. Motion Planning Framework

The motion planning structure consists of five stages: i)
dynamic planning with RRTX; ii) Q-learning; iii) terminal
state evaluation; iv) obstacle augmentation; and v) predictive
obstacle avoidance. The four stages (i)–(iv) are similar to
those used in RRT-QX. The key difference in the implemen-
tation is the fifth stage, where the agent, is operating with
an appropriate level of rationality, incorporates the potential
motion of other agents into its obstacle space. This adjusted
implementation is shown in Algorithm 1.

V. LEVEL OF RATIONALITY ESTIMATION

We next propose a framework to estimate the level of
rationality of each agent in an environment. We consider
an environment containing N agents, each driven with the
proposed framework with either level-0 or level-1 rationality.
Note that, all higher levels can be expressed by level-0 and
level-1. In addition, we consider an algorithm observing the
environment that is only familiar with each agent’s state,
velocity, and trajectory at any time t.

In order to identify the level of rationality of each agent,
we consider the tendencies of each level of rationality.
Since level-1 agents react online to the potential motion
of agents to avoid collisions, they need to often rapidly
replan in congested environments. Conversely, level-0 agents
rarely need to replan their trajectory. Considering this, the
algorithm first seeks to estimate the series of BVPs that
each agent i followed through the environment as part of its
path �i. Then, agent i compares the maximum KD during

Algorithm 1 Bounded Rational RRT-QX

Input: T - finite horizon; ∆t - resolution; M , R - cost weight
matrices; P pT q - fixed Riccati matrix; ρ - admissible window; xgoal
- goal state; xstart - start state; Xobs - obstacle space; Xa - states
of other agents; X - state space; L - level of rationality; ts - agent
range time-frame
Output: û - control

1: αa, αc Ð StabilitypM,Rq
2: X aug

obs Ð Xobs;
3: Drob, D

kin
rob Ð 0; k Ð 1;

4: while xgoal ‰ x do
5: if L “ 1 then Ź Predictive obstacle avoidance
6: X̂obs Ð PotentialStatespXa, L, tsq;
7: X tot

obs Ð Xobs ` X̂obs

8: end if
9: while NoCollision do

10: D0 ÐInitialDistance(x0) (4);
11: for t P T do
12: if Drob ą Dkin

rob then Ź Obstacle augmentation
13: Dkin

rob Ð Drob;
14: X aug

obs Ð Augment(X tot
obs , D

kin
rob) (6);

15: end if
Ź Q-learning

16: Ŵc Ð Critic(M,R,∆t, αc, x̄, û)
17: Q̂i Ð EstimateQ(Ŵc, x̄, û)
18: Ŵa Ð Actor(Q̂i, αa, x̄)
19: ûÐ Control(Ŵa, x̄)
20: return û;
21: Drob Ð KinodynamicDist(x0,k, x̄, D0) (5);
22: if D ď ρD0 then Ź Terminal state evaluation
23: x0,k Ð xptq;
24: k Ð k ` 1;
25: break;
26: end if
27: end for
28: end while Ź Dynamic planning
29: G, π Ð RRTX

pX ,X aug
obs , xstart, xgoalq;

30: end while

each of these BVPs with the expected maximum KD. If
the measured maximum KD of agent j is larger than the
predicted maximum KD, then agent i needs to significantly
adjust its planned path online, which in turn implies that
agent i has level-1 rationality. Conversely, if this never
occurs, it implies that i is level-0.

A. BVP Estimation

As previously mentioned, an agent i in the environment
constructs a global path composed of a series of BVPs
�ipxi;0;k; xi;g;k; tq P R2pKˆnq for k � 1; � � � ;K. As the
agent traverses the k-th BVP of the path, it moves to the
k � 1-th BVP after entering the pre-defined neighborhood
of the goal state xi;g;k. As the level estimation algorithm
has no information about each agent’s determined path, we
seek to estimate the start and end location of each BVP to
estimate the path. Moreover, since each BVP is a straight
line, an agent is considered to be travelling on one BVP so
long as its trajectory does not significantly change over time.
In addition, BVP endpoints can be estimated by observing
where the agent’s trajectory changes over a sufficiently short
period of time. To this end, we mark the initial state xi;0

as the first BVP endpoint. We then denote the trajectory of
agent i at time t as �viptq P Rn. We observe the agent online,
and note the change of its trajectory over a short time frame
ta, and calculate the angle of change,

�iptq � cos´1 �viptq � �vipt� taq

||�viptq|| ||�vipt� taq||
: (12)

If the angle of change is found to exceed a user-chosen value
, then xiptq is marked as a BVP endpoint. Note that must
be sufficiently large to avoid falsely interpreting an agent’s
slight trajectory adjustments due to kinodynamic constraints
as a BVP endpoint. Increasing this threshold also means that
some BVP endpoints will be missed, but the level estimation
algorithm is searching primarily for endpoints resulting from
online replanning to avoid new obstacles, which will result
in significant trajectory changes.

After finding these endpoints, we measure the KD of the
agent over each BVP, and compare it to the expected KD of
the BVP. The expected KD of an agent over a BVP increases
with the length of the BVP, and therefore if the measured KD
exceeds the expected KD, it implies that the estimated BVP
is shorter than it was originally planned to be. This in turn
implies that the agent’s trajectory significantly adjusted from
what was originally expected, and that the agent in question
is avoiding collisions and therefore is a level-1 agent. If this
never occurs, it implies that the path was not significantly
altered, and the agent in question is a level-0 agent.

VI. SIMULATION RESULTS

For our simulation, we consider four agents placed in
an environment with several environmental obstacles. Each
agent is represented by the system (1), with plant and input
matrices identical to those used in the simulation in [6] with
x � rxi yi 9xi 9yis as the state. The translations of each
agent i are denoted as xi, yi, the velocities as 9xi, 9yi, and
the accelerations as :xi, :yi. The inputs are forces denoted
as f1, f2. We choose the finite horizon T � 10 s, and the
admissible window � � 0:9. The user-defined matrices for
the cost function are M � 10I4, and R � 2I2. For the level
estimation algorithm, we choose the BVP angle threshold
 � 180, the angle measurement time frame ta � 0:2s, and
the KD error threshold d � 0:05. The critic and actor gains
are set as �c � 90 and �a � 1:2.

Two simulations at different time frames are depicted in
Fig. 2 and Fig. 3. We choose one agent to operate at our
proposed level-1 rationality (shown in green), and the rest
agents at level-0 (shown in gold). The generating artificial
obstacles are shown in blacks squares, We then assign to each
agent an initial state and a goal state in the environment,
and allow our level estimation algorithm to determine the
level of rationality of each agent in the environment. We
repeated this experiment with a variety of initial and goal
states for each agent. Over these simulations, we found that
all agents were able to consistently avoid collision with the
other agents. Our level estimation algorithm was also able to
very consistently recognize the level-1 agent regardless of its
starting position, as well as correctly recognize the level-0

https://youtu.be/7nBL1g67RKE

	Introduction
	Problem Formulation
	Model-Free Formulation
	Cognitive Hierarchy And Motion Planning Framework
	Levels of rationality
	Level-0 Policy
	Level-1 Policy
	Higher Level Policies
	Motion Planning Framework

	Level of Rationality Estimation
	BVP Estimation

	Simulation Results
	Conclusion
	References

