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Abstract— We present a new sparse Gaussian process re-
gression model whose covariance function is parameterized by
the locations of a progressively growing set of pseudo-inputs
generated by an online deterministic annealing optimization al-
gorithm. A series of entropy-regularized optimization problems
is solved sequentially, introducing a bifurcation phenomenon,
according to which, pseudo-inputs are gradually generated.
This results in an active learning approach, which, in contrast
to most existing works, can modify already selected pseudo-
inputs and is trained using a recursive gradient-free stochastic
approximation algorithm. Finally, the proposed algorithm is
able to incorporate prior knowledge in the form of a probability
density, according to which new observations are sampled.
Experimental results showcase the efficacy and potential ad-
vantages of the proposed methodology.

I. INTRODUCTION

Gaussian process (GP) regression models provide an ef-
ficient learning framework for non-parametric function ap-
proximation [1], [2]. They constitute non-parametric prob-
abilistic learning models with the ability to (i) estimate
uncertainty, (ii) cope with small datasets, and (iii) incorporate
prior knowledge. As such, GP models can be used in
many applications, including reinforcement learning [3], and
dynamical model learning [4], [5]. However, their complexity
can scale up to O(N3), where N is the number of the training
data points. To reduce this computational cost, sparse GP
approaches that make use of M ≪ N pseudo-inputs have
been proposed [6]–[8].

The selection of the M pseudo-inputs is based on solving
an optimization problem over the original dataset. The first
approaches were based on maximum likelihood optimization
solved using gradient ascent [6]. Such approaches showed
good performance but were computationally expensive and
lacked the properties of active learning, i.e., the ability
to sequentially add more pseudo-inputs, as needed (see,
e.g., Chapter 6 in [2]). Existing active learning approaches
incorporate criteria from information theory that guide the
sampling procedure and can yield powerful theoretical and
practical results [9]–[11]. These approaches are based on
solving a tractable approximation of an NP-hard optimization
problem incorporating the mutual information between the
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existing pseudo-points and any possible new location for the
next pseudo-point candidate. Online sparse GP algorithms
have also been proposed to handle the sparse selection prob-
lem by observing input data one at a time [7], [8]. However,
besides the complexity of these optimization problems, once
a pseudo-point has been added to the model, it cannot
be removed or replaced, and the location of the following
pseudo-points heavily depends on the past selections.

In this work, we construct a sparse Gaussian process
regression model based on a progressively growing set of
pseudo-points that are computed using an online determinis-
tic annealing learning algorithm [12]. A set of pseudo-inputs
µ := {µi}Mi=1, is used to represent the input space in an
optimal way according to an entropy-regularized average dis-
tortion measure FT (µ) := D(µ)−TH(µ). As we will show,
solving a sequence of optimization problems minµ FT (µ)
for decreasing values of T , induces a series of bifurcation
phenomena (phase transitions) during which, the number of
pseudo-inputs naturally increases. This behavior simulates
an annealing process. and gives T the interpretation of a
temperature parameter. Finally, the training rule of the above
model is based on gradient-free stochastic approximation
[12], [13], which results in fast online updates.

Adopting the above optimization framework, we param-
eterize the covariance function of the GP by the locations
of the pseudo-inputs µ. By allowing the annealing process
to achieve lower temperature levels T , we can gradually in-
crease the number of pseudo-inputs µ and improve the qual-
ity of the GP fit, providing online performance-complexity
control over the training process. This process resembles
an active learning approach. In contrast to most existing
approaches, however, the pseudo-inputs are not constrained
to be a subset of the data, and previously selected pseudo-
inputs can be modified at every stage. Moreover, the solution
of the optimization problem depends on the underlying
probability distribution of the input data, giving more weight
to regions of the input space that are more represented.
As will be shown, this probability distribution can also be
constructed artificially to be used as a prior for accelerating
the localization of appropriate pseudo-inputs {µi} for the
sparse GP regression model. We empirically illustrate the
efficacy and potential advantages of the proposed methodol-
ogy compared to widely used sparse GP algorithms.

II. GAUSSIAN PROCESS REGRESSION

A Gaussian process is a distribution over the space of
functions where any subset of which has a Gaussian distri-
bution [1]. It is completely defined by a mean function m(x)



and a covariance function k(x, x′), and can be viewed as
probabilistic kernel machines if the covariance function is a
semi-positive definite Mercer kernel, such that the covariance
between points xi and xj is given by k(xi, xj). Hence, it
can provide not only a mean value prediction for a test
sample, serving as a regression algorithm, but also quantify
the uncertainty of the prediction at the test input measured
in terms of standard deviation.

For regression, we assume the availability of N training
inputs X := {xi}Ni=1, xi ∈ S ⊂ Rd, and corresponding
outputs y := {yi}Ni=1, yi ∈ R, which are assumed to be
instances drawn by the noisy process

y = f(x) + ϵ,

where ϵ ∼ N(0, σ2). The covariance function is then given
by the N ×N Gram matrix K(X,X) = K, which implies

p(y|X) = N(0,K(X,X) + σ2I).

The kernel function is chosen (or estimated from the data
with respect to appropriate criteria) a priori and depends on
a number of hyper-parameters θ, which are also called the
hyperparameters of the Gaussian process, that need to be
learned using the training dataset. We employ the squared
exponential (SE) kernel given as

k(xi, xj) = c exp

{
− ∥xi − xj∥

2

2η2

}
,

with hyperparameters θ = (c, η). Hyperparameter training is
typically done by maximizing the marginal log-likelihood

l(y|X, θ) := −1

2
log |K + σ2I| − 1

2
yT(K + σ2I)−1y,

where I is the identity matrix of same dimensions as K,
and σ is the standard deviation of additive Gaussian noise.
This learning step involves inverting a potentially large Gram
matrix and can be performed offline. The prediction y∗ for
a test point x∗ is computed by the conditional distribution
on the test output given the training data and the test input.
This is again a Gaussian distribution

p(y∗|X,Y, x∗) = N(y∗,Σ∗), (1)

where

y∗ = k∗T(K + σ2I)−1y,

Σ∗ = k(x∗, x∗)− k∗T(K + σ2I)−1k∗,
(2)

and k∗ = [k(x∗, x1), . . . , k(x
∗, xn)].

Gaussian process regression, as described above, however,
is not useful for applications with large datasets. The time
complexity for training is O(N3) for each iteration of the
optimization (as it involves inversion of the Gram matrix
(K + σI)), while mean prediction requires O(N) computa-
tions and variance prediction scales with O(N2). This also
rules out the straightforward use of Gaussian processes in an
incremental fashion.

To overcome this issue the prediction can be conditioned
on just a subset of points (pseudo-points), which is typically
learned by solving a large optimization problem over the

entire dataset [6], [8]–[10]. In the following section we
introduce the online deterministic annealing algorithm, that
seeks an optimal representation of the input space to be used
as pseudo-inputs for Gaussian process regression.

III. PSEUDO-INPUT GENERATION WITH ONLINE
DETERMINISTIC ANNEALING

We represent the observated data by a random variable
X : Ω → S ⊆ Rd defined in a probability space (Ω,F,P).
Given a similarity measure d : S → ri(S) (where ri(S)
represents the relative interior of S) the goal is to find a set
of M pseudo-inputs µ := {µi}Mi=1, µi ∈ ri(S), on the input
space such that an average distortion measure is minimized,

min
µ

J(µ) := E
[
min
i
d(X,µi)

]
. (3)

This process is equivalent to finding the most suitable set
of M local constant models, and results in a piecewise-
constant approximation of the input space S. To construct
a learning algorithm that progressively increases the number
of pseudo-inputs M as needed, we will define a probability
space over an infinite number of local models, and constraint
their distribution using the maximum-entropy principle at
different levels.

A. The Optimization Problem

First we need to adopt a probabilistic approach for (3), in
which a quantizer Q : S → ri(S) is defined as a discrete
random variable with countably infinite domain µ := {µi}.
Then we will constraint its distribution by formulating the
multi-objective optimization

min
µ
F (µ) := D(µ)− TH(µ), (4)

where

D(µ) := E [d (X,Q)] =

∫
p(x)

∑
i

p(µi|x)dϕ(x, µi) dx

takes the place of J(µ) in (3), and

H(µ) := E [− logP (X,Q)]

= H(X)−
∫
p(x)

∑
i

p(µi|x) log p(µi|x) dx (5)

is the Shannon entropy. This is now a problem of find-
ing the locations {µi} and the corresponding probabilities
{p(µi|x)} := {p(Q = µi|X = x)}. The Lagrange multiplier
T ∈ [0,∞) controls the trade-off between D and H . As
T is varied, we essentially transition from one solution of
the multi-objective optimization (a Pareto point when the
objectives are convex) to another, and, as we will show in
Section III-B, reducing the values of T defines a direction
that resembles an annealing process [12], [14].

We minimize F by successively minimizing it first respect
to the association probabilities {p(µi|x)}, and then with
respect to the codevector locations µ. The solution of the
optimization problem

F ∗(µ) := min
{p(µi|x)}

F (µ), s.t.
∑
i

p(µi|x) = 1 (6)



is given by the Gibbs distributions

p∗(µi|x) =
exp

(
−d(x,µi)

T

)
∑

j exp
(
−d(x,µj)

T

) , ∀x ∈ S. (7)

In order to minimize F ∗(µ) with respect to the codevector
locations µ we set the gradients to zero

d

dµ
F ∗(µ) = 0 =⇒ d

dµ
(D(µ)− TH(µ)) = 0

=⇒
∑
i

∫
p(x)p∗(µi|x)

d

dµi
d(x, µi) dx = 0

(8)

where we have used (7) and direct differentiation.
Next, we will show that (8) has a closed-form solu-

tion if the dissimilarity measure d belongs to the family
of Bregman divergences—information-theoretic dissimilarity
measures play an important role in learning applications and
include the widely used Euclidean distance and Kullback-
Leibler divergence [15].

Definition 1 (Bregman Divergence): Let ϕ : S → R, be a
strictly convex function defined on a vector space S ⊆ Rd

such that ϕ is twice F-differentiable on S. The Bregman
divergence dϕ : H × S → [0,∞) is defined as:

dϕ (x, µ) = ϕ (x)− ϕ (µ)− ∂ϕ

∂µ
(µ) (x− µ) ,

where x, µ ∈ S, and the continuous linear map ∂ϕ
∂µ (µ) : S →

R is the Fréchet derivative of ϕ at µ.
Given Definition 1, we can prove the following.

Theorem 1: The optimization problem

min
µ
F ∗(µ) (9)

where F ∗(µ) is defined in (6) is solved by the codevector
locations µ given by

µ∗
i = E [X|µi] =

∫
xp(x)p∗(µi|x) dx

p∗(µi)
(10)

if d := dϕ is a Bregman divergence.
Proof: From Definition 1, we get,

∂dϕ
∂µ

(x, µ) = −
〈
∇2ϕ(µ), (x− µ)

〉
, (11)

where x, µ ∈ S, and ∇2ϕ(µ) represents the Hessian matrix
of ϕ at µ. Then, (8) becomes∫

(x− µi)p(x)p
∗(µi|x) dx = 0 (12)

which is equivalent to (10), as
∫
p(x)p∗(µi|x) dx = p∗(µi).

B. Bifurcation and The Number of Pseudo-Inputs

In Section III-A we describe how to solve the optimization
problem for a given value of the parameter T . To define an
annealing approach, we are going to solve a sequence of
optimization problems with decreasing values of T .

At very high temperature (T → ∞), (7) yields uniform
association probabilities p(µi|x) = p(µj |x), ∀i, j, ∀x, and

as a result of (10), all pseudo-inputs are located at the same
point µi = E [X] , ∀i which means that there is one unique
“effective pseudo-input” given by E [X].

As T is lowered below a critical value, a bifurcation
phenomenon occurs, when the number of “effective pseudo-
inputs” increases, which describes an annealing process [12],
[14]. Mathematically, it occurs when the existing solution µ∗

given by (10) is no longer the minimum of the free energy
F ∗, as the temperature T crosses a critical value. Following
principles from variational calculus, we can track bifurcation
by the condition:

d2

dϵ2
F ∗({µ+ ϵψ})

∣∣∣∣
ϵ=0

≥ 0 (13)

for all choices of finite perturbations {ψ}. Using (13) and
direct differentiation, we show that bifurcation depends on
the temperature coefficient T (and the choice of the Bregman
divergence, through the function ϕ) and occurs when

1

T
=
∂2ϕ(yn)

∂y2n
ν̄ (14)

where ν̄ is the largest eigenvalue of Cx|yn
:=

E
[
(x− yn)(x− yn)T|yn

]
. Moreover, since there is

always a lower critical temperature value to be found, it
follows that the number of “effective pseudo-inputs” always
remains bounded between two critical temperature values.

In other words, the number of pseudo-inputs increases
countably many times as the value of T decreases, and
an algorithmic implementation needs only as many pseudo-
inputs as the number of “effective pseudo-inputs”. As shown
in Alg. 1, we can detect the bifurcation points by introducing
perturbing pairs of pseudo-inputs at each temperature level
T . In this way, the pseudo-inputs µ are doubled by inserting a
perturbation of each µi in the set of effective pseudo-inputs.
The newly inserted pseudo-inputs will merge with their pair
if a critical temperature has not been reached and separate
otherwise. For more details about the implementation of the
algorithm the reader is referred to [12].

C. Training Rule and Complexity

In the following Lemma we formulate a stochastic approx-
imation algorithm that recursively estimates the solution to
the optimization problem (10).

Lemma 1 ( [12]): The online training rule{
ρi(n+ 1) = ρi(n) + β(n) [p̂(µi|xn)− ρi(n)]
σi(n+ 1) = σi(n) + β(n) [xnp̂(µi|xn)− σi(n)]

(15)

where
∑

n β(n) = ∞,
∑

n β
2(n) < ∞, and the quantities

p̂(µi|xn) and µi(n) are recursively updated as follows:

µi(n) =
σi(n)

ρi(n)
, p̂(µi|xn) =

ρi(n) exp
(
−d(xn,µi(n))

T

)
∑

i ρi(n) exp
(
−d(xn,µi(n))

T

)
(16)

converges almost surely to a solution of (10).



Note that the recursive algorithm (15), (16) is also
gradient-free, and converges to a finite set {µi}Mi=1 of lo-
cations that can be used as pseudo-inputs by a GP regres-
sion model. The pseudocode for the online determinsitic
annealing algorithm is presented in Alg. 1 and the source
code is available in [16]. A detailed discussion on the
implementation of Alg. 1 and the effect of its parameters
can be found in [12], [17].

Algorithm 1 Online Deterministic Annealing (ODA)

Select parameters and initial configuration {µi}
while M < Mmax and T > Tmin do

Perturb µi ← {µi + δ, µi − δ}, ∀i
Set n← 0
repeat

Observe state x
for i = 1, . . . ,M do

Update:

p(µi|x)←
ρ(µi) exp

(
−dϕ(x,µi)

T

)
∑

i ρ(µi) exp
(
−dϕ(x,µi)

T

)
ρ(µi)← ρ(µi) + βn [p(µi|x)− ρ(µi)]

σ(µi)← σ(µi) + βn [xp(µi|x)− σ(µi)]

µi ←
σ(µi)

ρ(µi)
n← n+ 1

end for
until Convergence
Keep effective codevectors
Lower temperature T ← γT

end while

The complexity of the recursive approach (15), (16) for a
fixed temperature coefficient Ti (or λi) is O(Nci(2Mi)

2d),
where Nci is the number of stochastic approximation iter-
ations needed for the convergence of (15) and corresponds
to the number of data samples observed, Mi is the number
of codevectors of the model at temperature Ti, and d is
the dimension of the input vectors, i.e., X ∈ S ⊆ Rd.
Therefore, assuming a training dataset of N samples and a
temperature schedule {T1 = Tmax, T2, . . . , TNT

= Tmin}, the
worst case complexity of the annealing approach becomes
O(Nc(2M̄)2d), where Nc = maxi {Nci} is an upper bound
on the number of data samples observed until convergence at
each temperature level, and NT ≤ K̄ < NTKmax, with the
actual value of K̄ depending on the bifurcations occurred.
Note that typically Nc ≪ N and K̄ ≪ NTKmax. For more
details see [18] and the references therein.

IV. SPARSE GAUSSIAN PROCESS REGRESSION WITH
ONLINE DETERMINISTIC ANNEALING

The use of GP regression models based on the pseudo-
inputs generated by Alg. 1 can be used for a smooth (in terms
of continuity of the derivatives) function approximation. This
also provides a way to mitigate the computational bottle-
neck of Gaussian processes, while conserving its properties,

including the quantification of the uncertainty of the model
[1], [11]. As a result, this approach can be appealing in many
applications, including communication, control, multi-agent
systems, and reinforcement learning [17], [19]–[21].

Following the definition of the GP regression model in
Section II, the training inputs are now given by X̂ := µ =
{µi}MT

i=1, where MT ≪ N depends on the temperature level
T of Alg. 1. The corresponding outputs ŷ := {yi}MT

i=1, are
given by ŷi = f(µi)+ϵ, and the covariance function is given
by the MT×MT Gram matrix K(X̂, X̂) = K̂, which implies
that p(y|X̂) = N(0, K̂ + σ2I), such that the prediction y∗

for a test point x∗ is computed by

p(y∗|X̂, ŷ, x∗) = N(y∗,Σ∗), (17)

where y∗ = k∗T(K̂ + σ2I)−1ŷ, and Σ∗ = k(x∗, x∗) −
k∗T(K̂ + σ2I)−1k∗. Hyperparameter training now takes
O(M2

TN), mean prediction O(MT ), and variance compu-
tation O(M2

T ), where MT ≪ N .

A. Incorporating Priors

The locations of the pseudo-inputs µ = {µi}MT

i=1 depend
on the underlying distribution which controls the frequency
of observations we get by each region of the input space.
In many applications, this is dictated by the observation
mechanism, e.g., in probability density estimation, or, in
control applications, where the data inputs come as a result
of a sequence of actions. In standard function approxima-
tion, however, such a density does not naturally exist. In
this case, we can construct an artificial probability density
function that gives higher emphasis on regions of the space
from which we expect larger improvement in the regression
accuracy. Numerous heuristic objectives have been used in
the literature to quantify potential regression improvement at
a point of the input space:

• The differential entropy H(y∗) := 1
2 log(2πeσ

2(x∗)).
This is a function of the predicted variance σ2(x∗) at
point x∗ and is used to greedily give more weight to
underrepresented regions [10].

• The Expected Improvement (EI). This objective func-
tion originates from Bayesian optimization and gives
emphasis in the regions of the input space that result in
the largest improvement [22]. In the context of function
approximation, given the current prediction f̂(x) and
the original function f(x), EI can be defined by the
expectation E [e(X)|x̂, ŷ], where e(X) = ∥f(x)−f̂(x)∥
is the regression error. EI can be computationally hard
to compute, since it takes into account the error e(X)
across the entire input space.

• The magnitude of the gradient of the approximation
function f̂ , i.e., ∥∇f̂(x)∥. This is not a commonly
used objective function for searching the next pseudo-
input in the GP regression literature. However, unlike
the Expected Improvement (EI), it does not require
the computation of the error e(X) across the input
space. In contrast, it uses the fact that the approximation
function f̂(x) is differentiable as long as the kernel K̂



Fig. 1: Sparse GP regression model evolution with the
differential entropy criterion.

Fig. 2: Sparse GP regression model evolution with the
Expected Improvement (EI) criterion.

is differentiable, with

∇E [y∗|X, ŷ, x̂] = ∇k∗T(K̂ + σ2I)−1ŷ.

This objective function gives more emphasis to the
regions of the input space where the current estimate of
the function f̂(x) changes rapidly, a similar principle to
signal compression.

These heuristics can be used at every temperature level
T to construct an artificial probability density for the ob-
servations of Alg. 1. As a result, the set of pseudo-inputs
progressively grows in a way that resembles active GP
learning approaches, while allowing for the modification of
previously selected pseudo-inputs.

V. EXPERIMENTAL RESULTS

We illustrate the properties and evaluate the performance
of the proposed algorithm in 1D function approximation1.

In Fig. 1 and 2 we showcase the evolution of the active
learning process when increasingly more samples are added
to the set of pseudo-inputs according to the differential
entropy and the expected improvement objectives, respec-
tively. These serve as a standard in the sparse GP regression

1Code and Reproducibility: The source code is publicly available
online at https://github.com/MavridisChristos/
ODASparseGaussians.

Fig. 3: Sparse GP regression model evolution with Alg. 1
and no prior.

literature. In Fig. 1, every point reduces the uncertainty of
the model, but there is no mechanism to change the location
of a pseudo-input after it has been added to memory. This
often results in using an increased number of pseudo-inputs,
with many of them being redundant (in retrospect). On the
other hand, in Fig. 2, the EI objective is fast to find the
regions of the input space that will more drastically improve
the prediction of the GP model. Also, past pseudo-inputs
are not able to be modified. In addition, the efficiency of
the EI objective comes at the cost of the estimation of
E
[
∥f(x)− f̂(x)∥ | x̂, ŷ

]
across the function domain.

In Fig. 3, we showcase the evolution of the learning
process when a progressively growing set of pseudo-inputs
is being generated by Alg. 1. In all applications of Alg. 1,
the Euclidean distance is used as the proximity measure. As
the temperature coefficient gradually decreases the number
of pseudo-inputs progressively increases. In this case, no
prior information has been used. To this end, the pseudo-
inputs simulate a maximum entropy distribution, i.e., samples
that are uniformly spaced in the input space. This behavior
resembles the active learning algorithm in Fig. 1, since, as a
result of the maximum entropy principle, the pseudo inputs
are located such that the uncertainty of the model is being
reduced. The main difference is that the locations of the
pseudo-inputs are adjusted at every stage to preserve the
maximum entropy.

In Fig. 4 and 5, Alg. 1 is used in conjunction with
appropriately defined priors. In Fig. 4, ∥∇f̂(x)∥ is used to
construct a probability density at every temperature level
Ti, This is a heuristic that aims to find the areas that the
function is fluctuating which results in a good approximation
with quick convergence. This method does not guarantee
the reduction of the MSE (mean-squared error) with the
smallest number of pseudo-inputs. However, as a result of

https://github.com/MavridisChristos/ODASparseGaussians
https://github.com/MavridisChristos/ODASparseGaussians


Fig. 4: Sparse GP regression model evolution with Alg. 1
and ∥∇f̂(x)∥ as prior at every temperature step.

Fig. 5: Sparse GP regression model evolution with Alg. 1
and the Expected Improvement (EI) prior.

the convergence properties of Alg. 1, it is easy to see that
the MSE error will go to zero as the temperature level T
decreases and the number of pseudo-inputs increases.

Finally, in Fig. 5, the Expected Improvement (EI) prior is
used. At every temperature level Ti, the EI heuristic is used
to construct a probability density for for the next application
of Alg. 1 at Ti+1. As shown in Fig. 5, this approach achieves
fast reduction of the prediction error with very few pseudo-
inputs. In addition, the pseudo-inputs are scattered in the
input space according to a trade-off between the EI objective
and the maximum entropy principle, which results in a set
of pseudo-inputs that more accurately represent the domain
of the function, at every temperature level.

VI. CONCLUSION AND FUTURE WORK

We introduce a sparse Gaussian process regression model
whose covariance function is parameterized by the locations
of a progressively growing set of pseudo-inputs generated
by an online deterministic annealing optimization algorithm.
This is an active learning approach, which, in contrast to
most existing works, can modify already selected pseudo-
inputs and is trained with recursive, gradient-free updates.
The proposed approach is able to incorporate prior knowl-
edge in the form of a probability density, according to
which new observations are sampled. These properties can

be particularly useful in applications where uncertainty quan-
tification is needed, and the communication or processing
bandwidth is limited. This includes many communication,
control, and reinforcement learning problems.

Ongoing work focuses on decentralized methods to imple-
ment the proposed active learning technique in multi-agent
systems with communication constraints.
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