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Academic Abstract

In this dissertation, we propose decentralized and scalable algorithms for Gaussian process

(GP) training and prediction in multi-agent systems. The first challenge is to compute a

spatial field that represents underwater acoustic communication performance from a set of

measurements. We compare kriging to cokriging with vehicle range as a secondary vari-

able using a simple approximate linear-log model of the communication performance. Next,

we propose a model-based learning methodology for the prediction of underwater acoustic

performance using a realistic propagation model. The methodology consists of two steps: i)

estimation of the covariance matrix by evaluating candidate functions with estimated param-

eters; and ii) prediction of communication performance. Covariance estimation is addressed

with a multi-stage iterative training method that produces unbiased and robust results with

nested models. The efficiency of the framework is validated with simulations and experi-

mental data from field trials. The second challenge is to perform predictions at unvisited

locations with a team of agents and limited inter-agent information exchange. To decen-

tralize the implementation of GP training, we employ the alternating direction method of

multipliers (ADMM). A closed-form solution of the decentralized proximal ADMM is pro-

vided for the case of GP hyper-parameter training with maximum likelihood estimation.

Multiple aggregation techniques for GP prediction are decentralized with the use of iterative

and consensus methods. In addition, we propose a covariance-based nearest neighbor selec-

tion strategy that enables a subset of agents to perform predictions. Empirical evaluations

illustrate the efficiency of the proposed methods.
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General Audience Abstract

In this dissertation, we propose decentralized and scalable algorithms for collaborative multi-

agent learning. Mobile robots, such as autonomous underwater vehicles (AUVs), can use pre-

dictions of communication performance to anticipate where they are likely to be connected

to the communication network. The first challenge is to predict the acoustic communica-

tion performance of AUVs from a set of measurements. We compare two methodologies

using a simple model of communication performance. Next, we propose a model-based

learning methodology for the prediction of underwater acoustic performance using a realistic

model. The methodology first estimates the covariance matrix and then predicts the com-

munication performance. The efficiency of the framework is validated with simulations and

experimental data from field trials. The second challenge regards the efficient execution of

Gaussian processes using multiple agents and communicating as little as possible. We pro-

pose decentralized algorithms that facilitate local computations at the expense of inter-agent

communications. Moreover, we propose a nearest neighbor selection strategy that enables a

subset of agents to participate in the prediction. Illustrative examples with real world data

are provided to validate the efficiency of the algorithms.
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Chapter 1

Introduction

1.1 Motivation

Learning of Underwater Communication Performance

Coordination of multiple autonomous underwater agents requires effective communication

for various cooperative missions [2]. For agents that operate underwater, inter-vehicle com-

munication is usually accomplished using wireless underwater acoustic (UWA) signals. In

the majority of the literature, wireless communication performance is treated as a deter-

ministic, range-dependent function [15, 35, 87, 91, 92, 118, 139, 140]. In the graph theory

literature this is also known as r-disk communication graph [14, 25, 60, 62, 63, 108, 133]. In-

deed, communication performance is a function of vehicle range, but it is also dependent on

many other environmental effects, including multi-path propagation and background noise

[116]. In addition to the exchange of data, acoustic communication can also provide vehicle

range information to improve navigation, as global positioning system (GPS) is unavailable

in subsea environments [121].

Our aim is to predict UWA communication performance at unvisited locations using a set

of communication performance measurements from nearby locations. We employ a two-step

learning methodology that comprises: i) the estimation of covariance parameters and the

statistical selection of a covariance function; and ii) the prediction of the communication

1



2 Chapter 1. Introduction

performance and its corresponding variance. Intuitively, the two-step process can be inter-

preted as first training from data, and then predicting the variable of interest at unvisited

locations. The estimation of the covariance function and of its parameters merits special con-

sideration, because it encodes the assumption on a stationary random field and generalizes

the properties of the underlying latent process. Accurate predictions of anticipated commu-

nication performance can be exploited to plan better utilization of communication resources.

Our general approach may be applicable to terrestrial networks, including aerial and ground

communication using radio waves. The main idea is to leverage recent advances in spatial

statistics and UWA communication modeling, to provide a realistic statistical prediction of

inter-vehicle communication performance for teams of marine robots.

Decentralized Gaussian Processes

Teams of agents have received considerable attention in recent years, as they can address

tasks that cannot be efficiently accomplished by a single entity. Multi-agent systems are at-

tractive for their inherent property of collecting simultaneously data from multiple locations—

a group of agents can collect more data than a single agent during the same time period.

Central to machine learning (ML) methodologies is the collection of large datasets in or-

der to ensure reliable training. To this end, networks of agents favor learning techniques,

due to their data collection capabilities. However, they face major challenges including

limited computational resources and communication restrictions. A typical approach to ad-

dress these challenges relies on centralizing the collected data in a single node (e.g., cloud

or data center), which requires high computational and storage resources. Yet, gathering

data to a central server may lead to network traffic congestion and security or privacy is-

sues. To ensure data privacy, a promising solution is federated learning (FL) [67]. FL

aims to implement ML techniques in centralized or decentralized networks, but with no
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communication of real data in order to comply to the EU/UK general data protection reg-

ulation (GDPR) [55]. For certain applications in GPS-denied environments, it is unfeasible

to implement ML algorithms in a centralized network, as distant nodes may not be able

to communicate directly with the central node due to communication range limitations or

bandwidth. Such cases include autonomous vehicles and multi-robot systems. Finally, even

if we manage to collect all the data in a central node, the time and space computational

complexity for rapid updates of the ML models require resources that are not available to

agents operating in the field. In this work, we propose methodologies for fully decentralizing

Gaussian processes (GPs) [27, 43, 104] from training to prediction, so that they can be im-

plemented efficiently on teams of agents. GPs are used in various multi-agent applications

[3, 20, 23, 44, 52, 56, 61, 70, 71, 75, 97, 112, 119, 123, 137, 141, 143]. The major disadvan-

tage of GPs is the poor scalability with the number of observations. Moreover, GPs are not

easily decentralized for implementation across multiple agents due to high communication

requirements.

Our objective is to develop fully decentralized approximate methodologies that relax the

communication and computation requirements of GPs, exchanging as little information as

possible and by performing only local computations. We propose three distributed opti-

mization techniques to implement GP hyperparameter training with maximum likelihood

estimation (MLE), based on the alternating direction method of multipliers (ADMM) [12].

Next, we synthesize 13 decentralized approximate methods to perform GP prediction with

aggregation of GP experts [77], using iterative and consensus protocols [10, 93, 130].
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1.2 Contributions

Learning of Underwater Communication Performance

The contribution is fourfold.

1. We formulate an approximate communication performance model that takes into ac-

count the environmental conditions. We use this simple model to motivate our specific

approach to kriging, and to generate numerical simulations of communication perfor-

mance that were used to exercise our framework.

2. We propose a bivariate approach to estimate the communication performance between

two vehicles in a time-varying environment, by using cokriging.

3. After demonstrating that the communication performance is range dependent, we

employ a realistic acoustic propagation model to formulate the problem as a non-

stationary random field and propose model-based basis functions. Basis functions are

then used to detrend the measurements and allow the implementation of stationary

kriging.

4. We introduce an iterative technique to identify theoretical models that describe the

unknown underwater acoustic environments. Since the covariance of the UWA propa-

gation model is unknown, we compute the parameters of multiple theoretical covariance

functions, and based on the Bayesian information criterion we select a theoretical model

that fits best to the data. To this end, the iterative technique selects the most suitable

theoretical covariance model for each environment.
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Decentralized Gaussian Processes

The contribution is fivefold.

1. We extend a centralized GP training methodology [135] by devising augmented local

datatsets to equip local entities, so that the hyper-parameter estimation accuracy of

large-scale multi-agent systems is improved.

2. We introduce three decentralized GP training methods for strongly connected graph

topologies and we derive a closed-form solution on the decentralized inexact ADMM

[19] that reduces the computational requirements of local agents.

3. We decentralize the implementation of multiple aggregation of GP experts methods

(PoE [51], gPoE [17], BCM [126], rBCM [30], and grBCM [76]) for strongly connected

graph topologies, by using the discrete-time average consensus (DAC) [93].

4. We decentralize the implementation of NPAE [107] for strongly complete graph topolo-

gies, by combining Jacobi over-relaxation (JOR) [10, Chapter 2.4] and DAC. Moreover,

we introduce a technique to recover the optimal relaxation factor of JOR [127] for

strongly complete graph topologies by using the power method (PM) [40, Chapter 8].

The later ensures faster convergence.

5. We introduce a covariance-based nearest neighbor (CBNN) technique that selects sta-

tistically correlated agents for GP prediction on locations of interest, and provide a

consistency proof. The CBNN is applicable to the decentralized versions of PoE, gPoE,

BCM, rBCM, and grBCM introduced in 3). In addition, CBNN allows the use of a dis-

tributed algorithm to solve systems of linear equations (DALE) [78, 130] which replaces

JOR in the decentralized NPAE of 4) and relaxes the graph topology from strongly

complete to strongly connected.
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1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 discusses the related

work, Chapter 3 focuses on model-based prediction of the UWA communication performance,

Chapter 4 focuses on decentralized and scalable Gaussian processes for multi-agent systems,

while Chapter 5 concludes the dissertation and discusses future directions.



Chapter 2

Literature Review

In this chapter, we present previous works in kriging methods for prediction of communica-

tion performance and distributed Gaussian processes (GPs).

2.1 Kriging for Communication Performance

The importance of communication in multi-robot systems was discussed in [6]. The authors

investigated the importance of communication in three types of missions with simulations and

experiments. Indeed, in several cases inter-vehicle communication improved the performance

of the mission. Although communication is evidently of crucial importance for the success

of multi-robot missions, communication cannot be always guaranteed for multiple reasons.

A survey of prospects and problems in UWA communications is documented in [72]. Since

acoustic waves demonstrate relatively low absorption in subsea environments, they are the

major mode of wireless underwater communication. In underwater wireless sensor networks,

kriging (equivalent to Gaussian processes [43, 104]) has been used to model communica-

tion performance in several applications. Horner et al. [54], proposed a methodology based

partially on ordinary kriging for the generation of local and global acoustic communication

performance maps to facilitate collaborative navigation. A distributed kriging methodology

was used in [128] to estimate coverage holes in large-scale wireless sensor networks. The

authors in [134] developed a cooperative robust algorithm to compose a spatial map of un-

8



2.1. Kriging for Communication Performance 9

derwater acoustic communication signals and channel parameters using an H∞ filter and

ordinary kriging. In [122], the acoustic communication performance of micro autonomous

underwater vehicles (AUVs) was assessed with field trials. The results of the latter reveal

that for non-stationary transmission, i.e. moving vehicle, several factors reduce communica-

tion performance, including multi-path effect of acoustic transmission and the Doppler effect.

In [117], a methodology that combines ordinary kriging and compressive sensing methods,

was utilized for prediction of acoustic intensity. Prediction of communication performance

has been addressed for radio applications. In [81], the authors employ maximum-likelihood

estimation for the parameters of the covariance matrix, logarithmic transformation for the

underlying mean towards a model-based approach, and compressive sensing for prediction

with sparse data. In addition, they show that the location of measurements may improve

the prediction quality. In [4], the authors proposed an ordinary kriging prediction framework

with detrended data to build radio environment maps and they also considered positional

error of the measurements. Gaussian processes have also been used to build communication

maps of known terrestrial environments with multiple agents [73]. Specifically the authors

used a Gaussian process with constant mean value [104, (2.38), p.27] (equivalent to ordinary

kriging) and squared exponential covariance function. Their methodology uses communica-

tion priors based on four communication path-loss models to reduce the uncertainty of the

communication maps. In the same spirit, in [64] a Gaussian process with fixed mean func-

tion and a squared exponential covariance function is proposed to predict the WiFi channel

quality and find the optimal relay position for mobile networks. Ordinary kriging assumes

that the underlying process is stationary. In addition, in all of these works it was assumed

that the covariance model follows a specific theoretical covariance function. In our work,

we formulate the problem as a non-stationary random field with universal kriging, which is

equivalent to GPs with model-based fixed basis functions [104, (2.41), p.28]. Moreover, we

investigate multiple theoretical models for the statistical selection of the covariance function.
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Communication performance estimation can be used to estimate the position of a vehicle.

In [46], the authors employed Gaussian processes to determine a likelihood model of the

received signal strength (RSS) for WiFi to estimate the location of robots. This approach

requires to compare a training set of RSS observations to a ground truth map, yet this is a

computationally demanding process for large maps. To alleviate the computational burden,

the authors in [34] used a Gaussian process latent variable model (GP-LVM) to: i) generate

the RSS map, ii) compute the position of the vehicle, and iii) build the seafloor map. In

these works, only the RSS measurements were used for the construction of RSS maps. In

our work, we also use the distance between communicating vehicles to build basis functions

for detrending of non-stationary processes.

Adaptive sampling is another cooperative application of AUVs to monitor and model the

environment. Unambiguously, the prediction of underwater communication performance is

critical for the efficiency of subsea adaptive sampling missions. In [42], the authors sur-

vey methodologies to connect hierarchical spatio-temporal techniques [7] with distributed

algorithms. A review of distributive adaptive sampling of mobile agents for spatio-temporal

processes is listed in [95]. A sub-sampling method was proposed in [41] to alleviate the com-

putational efforts. Then, the authors use kriging to map a terrain at higher resolution. This

map is used to plan paths for unmanned and manned vehicles based on three cost functions.

Kriging has been used in adaptive sampling for the statistical modeling of the environment,

yet without a rigorous learning method for estimating the covariance that addresses proper

covariance model selection, robustness, and bias correction.
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2.2 Decentralized Gaussian Processes

Despite their effectiveness in function approximation and uncertainty quantification, GPs

scale poorly with the number of observations. Particularly, provided N observations, the

training entails O(N3) computations and the prediction requires O(N2) computations. An-

other limitation for the implementation of GPs in multi-agent systems is the communication.

For centralized GPs, every agent has to communicate all observations to a central node. How-

ever, excessive communication is challenging in decentralized networks. Moreover, agents in

networks can pass messages only within a communication range [14] which may vary in space

and time [68].

To overcome the computational burden of hyper-parameter GP training with maximum like-

lihood estimation (MLE), a factorized GP training method is discussed in [30, 90]. That is

a centralized method which is based on a server-client structure and distributes the compu-

tations to multiple entities. The main idea is to assume independence between sub-models,

which results in the approximation of the inverse covariance matrix by the inverse of a block

diagonal matrix. To this end, a significant reduction in computation of the inverse of multi-

ple covariance matrices is achieved at the cost of excessive communication overhead. More

specifically, every local entity transmits multiple inverted blocks of the covariance matrix per

MLE iteration. Recently, Xu et al. [136] reformulated the factorized GP training method

using the exact consensus alternating direction method of multipliers (ADMM) [12], which

is appealing in centralized multi-agent settings [47]. Consensus ADMM reduces the com-

munication overhead of GP training, but requires high computational resources to solve a

nested optimization problem at every ADMM-iteration. Subsequently, the authors in [135]

employed the inexact proximal ADMM [53] to alleviate the computation demand. However,

both ADMM-based factorized GP training methods require a centralized network topology.
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Two major research directions for GP prediction are based on global and local approxima-

tions [77]. Global approximation methods promote sparsity by using either a subset of Nsub

observations or by introducing a set of Nsub pseudo-inputs, where Nsub � N [50, 101, 113].

Sparse GPs have been used in mobile sensor networks to model spatial fields [44]. In [137], a

GP with truncated observations in a mobile sensor network is proposed, and in [20] a subset

of observations is used for traffic modeling and prediction. These methods require global

knowledge of the observations, which increases inter-agent communications. Additionally,

the methods that utilize pseudo-inputs do not retain the interpolation property.

Alternatively, the second research direction uses local approximation methods to reduce the

computational burden of GP prediction. These are centralized algorithms with a server-client

structure. The main idea is to aggregate local sub-models produced by local subsets of the

observations [17, 30, 51, 126]. In other words, every sub-model makes a local prediction, and

then the central node aggregates to a single prediction. In comparison to global approxima-

tions, local methods do not require inducing inputs, they distribute the computational load

to multiple agents, and they work with all observations. However, it is proved in [5, Proposi-

tion 1] that the local methods [30, 51, 126] are inconsistent, i.e. as the observation size grows

to infinity, the aggregated predictions do not converge to the true values. Subsequently, the

authors in [107] proposed the nested point-wise aggregation of experts (NPAE) that takes

into account the covariance between sub-models and produces consistent predictions. The

price to achieve consistency in NPAE comes with much higher computational complexity

in the central node. Liu et al. [76] introduced a computationally efficient and consistent

methodology, termed as generalized robust Bayesian committee machine (grBCM). The lat-

ter entails additional communication between agents to enrich local datasets with a global

random dataset. In addition, both NPAE and grBCM are centralized techniques, that are

not well-suited for multi-agent systems [14].
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A decentralized method for the computation of spatio-temporal GPs is proposed in [25]. In

[23], a decentralized technique for spatial GPs with localization uncertainty is presented.

Both [25] and [23] employ the Jacobi over-relaxation (JOR), which requires a strongly com-

plete graph topology, i.e. every node must communicate to every other node. That is a

conservative topology and is not common in mobile sensor networks [14]. Essentially, for not

strongly complete topologies, JOR entails flooding before every iteration. In flooding each

agent broadcasts all input packets to its neighbors [125]. Thus, the communication require-

ments of JOR are high. Yuan and Zhu [141, 142], proposed a methodology that combines

nearest neighbor GPs [29] and local approximation [17]. Although [17] is consistent in terms

of prediction mean, it produces overconfident prediction variances [76, Proposition 1]. In

addition, arbitrary selection of nearest neighbor sets may lead to poor approximations [29]

and suffers from prediction discontinuities [107]. Pillonetto et al. [97] proposed sub-optimal

methods to distributively estimate a latent function with a GP by employing orthonormal

eigenfunctions, computed by the Karhunen-Loève expansion of a kernel. An extension of

this work to multi-robot systems with online information gathering is discussed in [56]. This

is a promising line of research for GPs in decentralized networks, but our focus is on decen-

tralized and scalable GP training with MLE and GP prediction with aggregation methods.

Nevertheless, computing orthonormal eigenfunctions in closed-form is not feasible for all

kernels and may yield significant storage requirements.

2.3 Summary

Many research groups proposed prediction methods of UWA communication performance.

However, they assumed that the random field is stationary and follows a specific covariance

function [4, 54, 73, 81, 117]. We are particularly interested in non-stationary random fields
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with an unknown covariance function. The next topic of distributed GPs is of paramount

importance for multi-robot exploration and navigation. Multiple studies suggested central-

ized methodologies with local computations [17, 30, 51, 76, 107, 126]. A few body of research

works is focused on the decentralization of GPs using local observations [23, 25, 141]. Yet,

the latter methods require strongly complete network topologies and/or excessive commu-

nication. In this dissertation, we focus on decentralized GPs of realistic network topologies

and with as little communication as possible.



Chapter 3

Model-Based Kriging

In this chapter, we present a comparison of kriging and cokriging that explores the effect of

the vehicle range variable to the prediction of underwater acoustic communication perfor-

mance. After demonstrating that vehicle range is of paramount importance for the predic-

tion, we exploit a realistic underwater acoustic propagation model to compose a model-based

kriging technique with particular emphasis on the estimation of the covariance matrix.

3.1 Comparison Kriging and Cokriging

3.1.1 Problem Formulation

In this section we present the measurement model of the vehicles and we discuss the physical

process of the environment. We also assess the acoustic communication performance with a

signal-to-noise ratio (SNR) model of the sonar.

3.1.2 Communication Performance

The measurement model of all agents is identical and described by,

Yi(x; t) = Z(x; t) + ε, (3.1)

15
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Figure 3.1: Communication scenarios of two autonomous underwater vehicles (AUVs) at
range r. The transmitting vehicle is located at position xt and the receiving vehicle at posi-
tion xr. (a) The communication success relies on a deterministic maximum communication
range Q. (b) The communication performance using signal-to-noise ratio (SNR) is predicted
for specific vehicle ranges.

where Yi(x; t) is the measurement of communication performance of agent i at spatial loca-

tions x = [x y]ᵀ ∈ R2, Z(x; t) represents the random field, and ε ∼ (0, σ2
Y) is a zero-mean

Gaussian noise.

We seek a simple model of underwater acoustic communication performance. We employ the

passive sonar equation that models direct communication between the transmitter and the

receiver [33, 57]. Unlike an active sonar model, we do not consider interaction with a target

system e.g., reverberation noise. Since we are interested in applications with relatively slow-

moving AUVs, we ignore frequency shifting and spreading that are due to motion-induced

Doppler effect.

To approximate the communication performance between two agents we use the SNR. In

principle, the higher the SNR, the more likely is to detect the transmitted signal. The passive

sonar equation is expressed,

SNR = SL− TL− NL + DI, (3.2)
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where SL is the source level, TL is the transmission loss, NL is the noise level, and DI is

the directivity index. In practice, the source level is provided by the manufacturer of the

transmitter and we assume that the effect of the directivity index is negligible, similarly to

[111]. The transmission loss can be computed as,

TL(r) = TLsph(r)− TLa(r), (3.3)

where TLsph is the spherical spreading loss, TLa is the attenuation, and r = ‖xr − xt‖2

is the range of two vehicles. In Fig. 3.1 we illustrate the case of acoustic communication

between two underwater vehicles at range r, with xt the position of the transmitting vehicle

and xr the position of the receiving vehicle. Spherical spreading loss is proportional to the

log of range, TLsph(r) = 20 log r. Attenuation depends on the signal frequency due to the

process of transferring the acoustic energy into heat. More specifically, for a signal frequency

of f = 25 kHz the absorption coefficient is a = 5.56 dB/km [13]. Thus, (3.3) results in a

linear-log relationship,

TL(r) = 20 log r − 0.00556r. (3.4)

Environmental Conditions

In our simplified communication model, we capture various environmental effects, such as

multi-path, density gradients, etc, as simply noise that reduces the SNR. The noise comprises

of ambient noise, transient noise, and self-noise [33].

Sources of ambient noise include the shipping and sea state. Ambient noise is approximated

by the Wenz curves [132],

NLamb = NLship ⊕ NLSS, (3.5)

where NLship is the shipping noise and NLSS is the sea state noise. The power summation
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operator for Lk elements, with k = 1, . . . , Nk, is given by ⊕ = 10 log
∑Nk

k=1 10Lk/10. For a

signal frequency of f = 25 kHz the shipping noise is almost zero, as NLSS � NLship. To this

end, (3.5) simplifies to NLamb = NLSS.

Subsequently, if we neglect the transient noise (e.g, biological organisms) and self-noise the

communication performance yields,

SNR = SL− 20 log r + 0.00556r − NLSS. (3.6)

Remark 3.1. Since the communication signal transmits in high frequency (f = 25 kHz),

the transient noise can be neglected. Similarly, the cavitation noise of the propeller vanishes.

However, the flow noise—which is produced by the propeller—may affect the source level

of the transmitted signal and/or the received signal strength. In fact, this will lead to

anisotropic SNR, depending not only on the position but also on the orientation of the

vehicle. In this work, we do not consider anisotropic sensing.

3.1.3 Multivariate Spatial Estimation

In this section, we introduce kriging, a spatial estimation technique that estimates values

at locations of interest, based on measurements from other locations. First, we discuss

the ordinary kriging (OK) and then we present the multivariate kriging, namely cokriging

(COK).

Let us first introduce some basic notions of the random fields. A comprehensive discussion

on the topic can be found in [27]. Let Z(x) be a random field with a positive-definite

covariance matrix Cov(Z(x1), Z(x2)) � 0 for all x ∈ R2. The random field is intrinsically

stationary if Cov(Z(x1), Z(x2)) = C(x1 − x2) for all x ∈ R2 and the function C(·) is called

covariogram. An intrinsically stationary random field with a constant mean is called second-
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order stationary. The semivariogram of a second-order stationary process with constant

mean E{Z(x)] = µ is defined,

γ(x1,x2) :=
1

2
E{(Z(x1)− Z(x2))2} =

1

2
Var[Z(x1)− Z(x2)]. (3.7)

Moreover, if C(x1 − x2) is only a function of the Euclidean norm ‖x1 − x2‖2, then the

covariogram is isotropic. The correlogram is defined,

ρ(x) :=
C(x)

C(0)
, (3.8)

where C(0) = Var[Z(x)] is the sill and the data is normalized so that it has zero mean

an unit variance (see (3.37)). For a second-order stationary random field with normalized

measurements and ‖x1 − x2‖2= h, the semivariogram is the mirror image of the covariance,

resulting,

γ(h) = 1− C(h). (3.9)

Next, we present fundamental notions of the multivariate case [129]. In multivariate statistics

the covariance comprises of direct and cross-covariance functions. The joint second-order

hypothesis assumes a constant mean for every variable,

E[Zj(x)] = µj, (3.10)

and a cross-covariance function in the form,

E[(Zj(x1)− µi)(Zl(x2)− µl)] = Cjl(h). (3.11)

The cross-covariance function Cjl captures the variation of variables over distance. The joint
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intrinsic model imposes the cross-variogram structure,

γjl(x1,x2) =
1

2
E[(Zj(x1)− Zj(x2))(Zl(x1)− Zj(x2))]. (3.12)

That is, the cross-variogram measures the difference of variances over distance. Furthermore,

the cross-correlogram, by assuming the intrinsic correlation model, is expressed,

ρjl(h) =
Cjl(h)

Cj(0)Cl(0)
, (3.13)

where Cj(0) = Var[Zj(x)], Cl(0) = Var[Zl(x)] are the sills where for normalized measure-

ments Cj(0) = Cl(0) = 1.

Ordinary Kriging

Let us now describe the ordinary kriging technique. We consider multiple measurements at

locations xj ∈ R2, j = 1, . . . ,M with M ∈ N. In ordinary kriging the Gaussian random field

is modeled as,

Z(x) = µ+ ν(x), (3.14)

where Z(x) ∈ R is a second-order stationary random field, µ ∈ R is the unknown constant

mean that represents the large scale variation, and ν(x) is the zero-mean Gaussian field that

captures the medium scale variability. We are interested in estimating the mean value of

the random field at an unmeasured location x0, based on the measured data Z(x). We use
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a linear unbiased estimator,

Ẑ(x0) =

Nj∑
j=1

βjZ(xj) + (1−
Nj∑
j=1

βj)µ

= βᵀZ(x), (3.15)

where β = [β1 . . . βNj
]ᵀ ∈ RNj are the weights we seek to obtain. The unbiasedness of

the estimator
∑Nj

j=1 βj = 1 relaxes the assumption of a known global mean µ. As a result,

we can perform kriging with the measurements and not its residuals, Z(xj) − µ. Next,

we formulate the unconstrained minimization problem with a Lagrange multiplier λOK to

include the unbiasedness constraint. The solution to the minimization problem results in,

βOK = Γ−1
OKγOK, (3.16)

where βOK = [βᵀ λOK]ᵀ ∈ RNj+1 is a vector that contains the weights β and the Lagrange

multiplier λOK. The non-singular matrix ΓOK ∈ R(Nj+1)×(Nj+1) considers the redundancy of

measurements and is given by,

ΓOK =


γ(x1,x1) . . . γ(x1,xN ) 1

...
. . .

...
...

γ(xN ,x1) . . . γ(xN ,xN ) 1

1 . . . 1 0

 :=

Γ 1

1ᵀ 0

 , (3.17)
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where 1 ∈ RNj is a vector of ones. The vector γOK ∈ R(Nj+1) takes into account the closeness

of the measurements to the location of interest x0 and yields,

γOK =



γ(x0,x1)

...

γ(x0,xN)

1


:=

γ0

1

 . (3.18)

The unique solution of (3.16) yields the vector of unknown weights,

β = Γ−1
(
γ0 − 1λOK

)
, (3.19)

and the Lagrange multiplier,

λOK =
1ᵀΓ−1γ0 − 1

1ᵀΓ−11
, (3.20)

Sequentially, the weights β and the Lagrange multiplier λOK can be used for the computation

of the ordinary kriging variance as,

σ2
OK(Z(x0)) = VarOK[Z(x0)] = βᵀγ0 + λOK. (3.21)

In terms of the covariance matrix for normalized measurements, we use (3.9) and the solution

follows accordingly.

Multicollocated Ordinary Cokriging

In this section we shall describe the multicollocated ordinary cokriging (MCOK). We observe

in (3.6) that our simplified model of communication performance is a linear-log function of

the range of the vehicles. Moreover, the range measurements are acquired simultaneously
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with the SNR. Interestingly, there exists a spatial correlation of these two variables. For

instance, when we seek to estimate the communication performance at a specific location,

the range of the vehicles is critical. In case that the vehicles navigate in close proximity,

then the communication performance is expected be high. On the contrary, in case that the

vehicles have large range, then the communication signal will be degraded and corrupted by

noise. Therefore, we want to estimate the communication performance at a specific location

for a given range.

Cokriging is the multivariate kriging that augments the estimation process with the covari-

ances and cross-covariances of the variables involved in the process [129]. The key idea

underlying this work is to use the range of the vehicles as a secondary variable in cokrig-

ing in order to improve the SNR estimation. Thus, we incorporate two variables: i) the

communication performance as the primary variable and ii) the range of the vehicles as the

secondary variable. The ordinary cokriging estimator for two variables yields,

Ẑ(x0) =

Nj∑
j=1

βj,1Z1(xj) +

Nl∑
l=1

βl,2Z2(xl)

= βᵀ
COK,1Z1(x) + βᵀ

COK,2Z2(x), (3.22)

where βCOK,1 = [β1,1, . . . , βNj ,1]ᵀ, βCOK,2 = [β1,2, . . . , βNl,2]ᵀ are the stacked vectors of the

unknown weights of two variables, Z1 ∈ RNj and Z2 ∈ RNl with Nl > Nj are the stacked

vectors of the measurements of the two variables at locations Xpr = {xj}
Nj

j=1 and Xsec =

{xl}Nl
l=1 respectively. The unbiasedness of the estimator for the primary variable 1ᵀβCOK,1 = 1

and for the secondary variable 1ᵀβCOK,2 = 0, relaxes the assumption of known global means.

Therefore, we implement cokriging with the measurements and not its residuals. Then, we

formulate the unconstrained minimization problem with two Lagrange multipliers to account

for the unbiasedness constraints λCOK,1, λCOK,2. The solution to the minimization problem
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results in the system of linear equations,

βCOK = Γ−1
COKγCOK, (3.23)

where βCOK = [βᵀ
COK,1 β

ᵀ
COK,2 λCOK,1 λCOK,2]ᵀ ∈ RNj+Nl+2 is the unknown vector we seek

to obtain. The non-singular matrix ΓCOK ∈ R(Nj+Nl+2)×(Nj+Nl+2) captures the measurement

redundancy and has the form of,

ΓCOK =



Γ1 Γ12 1 0

Γ21 Γ2 0 1

1ᵀ 0ᵀ 0 0

0ᵀ 1ᵀ 0 0


. (3.24)

The vector γCOK ∈ R(Nj+Nl+2) considers the closeness of the measurements to the location

of interest and leads to,

γCOK =



γ0,1

γ0,12

1

0


. (3.25)

In general, the practical challenges with cokriging are: i) the modeling of all covariances and

cross-covariances, ii) all covariances and cross covariances jointly need to be positive definite,

and iii) the solution generates very large linear systems, i.e. (Nj + Nl + 2)-equations. For

these reasons, we employ the multicollocated cokriging which accounts for: i) all primary

variable measurements, ii) all secondary variable measurements at the locations of the pri-

mary variable measurements, and iii) the secondary variable measurement at the location of

interest, as shown in Fig. 3.2. The orphan secondary variable measurements Xorp = Xpr\Xsec,
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Figure 3.2: The multicollocated setup. The primary variable measurements Z1(x) are shown
in blue x-marks, the collocated secondary variable measurements Z2(x) are depicted with red
solid circles, the secondary variable measurement at the location of interest Z2(x0) is shown
in red dash-dotted line, and the location of interest x0 is presented with a green rectangular.
The dashed red circle represent the orphan secondary variable measurements Xorp that are
not used in the multicollocated cokriging.

i.e. not collocated with primary variable measurements, are not used in this framework. The

multicollocated cokriging model (or Markov Model 2) has been proven to be necessary and

sufficient for cokriging in the stationary case [58, 106]. Next, we introduce the Markov

screening and the Bayesian updating assumptions.

Assumption 3.2 (Markov Screening). The primary variable Z1 at any location x1 depends

conditionally only on the secondary variable Z2 at location x1, screening out the influence of

the secondary variable Z2 at any other location x2, which yields,

E[Z1(x1) | Z2(x1), Z2(x2)] = E[Z1(x1) | Z2(x1)]. (3.26)

Assumption 3.3 (Bayesian Updating). The primary and the secondary variables are lin-

early related through the correlation coefficient ρ12(0) at any location, which yields,

E[Z1(x) | Z2(x)] = ρ12(0)Z2(x). (3.27)
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From Assumption 3.2 and Assumption 3.3 the cross-correlogram takes the form,

ρ12(h) = ρ12(0)ρ2(h), (3.28)

which in terms of covariogram yields,

γ12(h) = pγ2(h), (3.29)

where p = ρ12(0)σ1/σ2 is the slope of the linear regression with σ1, σ2 the standard deviations

of the primary and secondary variables respectively. Note that if the measurements are

normalized with respect to the variance, then σ1 = σ2 = 1 and subsequently p = ρ12. Next,

we consider a regression model of the primary variable on the secondary variable in the form,

Z1(x) = pZ2(x) +R(x), (3.30)

where R(x) is the orthogonal residual which can also be considered as R(x) = Z1(x)−pZ2(x).

Note that since Z1(x) and Z2(x) are Gaussian, R(x) is also Gaussian.

Assumption 3.4 (Residual Independence). The residual R(x) is an independent random

function of the secondary variable at any location, which yields,

Cov(R(x), Z2(x)) = 0. (3.31)

Due to Proposition 3.4, the linear regression (3.30) maintains the homoscedasticity properties

of kriging, i.e. the variance of the primary variable can be computed at locations of interest,

without actual measurement of the primary variable at this location.

The orthogonal residual can be computed with the ordinary kriging as discussed in Subsec-



3.1. Comparison Kriging and Cokriging 27

tion 3.1.3 with a linear unbiased estimator in the form,

R̂(x0) = βᵀ
RR(x), (3.32)

where βR are the residual corresponding weights of the ordinary kriging. Note that the

domain of measurements for the ordinary kriging of the orthogonal residual, does not include

the location of interest Dx = Xpr ∪ Xsec 63 x0. Then, we use the residual variogram function

γR to construct the covariance of the primary variable as,

γ1(h) = p2γ2(h) + γR(h). (3.33)

The rest elements of the non-singular matrix ΓMCOK result from (3.29) and the experimental

variogram of the secondary variable. The multicollocated ordinary cokriging estimator for

two variables yields,

Ẑ1(x0) = pZ2(x0) + R̂(x0)

=

Nj∑
j=1

βR,jZ1,j + p
(
Z2(x0)−

Nl−1∑
l=1

βR,lZ2,l

)
. (3.34)

where Z2(x0) is the measurement of the secondary variable measurement at the location of

interest and Nj = |Dx|. The corresponding variance yields,

σ2
MCOK(Z1(x0)) = VarMCOK[Z1(x0)] = E[R̂(x0)−R(x0)]. (3.35)

Remark 3.5. The multicollocated cokriging estimation (3.34) does not require the cross-

covariance function and also results in a significantly smaller system of equations. To this

end, we just need to compute the ordinary kriging of the residual R that comprises of
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(Nj + 1)-equations and retain the same properties of solving the ordinary cokriging that

consists of (Nj +Nl + 2)-equations, with Nl > Nj. This constitutes a significant reduction

in the computational effort of the proposed technique.

Remark 3.6. In Proposition 3.3 we considered a linear relation of the primary with the

secondary variable. However, according to (3.6) the communication performance is linear-

logarithmically related with the range of the vehicles. Therefore, we expect smoother esti-

mation results than the ground truth values.

3.1.4 Spatial Estimation Framework

In this section, we discuss the structure of the proposed communication performance estima-

tion with multicollocated cokriging and the computational complexity of both kriging and

cokriging.

Estimation Structure

The multicollocated ordinary cokriging is shown in Fig. 3.3. The structure consists of collect-

ing the measurements; normalizing the measurements; computing the correlation factor and

the orthogonal residual; kriging the residual; and estimating the communication performance

at the unknown location.

We start by collecting measurements of communication performance (SNR) and the range

of the vehicles. SNR is the primary variable Z1 and range the secondary Z2. Then, we

normalize the measurements with respect to the variance,

Z̃δ,j =
Zδ,j − µδ√

Var[Zδ]
, (3.36)
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Figure 3.3: The structure of the communication performance estimator with multicollocated
ordinary cokriging. The sequence operates clockwise, starting from the measurements. The
structure incorporates six stages: 1) collection of measurements, 2) normalization of mea-
surements, 3) computation of the correlation coefficient and the orthogonal residual, 4) ordi-
nary kriging of the residual, and 5) the unknown location to 6) estimate the communication
performance.

where we assume there are j = 1, . . . , Nj measurements. Primary measurements correspond

to δ = 1, secondary measurements correspond to δ = 2, and µδ = (1/Nj)
∑Nj

j=1 Zδ,j is the

mean of the corresponding δ variable. This normalization results in a zero mean µ̃δ = 0

and a variance Var[Z̃δ] = 1 for both primary and secondary variable measurements. Thus,

the slope of the linear regression in (3.29) matches the correlation coefficient, p = ρ12(0).

Next, we compute the correlation coefficient ρ12(0) and the residual R as in (3.30). Then,

we perform ordinary kriging to the residual to obtain the residual weights βR as in (3.19).

An important aspect of kriging is the variogram which in our case is modeled as a spherical

function,

γ(h) =


C1(0)

(
3
2
h
α
− 1

2

(
h
α

)3
)

, h < α

C1(0) , h ≥ α,

(3.37)
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where α is the kriging range and h the distance of the measurements. The kriging range

represents the maximum distance of correlation between measurements. Thus, beyond the

kriging range the measurements are considered uncorrelated. Finally, we employ the orthog-

onal residual weights, the normalized SNR measurements, the normalized range measure-

ments, and the correlation coefficient to estimate the SNR at the location of interest and its

variance as in (3.34), (3.35) respectively.

Remark 3.7. The kriging range, the sill, and the nugget are user defined in our simulation

environment, yet in practice should be experimentally identified. A robust methodology to

fit variogram models with experimental data is discussed in [26].

Computational Complexity

We discussed that ordinary cokriging can be reduced to ordinary kriging of the orthogonal

residual in a multicollocated setup. Thus, instead of O(Nj + Nl)
3 computations for Γ−1

of ordinary cokriging (3.24), the proposed methodology requires O(Nj)
3 computations of

ordinary kriging (3.17), where usually Nl > Nj. Even though the multicollocated cokriging

reduces the computational effort, it still remains intractable for online implementation with

large number of measurements. To alleviate the online implementation, acceleration methods

[114] may be used.

3.1.5 Simulations and Results

In this section, we provide simulations to compare the efficacy of the ordinary kriging to

the proposed cokriging technique. We also present the communication performance between

vehicles in a time-varying underwater environment.
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Simulation Environment

The simulation environment captures the time-varying water conditions of the ambient noise

with a 2D Gaussian. This is a common practice for the ambient noise, yet the mean of the

Gaussian should not be zero [116]. Thus, the mean follows µamb(x) = 0.3+1.2e−‖x−[0.5 1]ᵀ‖2 +

e−‖x−[1.5 1.5]ᵀ‖2 . We evaluated the mean over a grid of points in the space S := X × Y,

where X = {−2,−1.95, . . . , 4} and Y = {−2,−1.95, . . . , 3.95, 4}. The spatial environmental

conditions as well as the global path of the vehicles are shown in Fig. 3.4. Based on the Wenz

curves [132], typical ambient noise ranges NLamb ∈ [25, 45] dB, for signal frequency f = 25

kHz. The resulting mean for the space of interest outputs values µamb(x) ∈ [0.50, 2.12].

Thus, we assign ambient noise values to every cell, following a linear relation. For example,

a cell with mean value µamb(x) = 1.00 results in ambient noise level,

NLamb(x) = NLmax
amb − NLmin

amb

(µamb(x)− µmin
amb

µmax
amb − µmin

amb

)
= 45− 25

(1.00− 0.50

2.12− 0.50

)
= 37.28 dB.

The Wenz curves indicate ambient noise NLamb = 25 dB for wind speed of less then 1 knot

and NLamb = 45 dB for wind speed of 28 to 33 knots. Therefore, the environment shown

in Subfig. 3.4(a) is an extreme environment with high variations in wind speed that corrupt

the SNR. The source level is chosen to be SL = 181 dB.

For the simulated measurements we need to evaluate the communication performance in the

intermediate locations of the two vehicles. Thus, we introduce the evaluation path which

is the straight line that connects the transmitting vehicle and the receiving vehicle. Next,

we search for grid cells which accommodate the evaluation path and compute the average

mean to assign an SNR value. Let the accommodating grid cells of the evaluation path to

be Sx = {µamb(x1), . . . , µamb(xM)} ⊂ S. Then, the resulting ambient noise is computed as
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Figure 3.4: The environmental conditions and the global path of the vehicles. (a) The
spatial environmental conditions are modeled with a 2D Gaussian where higher mean values
represent more corrupted SNR with noise. (b) The path of the first vehicle is shown with a
black solid line and of the second vehicle with a blue solid line.

NLamb(x) = (1/M)
∑M

m=1 µamb(xm). To this end, we not only consider the environmental

conditions at the location of the transmitting xt and the receiving vehicle xr, but also we

acknowledge the environmental conditions of the path that the SNR propagates.

Communication Performance Estimation

We perform two sets of simulations focusing on the estimation of the communication perfor-

mance with and without partial information of the environment with high ambient noise. We

assume that the vehicles can acquire range measurements during all communication events.

In Fig. 3.5, we present the first set of simulations comprising of two scenarios with two

vehicles following different paths. In the upper row of Fig. 3.5 the x–marks (black for

vehicle 1 and red for vehicle 2) represent the 150 locations of measurements and the squares

(gray for vehicle 1 and magenta for vehicle 2) the 283 unknown locations of interest. Note

that in both cases we did not collect measurements from the area with increased ambient

noise (depicted in the background with yellow). For the simulation shown in Fig. 3.5(a)

we seek to assess communication performance when in the presence of ambient noise. That

is significantly different from the measured communication performance, i.e. without any
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Figure 3.5: The first set of simulations with the vehicles paths and their corresponding
measurements. (a) The vehicles follow similar zig-zag paths at the same direction and they
collect 150 measurements right before the high-varying environment. (b) The vehicles follow
opposite zig-zag paths at the same direction and they collect 150 measurements.

knowledge of the high variability of the environment. The corresponding SNR and range

measurements are provided in the bottom row of Fig. 3.5. In Fig. 3.5(a), the vehicles follow

similar zig-zag paths, and they are always facing in direction. As a result, the measurements

are almost identical at all locations. The correlation coefficient of the normalized SNR

and range measurements yields ρ12(0) = p = −0.098. In Fig. 3.5(b), the vehicles follow

opposite zig-zag paths at different directions and the correlation coefficient is computed

ρ12(0) = p = −0.993. Therefore, not only the measurements are highly varying, but also

produce different amplitude. Since, in both cases the measurements were collected at a

similar environment, the communication performance measurements are only affected by

variations in range.
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Figure 3.6: The second set of simulations with the vehicles paths and their corresponding
measurements. (a) The vehicles follow similar zig-zag paths at the same direction and they
collect 250 measurements including half of the the high-varying environment. (b) The vehi-
cles follow opposite zig-zag paths at the same direction and they collect 250 measurements.

In Fig. 3.8, we show the absolute error of the SNR estimation with the ground truth of the

ordinary kriging (OK) in red, and the multicollocated ordinary cokriging (MCOK) in blue.

The shaded areas represent the variation of the estimation and the dashed lines the mean of

the absolute error. In the first case, OK and MCOK have identical estimation outcomes, yet

for large indices which corresponding to being far from locations where measurements were

acquired, the MCOK provides more reliable estimates. Also, the MCOK mean is slightly

lower, 4.35% from the OK mean. The higher error values of both techniques from the first

estimate to approximately the 160-th estimate indicates the high ambient noise in the center

of the environment. In the second case, the OK estimates are equally accurate at points

of interest very close to the last measurements, yet the error increases much faster for the
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Figure 3.7: The absolute error values with their variance for the first set of simulations.
The mean of the average error of the multicollocated cokriging and the ordinary kriging are
illustrated in blue and red dashed lines respectively.

OK estimates at distant locations of interest to the acquired measurements. Thus, MCOK

outperforms in long-term estimates and its mean is significantly lower, 66.47% from the OK

mean.

The second set of simulations is shown in Fig. 3.6. We consider two cases following identical

paths with the previous set of simulations, but with more measurements to cover half of the

high ambient noise area, appearing in the center of the environment. Our objective is to

provide more measurements to both methodologies with information on the high ambient

noise area of the environment. More specifically, we gather 250 measurements as illustrated

in the upper row of Fig. 3.6 with black and red x-marks corresponding to vehicle 1 and

vehicle 2 respectively. The unknown locations of interests are represented by gray and

magenta squares corresponding to vehicle 1 and vehicle 2. The correlation coefficients result

in ρ12(0) = p = −0.064 and ρ12(0) = p = −0.957 for the first and the second case respectively.

Surprisingly, the second set of simulations provides insufficient results for both techniques

with radially unbounded errors, even with more measurements, as presented in Fig. 3.8. In

Fig. 3.8(a) the OK and MCOK provide sufficient estimates for locations of interest close to the

last measurements, yet for distant locations of interest the estimation error is unsatisfactory.
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Figure 3.8: The absolute error values with their variance for the second set of simulations.
Both approaches provide poor performance, yet the multicollocated cokriging outperforms
the ordinary kriging estimates.

The MCOK produces lower mean error, 18.71% from the OK mean. In Fig. 3.8(b) both

techniques show poor performance with high error measurements. Although, both techniques

have unsatisfactory performance, the MCOK produces significantly lower mean in the order

of 32.92% from the OK mean. The high absolute errors appear because ordinary kriging

assumes constant means which consequently lead to locally biased kriging estimates.

In all cases the MCOK produces lower mean errors, revealing that the effect of the range

is crucial to obtain better estimation results. Although in long-term estimates the MCOK

provides more accurate results, in very close proximity to the measurements the OK provides

similar results. In the second set of simulations both techniques demonstrate poor perfor-

mance. This is occurred due to the nature of ordinary kriging that assumes a stationary

constant mean, as discussed in (3.14). In practice, the spatial global mean is a conservative

assumption, as usually the mean follows a trend over the spatial domain. An alternative

kriging method with a non-stationary mean is the universal kriging, that considers basis

functions to capture the underlying trend in the mean value.
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3.1.6 Conclusion

Our work illustrates deficiencies in kriging for generating communication performance esti-

mates, arising mainly from the structure of the assumptions. Moreover, our work shows that

using range as a secondary variable in a cokriging formulation of the problem, yields lower

absolute errors and performs better in long-term estimates. More specifically, we compare

the proposed methodology with ordinary kriging and we show that the proposed framework

provides better communication performance estimates with lower absolute errors in all simu-

lation scenarios. Only in very short-term estimates and in certain cases the ordinary kriging

computes similar absolute errors. However, at distant locations of interest from the acquired

measurements the proposed methodology provides better results. The simulations reveal

that for realistic applications the assumption of stationary global mean of both techniques

is rather conservative and develops unacceptable absolute errors.

In the following section, we consider a realistic underwater acoustic propagation model to

design basis functions for the mean estimation. In addition, a rigorous estimation technique

for the covariance matrix is presented.

3.2 Learning of Communication Performance

3.2.1 Problem Formulation

In this section we discuss the foundations of random fields, describe the problem, and present

the UWA communication performance model. In addition, we formulate the problem as a

Gaussian random field.
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Foundations

The notation here is standard. The set of real numbers is denoted R, the set of all positive

real numbers R>0, and the set of all non-negative real numbers R≥0. The transpose and

inverse operators are denoted (·)ᵀ and (·)−1 respectively. The expectation, the variance

and the covariance operators are represented by E[·], Var[·], and Cov(·, ·) respectively. The

notation y ∼ N (µ,Σ) denotes y that is drawn from a Gaussian distribution with a vector of

means µ and covariance matrix Σ. We denote by In the identity matrix of n×n dimension.

The vector of n zeros is represented as 0n and the matrix of n×m zeros as 0n×m. The hat ŷ

denotes the estimated value of y and the superscript in parenthesis ŷ(n) the n-th iteration of

an estimation process. The cardinality of the set K is denoted card(K), the absolute values

is denoted |·|, and ‖·‖ denotes the L2 norm.

Next, we introduce basic notions of random fields. For a more in-depth discussion the reader

may refer in [1, 27, 85]. A random field is a stochastic process indexed in the Euclidean

space. Let Z(x) be a random field 1 with covariance function Cov(Z(x), Z(x + h)) for all x,

x + h ∈ Rm, where x denotes the spatial coordinates and h is the separation vector between

two locations, and m is the dimension of the coordinates, e.g. m = 2 for planar coordinates.

The variogram is a statistical measure of spatial autocorrelation that is defined by,

2γ(h) := E

[(
Z(x + h)− Z(x)

)2
]
, (3.38)

where γ(h) : Rm → R≥0 is a conditionally negative definite function [129] termed as semi-

variogram. The condition ensures that the variance of the random field Z(x) is positive.

Lemma 3.8. A semivariogram function γ : Rm → R is a conditionally negative definite

1Throughout the dissertation, we use the “random field,” “random process,” and “random function”
interchangeably.
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function if and only if exp{−ζγ} is positive definite for all ζ > 0.

Proof. The proof follows from [9, page 74].

A random field is intrinsically stationary if both E[Z(x + h) − Z(x)] = 0 and Var[Z(x +

h)− Z(x)] = 2γ(h) for all x, x + h ∈ Rm are satisfied. An intrinsically stationary random

field with constant mean E[Z(x)] = µ and Cov[Z(x), Z(x+h)] = C(h) is called second-order

stationary. Note that the covariance function C(·) is a conditionally positive definite function

and stationary—depending only on the separation vector h and not on spatial coordinates

x. Second-order stationarity implies intrinsically stationarity and the Gaussian assumption,

yet the converse is not always true.

For a second-order stationary random field the correlation function is defined by ρ(h) :=

C(h)/C(0), where ρ(h) ∈ [−1, 1] with |C(h)|≤ C(0) = Var[Z(x)] and C(0) = σ2 + τ 2 is the

sill of the semivariogram with σ2 the partial sill and τ 2 the nugget effect. The partial sill

σ2 is a semivariogram value where no correlation of data further exists and the nugget τ 2

represents the variance of the data measurement error at a given location.

Given a covariance function C(h) the variogram (3.38) yields,

2γ(h) = Var[Z(x + h)− Z(x)]

= Var[Z(x + h)] + Var[Z(x)]− 2Cov[Z(x + h), Z(x)]

= C(0m) + C(0m)− 2C(h)

= 2(C(0m)− C(h)). (3.39)

We cannot always construct the covariance from the variogram, as the variogram may be

unbounded. Thus, let us assume that the random field is ergodic. That is as ‖h‖→ ∞

then C(h)→ 0. In other words, when the distance between two measurements is very large
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‖h‖→ ∞, there is no spatial correlation C(h)→ 0. The limit of (3.39) as ‖h‖→ ∞ yields,

C(h) = γ(∞)− γ(h), (3.40)

where γ(∞) = suph γ(h) <∞ is non-negative.

When the variogram depends only on the displacement vector norm, i.e. 2γ(h) = 2γ(‖h‖),

then the variogram is isotropic, otherwise it is anisotropic. The ensuing discussion assumes

second-order stationarity and isotropic variogram after detrending.

Problem Formulation

We consider the problem of inter-vehicle UWA communication of two vehicles. In Fig. 3.1,

we illustrate two cases of UWA communication between two vehicles at range r, with xt

the position of the transmitting vehicle and xr the position of the receiving vehicle. The

first case is shown in Fig. 3.1-(a) where the success of the communication event depends

solely on a maximum communication range Q. This means that if the vehicle range exceeds

the communication range r > Q, then the communication cannot be accomplished. In

practice, this binary approach is unrealistic, as multiple spatially-dependent factors may

affect the communication of two vehicles, such as scattering, motion-induced Doppler effect,

background noise and change of environmental conditions. To this end, we propose multi-

dimensional communication performance maps for various ranges as illustrated in Fig. 3.1-

(b). More specifically, we assess the communication performance of an UWA network of

vehicles for specific ranges by modeling the problem as a spatial Gaussian random field

with a spatially varying mean. Note that the Gaussian model is a reasonable assumption,

as it has been validated with multiple experimental data [100]. For the evaluation of the

communication performance we employ signal-to-noise-ratio (SNR) measurements.
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Let the SNR measurements be modeled by,

Y (x; v) = µ(x; v) + Z(x; v) + ε(x), (3.41)

where Y (x; v) ∈ Rn is the measurement vector describing a non-stationary random field at

spatial coordinates x ∈ R2, µ(x; v) is the deterministic mean that represents the large-scale

variation, and ε ∼ N (0, τ 2In) is an independent and identical distributed (iid) zero-mean

Gaussian random field capturing micro-scale variation of the sensor. The mean µ is the

spatial trend that represents large-scale variability, the second-order stationary random field

Z captures medium-scale variability, and the white noise ε is the small-scale variation of the

sensor. The surrogate variable is denoted v and is used to represent model dependence, not

explicitly accounted for spatial coordinates x. In the Section 3.2.1, we identify the surrogate

variable by using an UWA propagation channel model.

Assumption 3.9. The deterministic mean is decomposed by a linear combination of un-

known parameters expressed by µ(x; v) = X(x; v)β, where X(x; v) ∈ Rn×p represents the

matrix of known basis functions and β ∈ Rp the vector of the unknown regressor coefficients.

Since the measurements Y are non-stationary, we detrend the measurements, i.e. remove the

mean Y − µ, to obtain a stationary random field. Next, with the detrended measurements

the covariance matrix Σ is estimated with an iterative scheme. After estimating the covari-

ance matrix Σ, we employ the original measurements Y to perform predictions. A critical

component for detrending is the basis functions X, thus we are inspired by the propagation

model to design X and accurately detrend the measurements.

Remark 3.10. The major difference between kriging and Gaussian processes (GPs) is that

the former computes the covariance function C through the semivariogram function γ (3.40).

In a second-order spatial random field, this intermediate step provides better estimates for
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three reasons: i) estimation bias [38, pp. 313-320]; ii) boundedness properties [131, pp. 79–

84]; and iii) trend contamination [27, pp. 70–73]. Since this paper regards a second-order

spatial random field Z with trend µ, we find kriging more suitable over GPs.

Communication Performance

For communication performance, we use an UWA propagation channel model and its sta-

tistical characterization, described in [100, 115, 116]. The statistical model comprises the

physical model of the UWA communication channel and random vehicle perturbations which

affect the local SNR. Large-scale variability of SNR occurs due to large-scale spatial varia-

tions in environmental conditions, evoking local error variations and thus a non-stationary

random field.

To approximate the communication performance between two agents we use the SNR. In

principle, the higher the SNR, the more likely is to detect the signal. In this work we consider

fixed signal power, frequency f , and bandwidth B. Let the power of the transmitted signal

be constant, then the SNR yields,

SNR =
PTG

PN

, (3.42)

where PT denotes the power of the transmitted signal, G is the channel gain and PN is

the power of noise. The gain G has been shown to follow a log-normal distribution logG ∼

N (Ḡ, σ2
G), where Ḡ represents the mean of the log channel gain and σ2

G its variance [18, 100].

On the decibel scale, the source level takes the form of Sl(f) = 10 logPT and the noise level

yields NL(f, ω) = 10 logPN [116]. If we neglect variations of water pressure with depth,

then the gain on the decibel scale g = 10 logG is a Gaussian distribution, expressed as,

g(r) = ḡ(r) + ν, (3.43)
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where ν ∼ N (0, σ2
ν) a zero-mean Gaussian random field. The mean follows,

ḡ(r) = g0 − k010 log
r

rref

, (3.44)

where g0 is a constant gain, rref is reference range (e.g., 1 m in our case), and k0 is the path

loss exponent, provided by taking ensemble averages [99]. Ensemble averages is a method to

represent the expected value of a waveform.

Note that (3.41) has identical structure with the model of the UWA propagation channel

model (3.43). Thus, using (3.44) we choose v to be the range between transmitting and

receiving node, i.e. v = r, and the SNR measurements (3.41) are expressed,

Y (x; r) = X(x; r)β + Z(x; r) + ε(x). (3.45)

The specific goal of our UWA performance prediction application is summarized in Prob-

lem 1.

Problem 1. Predict the communication performance Ŷ and the corresponding variance

Var[Ŷ ] at unvisited locations x0, provided a set of communication performance measurements

Y at locations x and the vehicle range r.

3.2.2 Training of Gaussian Random Field

In this section, we formulate basis functions X and use least squares on the training data

Y (x; r) to estimate the unknown regressor coefficients β of the spatial trend µ(x; r). Then,

we remove the trend by subtracting the mean µ(x; r) from the measurements Y (x; r) to

retrieve a stationary random field. The detrended measurements Y −µ are used to estimate

the parameters of multiple variogram functions with a maximum likelihood-based method.
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Next, we select the most suitable covariance model, based on the Bayesian information

criterion. With the selected variogram model we construct the covariance matrix Σ and

use generalized least squares to improve the accuracy of the spatial trend estimator µ. The

method iterates until the parameters of the variogram function converge.

Spatial Trend Modeling

The random field in (3.45) is non-stationary due to the spatial trend. Thus, the original

measurements cannot be used to estimate the parameters of the variogram. To this end, we

seek basis functions X to model the spatial trend µ, detrend the measurements Y −µ, and

recover stationarity.

A precise model of the trend is important for spatial extrapolation, ideally arising from the

physics of the system [31]. The obvious choice for the elements of the basis function X is

to employ spatial coordinates as covariates. In spatial statistics, polynomial basis functions

of spatial coordinates, e.g., X(x) = [1, x, y, xy, x2, y2], are often employed [27]. However,

polynomial basis functions do not behave well for extrapolation, because they are radially

unbounded, i.e. as ‖x‖→ ∞ then X(x)→∞. To this end, Gaussian radial basis functions

(RBF) are widely used in various applications [120], as they provide suitable extrapolation

results. In addition, surrogate variables—arising from the physical model of the system—are

useful covariates to interpret the behavior of the spatial variation [31]. A Gaussian RBF is

described by,

Xl(x; cl, σ
2
R,l) = exp

(
−(x− cl)2

2σ2
R,l

)
, (3.46)

where cl is the center of each measurement, e.g., cl = 0 for zero mean measurement error

ε (3.45). The corresponding variance is denoted σ2
R,l, where in practice is a constant value

σ2
R,l = σ2

R for all l measurements. From (3.44), it is deduced that the range of the vehicles has
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a linear-log relationship to the mean. Hence, our proposed hybrid basis function combines

Gaussian RBF incorporating spatial coordinates (3.46) and linear-log range,

X(x; r) = [1, exp

(
−(x− cx)2

2σ2
x

)
, exp

(
−(y − cy)2

2σ2
y

)
, r, log r]. (3.47)

For data detrending, since the covariance function is unknown, the generalized least squares

(GLS) cannot be used. Thus, we initially estimate the unknown parameters using ordinary

least squares (OLS),

β̂
(1)

OLS = X(x; r)†Y (x; r), (3.48)

where X† = (XᵀX)−1Xᵀ, X† ∈ Rp×n is the Moore-Penroe pseudoinverse of X. The estimated

unknown parameters β̂
(1)

OLS are not the final estimated unknown regressor values. Instead, we

shall employ β̂
(1)

OLS to detrend the measurements and assess their behavior with an iterative

technique. The Gaussian residual random field (or detrended data) is expressed,

Ỹ (x; r) = Y (x; r)−X(x; r)β̂
(1)

OLS. (3.49)

Assumption 3.11. The random field of the underlying latent process is second-order sta-

tionary after detrending, i.e. Ỹ is second-order stationary.

Assumption 3.12. The variogram function is isotropic after detrending.

Experimental Semivariogram and Theoretical Models

In this section, we present three commonly used semivariograms and an optimization method

to estimate the initial parameters of the semivariogram function. The Matheron empirical

semivariogram [84] is used in the majority of the literature for the estimation of the unknown
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parameters,

γ̂(h) =
1

2 card(N(h))

∑
N(h)

|Ỹ (x + h)− Ỹ (h)|2,

where N(h) = {(o, p) | xo − xp = h} is the set of measurements at distance h and Ỹ is the

vector of the residual measurements (3.49). The main idea is to compute the experimental

semivariogram from the detrended data and then compare it to theoretical semivariogram

models. The Matheron empirical semivariogram is unbiased, yet it is highly affected by

outliers, due to the squared term. A robust estimator of the experimental semivariogram is

proposed in [28] as,

γ̂CH(h) =

(∑
N(h)|Ỹ (x+h)−Ỹ (h)|1/2

card(N(h))

)4

0.914 + 0.988
2 card(N(h))

+ 0.090
card(N(h))2

. (3.50)

The robustness relies on a transformation which ensures that the fourth root of the trans-

formed distribution produces relatively small skew. Note that we cannot interpolate the

experimental semivariogram to obtain a semivariogram, because the conditional negative

definitiveness property may be violated. Instead, we fit the experimental semivariogram to

theoretical models that ensure the desired properties of a semivariogram function.

We consider three potential theoretical semivariogram models which are conditional negative

definite. The spherical semivariogram is given by,

γs(h;θ) =


τ 2 + σ2, ‖h‖≥ α,

τ 2 + σ2

(
3‖h‖
2α
− 1

2

(
‖h‖
α

)3
)
, ‖h‖≤ α,

(3.51)

where the semivariogram parameter vector θ = [τ 2 σ2 α]ᵀ ∈ Θ contains the nugget, the

partial sill, and the semivariogram range with Θ = {θ ∈ R3 | τ 2 ≥ 0, σ2 ≥ 0, α ≥ 0} the

parameter space. Note that the semivariogram and the covariance parameters are identical.
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We also consider the exponential semivariogram function,

γe(h;θ) = τ 2 + σ2
(

1− exp
{
− ‖h‖

α

})
. (3.52)

Finally, the Matérn semivariogram function [83],

γm(h;θ) = τ 2 + σ2

(
1− (‖h‖/α)κ

2κ−1Γ(κ)
Kκ

(‖h‖
α

))
,

where Γ(·) is the gamma function, Kκ is the Bessel function of order κ, and κ is the smoothing

parameter. Note that the Matérn semivariogram function is a general model, thus we fix the

smoothing parameter at κ = 3/2 to obtain a mixed polynomial-exponential form,

γpe(h;θ) = τ 2 + σ2
(

1−
(

1 +

√
3‖h‖
α

)
exp

{
−
√

3‖h‖
α

})
. (3.53)

We will employ all semivariogram functions C = {γs, γe, γpe} and evaluate their performance.

The next step is to formulate an optimization problem to fit the models C and derive the

corresponding parameter vector θ. We utilize a weighted least squares (WLS) approach [26]

which yields,

θ̂
(0)

CWLS = arg min
θ∈Θ

Ng∑
g=1

card(N(h(g)))

(
γ̂CH(h(g))

γ(h(g);θ)
− 1

)2

, (3.54)

where Ng is the total number of the separation vectors hg.

The parameter estimation (3.54) relies on the residual measurements Ỹ (3.49) which in-

corporates measurement bias. Thus, the estimation is sensitive to the bias of the mean

value.



48 Chapter 3. Model-Based Kriging

Unbiased Semivariogram Model Fitting

In this section, we seek an unbiased estimator for the parameter vector θ and a strategy to

narrow down the parameter space Θ. Maximum likelihood (ML) estimation is used widely

in statistics. In spatial statistics, due to high correlation of the observations, ML is known to

generate unfavorable outcomes [65]. In addition, when the observations are limited, then the

bias of the ML estimation is significant. An alternative bias-free approach is the restricted

maximum likelihood (REML) estimation [48, 144], which makes use of error contrasts to

remove the mean dependence from the estimation of variance.

An alternative bias-free approach is the restricted maximum likelihood (REML) estimation

[48, 144], which makes use of error contrasts to remove the mean dependence from the

variance estimates. The main idea is to transform the residual measurements Ỹ from (3.49)

with a matrix A ∈ Rn×(n−p) such that, AᵀX = 0 and E[AᵀỸ ] = 0, where X is the basis

function (3.47). In other words, each column vector of matrix A = [a1 a2 . . . a(n−p)] is

orthogonal to all columns of X. Let us define the error contrast, W := AᵀỸ to obtain

W ∼ N (0,AᵀΣ(θ)A), which obviously does not depend on the estimated mean parameters

β̂OLS. Although A is not unique, a matrix that satisfies the properties is the orthogonal

projection onto the kernel of X, that is, A = In − X(XᵀX)−1Xᵀ. We note that A does

not depend on the estimated mean parameters β̂OLS. Therefore, the log-restricted likelihood

function is defined,

L(θ|W ) = −1

2

(
(n− p) log(2π) + log|XᵀX|− log|Σ(θ)|− log|XᵀΣ(θ)X|−Ỹ ᵀΠ(θ)Ỹ

)
,

(3.55)

where Π(θ) = Σ(θ)−1 − Σ(θ)−1X(XᵀΣ(θ)−1X)−1XᵀΣ(θ)−1, n is the measurement vector

size, and p is the rank of X. Next, the log-restricted likelihood (3.55) is maximized with
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respect to θ ∈ Θ to obtain the estimated parameter vector θ̂. To reduce the search of the

parameter space Θ, we use the parameter estimate θ̂
(0)

CWLS (3.54) as a center value of the

initial set of parameters in the optimization scheme. So far we computed three covariance

parameter vectors θ̂ corresponding to three candidate models (3.51), (3.52), (3.53). A benefit

of likelihood-based approaches is that they can be combined with statistical model selection

tools [88].

Statistical Model Selection

The Bayesian information criterion (BIC) is a statistical model selection methodology, in-

troduced by Schwarz in [109]. The BIC is given by,

BIC(Mk) = −2 lnL(θ̂k | Ỹ ,Mk) + pk lnn, (3.56)

where M = {Mk = Σ(θ̂k) | k = 1, . . . , K} is the set of candidate models, θ̂k denotes the

REML estimates of θk, pk = 3 is the dimension of the parameter space Θ, L(θ̂k | Ỹ ,Mk)

represents the marginal likelihood corresponding to the density function p(Ỹ ,Mk | θ̂k), and

n is the measurement size of the vector Ỹ . In our case K = 3 corresponds to three different

candidate semivariogram functions (3.51), (3.52), and (3.53). In principle, the semivariogram

function with the smallest BIC represents the true model, assuming that the real model is

listed among the candidate covariance models. One of the major advantages of the BIC

is that it satisfies the property of consistency. That is even if the true model is not listed

among the candidate models, the BIC selects the most parsimonious model closest to the

true model, by computing the marginal likelihood with Laplace approximation.

Since the BIC (3.56) is computed in the log-scale, its evaluation may be ambiguous. Thus,
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we employ the posterior probability of the BIC [89] which is approximated by,

P (Mk | Ỹ ) ≈
exp

(
− 1

2
∆k

)
∑K

k=1 exp
(
− 1

2
∆k

) , (3.57)

where ∆k = BIC(Mk) − BIC? denotes the BIC difference of a candidate model with the

minimum BIC candidate model BIC? = minMk∈M BIC(Mk). Essentially, P (Mk | Ỹ ) is a

probability mass function, that provides a probability of suitability for each model to the

real model.

Nested Semivariogram Model

So far we assumed that the variation of the underlying process is purely represented by either

a spherical (3.51), or an exponential (3.52), or a polynomial-exponential (3.53) variogram

model. However, in many cases, the spatial variability is more complex, and thus a com-

bination of semivariogram models interprets the latent process more precisely. The nested

[131] (or compositional [32]) semivariogram function is defined by,

γnest(h; θ̂s,k, θ̂e,k, θ̂pe,k) :=ξ1γs(h; θ̂s,k) + ξ2γe(h; θ̂e,k) + ξ3γpe(h; θ̂pe,k), (3.58)

where ξk ∈ (0, 1), and
∑K

k=1 ξk = 1.

Lemma 3.13. Any convex combination of semivariograms is a semivariogram.

Proof. Let γk be a semivariogram and γ−k = {γl}l 6=k a vector of semivariograms other than

γk. Since γ : R2 → R≥0 and ξk ∈ (0, 1), then γnest =
∑K

k=1 ξkγk > 0 for ‖h‖6= 0. Moreover,

exp{−ζγnest} is positive definite for all ζ > 0. Hence, from Proposition 3.8 any convex

combination of variograms γnest is a variogram.
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The nested semivariogram is similar in spirit to [32], yet the authors used directly the BIC.

Since the BIC is in the log-scale (3.56), it does not scale well with the nested semivariogram.

Alternatively, we employ the posterior probabilities of BIC ξk = P (Mk | Ỹ ) that satisfy

ξk ∈ (0, 1) and
∑K

k=1 ξk = 1.

Iterative Parameter Training

For the iterative parameter training we utilize the estimated covariance matrix Σ(θ̂
(1)

).

The covariance matrix allows the implementation of the generalized least squares (GLS) to

improve the estimation of the mean. The GLS mean estimate is described by,

β̂
(2)

GLS =

(
XᵀΣ

(
θ̂

(1)
)−1

X

)−1

XᵀΣ
(
θ̂

(1)
)−1

Y. (3.59)

Sequentially, the residual random measurements (3.49) yield,

Ỹ (x; r) = Y (x; r)−X(x; r)β̂
(2)

GLS. (3.60)

In addition, the GLS mean estimation facilitates a more accurate determination of the co-

variance function. To this end, we employ the detrended measurements (3.60) and iterate

the covariance training. The training is terminated when,

‖θ̂
(s)
− θ̂

(s−1)
‖≤ η (3.61)

where η ∈ R>0 is a small error threshold. At every iteration we expect lower BIC values

(3.56).Essentially, after the second iteration, the change on the mean and covariance estimate

is insignificant [131, pp. 196–200], [49, 66], and usually the training is terminated.
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3.2.3 Spatial Prediction

In this section, we describe universal kriging [27, 74, 129], a spatial prediction technique that

predicts values at locations of interest, based on measurements from other locations Y and

the estimated covariance matrix Σ. The main difference from the ordinary kriging lies in

the mean value of the random field, which is not assumed to be constant. More specifically,

provided measurements Y at locations x ∈ R2 the random field is described by (3.45). We

use a linear unbiased estimator,

Ŷ (x0; r) =
n∑
i=1

ωiY (xi; r) = ωᵀY (x; r), (3.62)

where x0 ∈ R2 is the location of interest, ω = [ω1 . . . ωn]ᵀ ∈ Rn are the weights we seek

to obtain, and Y (x; r) are the raw measurements, i.e. not the residuals. The unbiasedness

of the predictor is ensured by E[Ŷ (x0; r) − Y (x0; r)] = 0, that yields a system of equations

known as universality conditions, ωᵀX = Xᵀ
0 , where X0 ∈ Rp is the vector of known basis

functions at the location of interest. Next, we formulate the unconstrained minimization

problem of the prediction variance with multiple Lagrange multipliers λ ∈ Rp to include the

universality conditions. The solution is, ωUK = Γ−1
UKγUK, where ωUK = [ωᵀ λᵀ

UK]ᵀ ∈ Rn+p is

a stacked vector that contains the weights ω and the Lagrange multipliers λUK to minimize

the mean square prediction error. The non-singular matrix ΓUK ∈ R(n+p)×(n+p) captures the
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redundancy of measurements and is given by,

ΓUK =



γ(x1,x1) . . . γ(x1,xn) 1 X2(x1) . . . Xp(x1)

...
. . .

...
...

...
. . .

...

γ(xn,x1) . . . γ(xn,xn) 1 X2(xn) . . . Xp(xn)

1 . . . 1 0 0 . . . 0

X2(x1) . . . X2(xn) 0 0 . . . 0

...
. . .

...
...

...
. . .

...

Xp(x1) . . . Xp(xn) 0 0 . . . 0


:=

 Γ X

Xᵀ 0p×p

 ,

The semivariogram vector γUK ∈ R(n+p) considers the closeness of the measurements to the

location of interest x0,

γUK =
[
γ(x0,x1) . . . γ(x0,xn) 1 X2(x0) . . . Xp(x0)

]ᵀ
:=

γ0

X0

 . (3.63)

The decoupled coefficients in terms of the covariance matrix yield,

ωᵀ =
(
c0 + X(XᵀΣ−1X)−1(X0 −XᵀΣ−1c0)

)ᵀ
Σ−1, (3.64)

with Lagrange multipliers,

λᵀ
UK = −(X0 −XᵀΣ−1c0)ᵀ(XᵀΣ−1X)−1. (3.65)
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Hence, the predictive distribution of UK with a covariance matrix is,

Ŷ | Y,x, r ∼ N
(

[c0Σ−1 + (X0 − c0Σ
−1X)(XᵀΣ−1X)−1XᵀΣ−1]Y,

C(0m)− c0Σ
−1cᵀ

0 + (X0 − c0Σ
−1X)(XᵀΣ−1X)−1(X0 − c0Σ

−1X)ᵀ
)

(3.66)

3.2.4 Model-Based Learning Framework

In this section, we discuss the structure and the algorithm of the prediction technique.

Learning Structure

The two-step process is depicted in Fig. 3.9. We start by collecting measurements of com-

munication performance (SNR) along with the vehicle range. Given those measurements

we seek to predict the communication performance at unvisited locations. The first step is

the training of the Gaussian random field to obtain a covariance matrix, while the second is

spatial prediction at unvisited locations with universal kriging. The objective of the first step

is to determine the most suitable covariance function and its parameters characterizing the

underlying latent process. The block of the covariance matrix is depicted in light red. The

goal of the second step is to predict the SNR at unvisited locations and its corresponding

variance, where their blocks are depicted in light red accordingly.

The training step comprises three modules: i) the data detrending; ii) the parameter es-

timation; and iii) the iterative training. The data detrending includes the hybrid basis

function formulation (3.47) and the OLS computation (3.48). Next, the detrended measure-

ments are used to compute the candidate semivariogram functions (3.51), (3.52), (3.53). The

semivariograms are provided to the estimation module which is also a multistage process.

The estimation module first computes the covariance parameters to be used as initial con-
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Figure 3.9: The two-step learning process. The first step is the training of the Gaussian
random field that yields a covariance matrix and the second step the spatial prediction of
the communication performance.

ditions, by employing the Cressie and Hawkins robust experimental semivariogram (3.50)

and a weighted least squares estimation with Cressie weights (3.54). The next stage is the

REML estimation that optimizes the objective likelihood function (3.55) and results in three

bias-free covariance parameter vectors. The last stage of the estimation module considers

the selection of the most suitable covariance model among the three candidates with the

posterior BIC (3.57). Whenever the posterior probability of BIC indicates suitability of less

than a probability threshold, we compute a nested semivariogram. The last module describes

an iterative training for the selection of the covariance matrix. Since we have obtained a

covariance matrix, the mean estimates can be improved by computing the GLS (3.59). Sub-

sequently, we recompute the residual random function and run the estimation module to

obtain a new covariance matrix. The training iterates until the parameters of the covariance

matrix converge (3.61). For the numerical experiments reported herein, convergence requires

no more than two iterations.

The second step is the spatial prediction. Given the measurements, the model-based basis
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functions, and the covariance matrix from the previous step we use the location of interest to

solve the universal kriging and obtain the kriging weights (3.64),(3.65). Finally, we predict

the SNR at the location of interest and corresponding SNR variance (3.66).

Algorithm

The main routine is presented in Algorithm 1. The initialConditions module assigns ini-

tial values to the semivariogram parameter vector θ̂
(0)

. More specifically, the partial sill σ2 is

assumed to be the variance of the residual measurements (3.49), the nugget effect τ 2 and the

semivariogram range α are selected according to the sensor sensitivity and characteristics re-

spectively. The initial covariance matrix estimate Σ(θ̂
(0)

) is set equal to the identity matrix.

Next, the algorithm proceeds to the iterative parameter estimation process. We consider

three semivariogram functions (3.51), (3.52), (3.53) at each iteration. The basis function

computes X according to (3.47). The GLS function implements the GLS (3.59) to estimate

the mean regressor parameters β̂
(s)

. Note that in the first iteration the initial covariance

matrix is the identity matrix, and hence the algorithm implements an OLS regression (3.48).

The function detrend is employed to compute the residual measurements (or detrended

data) Ỹ (s) by subtracting the estimated spatial trend from the measurements (3.49). With

the detrended data, the function CWLS computes initial values for the estimation of the semi-

variogram parameter vector θ̂
(s−1)

k by solving a WLS minimization problem (3.54). Next, the

REML module implements the REML (3.55) to estimate the semivariogram parameter vector

θ̂
(s)

k . The BIC function calculates the BIC (3.56) and the diffBIC computes the difference of

each candidate with the lowest BIC?. Then, the postBIC calculates the posterior BIC (3.57)

that assign probabilities of suitability for each candidate model with the underlying latent

process. When the highest probability of the posterior BIC falls below a threshold ϕ, the

nested function computes the covariance matrix with a nested semivariogram (3.58). The
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Algorithm 1 Learning of UWA Communication Performance
Input: Y , x, r, x0, n, p, pk, γ, ϕ η

Output: Ŷ , Var{Ŷ }

1: θ̂
(0)
← initialConditions(Y )

2: Σ(θ̂
(0)

)← In; k ← 0;
3: X← basis(x; r);
4: for s = 1 to S do . Start training

5: β̂
(s)
← GLS(Y,X,Σ(θ̂

(s−1)
));

6: Ỹ (s) ← detrend(Y,X, β̂
(s)

); . Non-stationarity
7: for each γ ∈ C do

8: θ̂
(s−1)

k ← CWLS(Ỹ , γ, θ̂
(s−1)

); . Robustness

9: θ̂
(s)

k ← REML(Ỹ ,X, n, p, γ, θ̂
(s−1)

k ); . Unbiasedness

10: Mk ← Σ(θ̂
(s)

k );

11: BICk ← BIC(Ỹ , n, pk, θ̂
(s)

k ,Mk);
12: k ← k + 1;
13: end for
14: BIC? ← minMk∈M{BIC(Mk)};
15: for k = 1 to K do
16: ∆k ← diffBIC(BICk,BIC?);
17: end for
18: for k = 1 to K do . Model selection
19: P (Mk | Ỹ )← postBIC(∆k);
20: end for
21: if maxMk∈M{P (Mk | Ỹ )} < ϕ then . Covariance

22: Σ(θ̂
(s)

)← nested(P (Mk | Ỹ ), θ̂
(s)

k );
23: else

24: Σ(θ̂
(s)

)← maxMk∈M{P (Mk | Ỹ )};
25: end if

26: if ‖θ̂
(s)
− θ̂

(s−1)
‖≤ η then . Iteration criterion

27: break;
28: end if
29: end for . End training

30: Ŷ ,Var[Ŷ ]← UK(Y,x, r,X,x0,Σ(θ̂
(s)

)); . Prediction

iterative training procedure is terminated when the semivariogram parameter estimation

converges to an η-neighborhood (3.61). Finally, we utilize the estimated covariance matrix

Σ(θ̂
(s)

) and the measurements to solve the universal kriging and obtain SNR prediction Ŷ

at the unvisited locations of interest x0 and its corresponding variance Var[Ŷ ].
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3.2.5 Computational Complexity

The time complexity of the training is O(n3) for computing the inverse and determinant of

the covariance matrix Σ. These computations are performed repeatedly in (3.55) to find the

hyperparameters θ that maximize the log-restricted likelihood. Next, we store the inverse

covariance Σ−1 and n measurements, which result in O(n2+mn) space complexity. For small

robots with limited RAM memory capacity, the space complexity may be more restrictive

than the time complexity. The prediction mean and variance (3.66) require O(n) and O(n2)

computations respectively.

3.2.6 Simulations and Experiments

In this section, we provide simulations and experiments to demonstrate the efficacy of the

proposed methodology.

Simulation Environment

The simulation environment is developed with a well-established, statistical UWA channel

model that incorporates 34 parameters and interprets multipath formation, motion-induced

Doppler, surface scattering, and large-scale variability of the channel geometry [100]. This

channel model has been exhaustively compared to experimental data from multiple under-

water missions, which varied in location, season, time duration, weather conditions, static

nodes, and moving AUVs.

The SNR measurements consist of three components as described in (3.42). The channel gain

(3.43) is computed for signal frequency f = 25 kHz, bandwidth B = 5 kHz, surface height

100 m, and vehicle depths z1 = 80 m and z2 = 50 m. The navigation depth corresponds
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Table 3.1: Training with Exponential Semivariogram

Cases Exponential Semivariogram Parameters

Training Validation
Bias

OK UK
Set Set σ2, α, τ2 σ2, α, τ2

150
519

−10 93.27, 17822, 0 60.59, 12381, 0
0 92.83, 17738, 0 61.00, 12378, 0

Long-distant +10 92.74, 17722, 0 60.79, 12382, 0

500
169

−10 80.91, 16888, 0 70.66, 14792, 0
0 80.86, 16877, 0 71.51, 14969, 0

Short-distant +10 80.31, 16763, 0 71.15, 14895, 0

OK–Ordinary kriging; UK–Universal kriging.

Table 3.2: Training with Matérn Semivariogram

Cases Matérn Semivariogram Parameters

Training Validation
Bias

OK UK Model-based UK
Set Set σ2, α, τ2 σ2, α, τ2 σ2, α, τ2

150
519

−10
368.73, 2994, 0.20 364.42, 2994, 0.20 14.42, 711, 0.190

Long-distant +10

500
169

−10
14.13, 548, 0.23

13.78, 548, 0.23 82.04, 1495, 0.260
Short-distant +10 111.17, 1611, 0.26

OK–Ordinary kriging; UK–Universal kriging.

to shallow water, where the speed of sound can be considered constant [116]. We set the

source level Sl = 180 dB which is a realistic value for UWA acoustic modems operating in

such signal frequencies. The large-scale parameters, i.e. path gain and propagation delay,

are computed using the Bellhop model [98]. The Doppler parameters were generated using

first-order dynamics. Since the vehicles maintain constant velocity, the drifting parameters

were neglected. Each vehicle depth remained constant during the simulation, yet the depth

of each vehicle is different.

In addition, we impose local ambient noise to the synthetic data (denominator of (3.43)).
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The local ambient noise is captured with: i) uniform noise; ii) linear noise; iii) single non-zero

Gaussian distribution; and iv) two non-zero Gaussian distributions. We evaluate the ambient

noise over a grid of points in the space S := X×Y, where X = [−2000,−1990, . . . , 3000] and

Y = [0, 10 . . . , 5000] in meters. The ambient noise for the space of interest outputs values

NL(x) ∈ [7.75, 50] in dB, resulting in both mild and extreme environments.

The evaluation of the predictions is accomplished with two metrics. The first metric is the

mean square error (MSE), MSE = 1/nu
∑nu

u=1(Ŷ (x0,u; ru) − Y (x0,u; ru))
2, where nu is the

number of unknown responses at locations of interest. Next, the negative log predictive den-

sity (NLPD) [102] follows, NLPD = −1/nu
∑nu

u=1 log p(yu | x0,u, ru), where the distribution

is provided by p(yu | x0,u, ru) ∼ N (Ŷ (x0,u; ru), σ
2
UK(x0,u; ru)). The NLPD loss characterizes

not only the error of the mean value, but more importantly the uncertainty bound. More

specifically, both under- and over-confident predictions are penalized.

Simulation Results

We compare five prediction techniques: i) the ordinary kriging (OK) with exponential semi-

variogram (3.52); ii) the OK with Matérn semivariogram (3.53); iii) the universal kriging

(UK) with linear trend and exponential semivariogram (3.52); iv) the UK with linear trend

and Matérn semivariogram (3.53); and v) the proposed model-based learning method with

hybrid basis function and semivariogram model selected by the posterior BIC or formed as

a nested structure. The OK formulation is discussed in [68]. In the first four prediction

techniques, we select the exponential and the Matérn semivariogram functions, as they are

widely used in the literature. Each agent collects measurements of communication perfor-

mance (SNR) and vehicle range r from visited locations. Since the global paths are known,

the agents are aware of their range at the unvisited locations. The geoR package [105] is

used to implement the geostatistical methodologies.
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Figure 3.10: The color map on the top row depicts the ambient noise distribution that
deteriorates the UWA communication performance. The solid black and dotted black lines
correspond to the lawnmower paths of agent 1 and agent 2 respectively. In all cases we use
9 proportions of the training data to make predictions. (a) Uniform noise distribution case
with MSE and NLPD computed for 9 proportions of the training data. (b) Linear noise
distribution case with MSE and NLPD computed for 9 proportions of the training data. (c)
One source of non-zero Gaussian noise distribution case with MSE and NLPD computed for
9 proportions of the training data. (d) Two non-zero Gaussian noise distribution case with
MSE and NLPD computed for 9 proportions of the training data.

Training

For the evaluation of the robustness in training, we perform 30 simulations with added

bias on the measurements. We consider one noise profile scenario of two non-zero Gaussian

distributions. The trajectories of the mobile robots as well as the ambient noise distribution

are illustrated in the top right image of Figure 3.10. The black solid and dotted line represent

the lawnmower paths of agent 1 and 2 respectively. We consider two cases: i) the long-
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distant prediction; and ii) the short-distant prediction. In the long-distant prediction case,

each agent collects 75 measurements while in the short-distant case 250 measurements of

SNR and range. We seek to predict the communication performance in the long-distant case

of 260 and 259 and in the short-distant-case of 85 and 84 unvisited locations for agent 1

and 2 respectively. The effect of the bias to the semivariogram estimation, i.e. robustness,

is investigated by adding a systematic error to the measurements. The added biases are:

i) +10; ii) −10; and iii) no bias. We observe in Tables 3.1 and 3.2 that the added bias

does not affect the training of the proposed technique, resulting in the same semivariogram

function and semivariogram parameters. In both OK and UK methods with exponential

semivariogram, the estimated parameters are clearly affected by the added bias. In the OK

prediction method with Matérn semivariogram, the added bias affects only the long-distant

case of +10 added bias, yet the difference is significant. The UK prediction method with

Matérn semivariogram is not affected by the added bias. Note that the the posterior BIC

selected the Matérn semivariogram as the true model. Evidently, when a statistical model

selection methodology is not employed, yet the true semivariogram model is spontaneously

selected, then the parameter estimation appears less variation with added bias. However, we

cannot always rely on heuristic assumptions, ignoring statistical model selection methods. In

addition, in many cases a single semivariogram function may not be adequate to fully describe

the underlying latent process. After using the posterior BIC to select the true semivariogram

function, the REML successfully removes the bias from the parameter estimation, regardless

of the systematic error direction, i.e. sign of the bias. Therefore, the proposed methodology

constitutes a robust and bias-free alternative of the maximum likelihood estimator.
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Prediction

For the evaluation of the prediction we perform 180 simulations, comprising 9 training

datasets at 4 ambient noise profile scenarios and 5 prediction techniques. The size of the

training dataset varied proportionally from 10% up to 90% of the data. The remainder data

act as the validation dataset of the learning process. The distant horizon of the extrapolation

is associated to the proportion of the training data, e.g., 10% of training data correspond

to the longest distant prediction and 90% to the shortest distant prediction. The spatial

environmental conditions and the global path of the vehicles are shown in the top row of

Figure 3.10. The MSE and NLPD are presented in the middle and bottom row of Figure 3.10

respectively.

In the first noise distribution scenario, i.e. uniform noise, randomness arises mostly from

the statistical characterization of the UWA channel model (see Figure 3.10-(a)). That is

mild ambient noise conditions, which often appear in deep ocean environments. In shallow

water environments, uniform ambient noise occur when vehicles navigate in areas with no

nearby shipping and mild weather conditions. Clearly, the proposed method outperforms

the rest techniques both in terms of prediction accuracy and uncertainty quantification.

Especially, for long-distant prediction the difference is significant, making our model-based

approach three orders of magnitude more accurate in terms of MSE and the uncertainty

bounds almost one order of magnitude more realistic acording to NLPD. As more data are

incorporated in the training dataset, the rest methods improve their accuracy and uncertainty

quantification metrics. However, only in the shortest distant prediction case, i.e. 90%

training dataset, the rest methods are comparable with our technique. The results advocate

that for mild ambient noise conditions the proposed model-based learning technique vastly

outperforms the compared methods and can be safely used for long-distant extrapolation.

Next, we impose linear ambient noise distribution to the UWA channel model, as presented
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Table 3.3: Posterior BIC-based Selection of Semivariogram Function

Semivariogram-posterior BIC [%]

% of Uniform Linear 1 Gaussian 2 Gaussian
Data Noise Noise Source Noise Source Noise

10 S-33; E-33; M-34 S M M
20 S-31; E-31; M-38 S-51; E-49 M M
30 S-32; E-32; M-36 S M M
40 S-33; E-32; M-35 S M M
50 S-32; E-32; M-36 S M M
60 S-26; E-32; M-42 S M M
70 S-9; E-87; M-4 S M M
80 S-33; E-33; M-34 M M M
90 S-16; E-67; M-17 M M M

S–Spherical; E–Exponential; M–Matérn.

in Figure 3.10-(b). Linear ambient noise corresponds to a spatially large source of noise

that almost equally and progressively deteriorates the communication performance of the

vehicles. Similarly to the uniform noise case, the results show better predictions from all

other methods, where after the 40% training dataset the predicted values become accurate

with almost zero error values. Yet, the uncertainty of the proposed technique is overconfident,

reporting similar NLPD values with the rest methods. The results reveal that for the linear

ambient noise distribution scenario, our methodology outperforms the rest techniques and

produces accurate predictions for 40% and larger training datasets. However, the uncertainty

quantification is overconfident in all cases.

A single spatially small and intense source of noise is presented in Figure 3.10-(c). Such noise

sources often appear in Nature and they consider to be the main reason of conservativeness in

long-distant extrapolated predictions. Apparently, the spatially small source of noise obscure

the UK methods and slightly favors the OK techniques. However, the proposed model-based

UK methodology outperforms the rest techniques by one order of magnitude on the mean

predictions and quantifies the uncertainty better according to NLPD. Thus, our learning
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Figure 3.11: Comparison of nested semivariogram with the three candidate semivariogram
functions for the uniformly distributed noise scenario.

method advocates to higher level of robustness for unexpected spatially small and intense

source of noise. We extend the previous case using two spatially small and intense sources

of noise with different magnitude, as illustrated in Figure 3.10-(d). The proposed method

outperforms the rest techniques for the majority of the training dataset cases in terms of

MSE. The biggest competitor is the most parsimonious form of prediction the OK, yet in

only three out of nine training datasets the OK produces lower communication performance

error values. The uncertainty quantification is reasonable in all techniques except for long

distant predictions of UK with linear trend and exponential semivariogram. Although in

unexpected noisy environments the model-based techniques are expected to be inefficient,

our method outperforms the other techniques in the vast majority of the cases in terms of

prediction and quantifies reasonably well the uncertainty.

In addition to the evaluation of prediction metrics, the effectiveness of nested semivariogram

is illustrated. In Table 3.3, we list the semivariograms as selected by the posterior BIC for

all 9 training datasets and 4 ambient noise profile scenarios. Interestingly, in the linear noise

distribution scenario the posterior BIC changes the semivariogram function from spherical

to Matérn at the 80% and 90% training datasets. This means that even if we select one

semivariogram model for a specific case, there are no guarantees that the same semivariogram

will describe the latent process with updated training datasets. Moreover, we observe in
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Figure 3.12: The top row depicts the trajectories of the SV and the 690-AUV. The light gray
line corresponds to the SV trajectory during the day, the blue line depicts the trajectory
of the SV for the current mission, and the maroon colored line represents the path of the
690-AUV. The bottom row shows the vehicle range and output SNR of the corresponding
mission.

Figure 3.13: The Virginia Tech 690-AUV used in the field trials.

Table 3.3 that all semivariograms are nested for the uniform noise distribution, thus we focus

our attention on this scenario. In Figure 3.11, we compare the MSE and NLPD of the nested

semivariogram with the three candidate semivariograms. Notably, the mean predictions are

identical for single and nested semivariograms. Yet, the uncertainty quantification for nested

functions is consistently better with all training datasets. This advocates that the proposed

technique with nested semivariogram quantifies more realistically the uncertainty, without

compromising the accuracy.
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Field Trials

The experimental data were collected from field trials conducted at Claytor lake near Dublin,

VA in December 2019. A manned surface vehicle (SV) and the Virginia Tech 690-AUV

[86] were used in the field trials. The SV is equipped with an omnidirectional acoustic

transducer and a Woods Hole Oceanographic Institute (WHOI) Micromodem-2 [39]. The

AUV (pictured in Figure 3.13), can operate at a depth of 500 meters for up to 24 hours. It is

equipped with a suite of navigational sensors, sidescan sonar, and the WHOI Micromodem-2.

The SV transmitted acoustic packets to the AUV every 10 seconds. The acoustic transmis-

sion each lasted 3.5 seconds and had a carrier frequency of f = 25 kHz and bandwidth of

B = 4 kHz. The transponder mounted to the SV was submerged at a depth z1 = 1 m while

the AUV traveled at a depth of z2 = 3.35 m. That is clearly shallow water navigation which

makes the acoustic communication even more challenging. The maximum depth of Claytor

lake is 35 m. We conducted four missions whose trajectories are illustrated in the top row

of Figure 3.12. The SV trajectory throughout the day is shown in light gray, the SV trajec-

tory during each mission is highlighted in blue, and the AUV trajectory is demonstrated in

maroon. In all missions, the AUV traversed identical waypoint paths (waypoints shown in

black circles). The speed of the AUV was constant at 1.6 m/s. The SV was manned-driven

with different path for each mission. The missions were conducted in mild weather condi-

tions with no nearby shipping. Note that the field tests were conducted in December, when

no extramural activities take place at the lake. Thus, the only obvious source of ambient

noise was from the SV. The noise arising from the SV was time-varying, as it was driven at

different low speeds. In missions 1 and 2 the SV used the propulsion system to navigate and

traversed longer paths. That is to intentionally create ambient noise. In missions 3 and 4 the

propulsion system of the SV was not used, i.e. the SV was floating, which resulted in lower

ambient noise. We used GPS for the SV position, while the AUV position was estimated by
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Figure 3.14: The eMSE and eNLPD metrics for all 5 prediction methods and all missions. In
some cases, the uncertainty reported almost zero uncertainty, which significantly increased
the NLPD values. To emphasize on the low values, we set the upper bound of the NLPD to
be 100.

the AUV’s unscented Kalman filter (UKF).

The SNR measurements were collected by the WHOI Micromodem-2 at the output of the

equalizer. This SNR metric is used in the literature for the evaluation of communication

performance [36, 37, 124]. The disadvantages of the output are: i) averages the SNR for a

communication event; and ii) provides positive rounded numbers—compromising the SNR

measurement accuracy. In the bottom row of Figure 3.12, we present the SNR in blue solid

line, the corresponding vehicle range in green solid line, and the outliers in red squares.

Clearly, there exists a coupling of the range and the SNR. More specifically, as the range

increases the SNR reduces. Note that the default value of the WHOI modem to report

output SNR outliers is −9.99 dB [39], yet we plot them at −1.00 dB for scaling purposes.

In Table 3.4, we list the statistics of communication events.
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Table 3.4: Output SNR Values for Four-Waypoint Experiments

Mission
Duration Transmitted SNR SNR

Outliers
[s] Signals Occurrence Success

1 475.44 48 54 46 6
2 498.76 50 52 48 4
3 523.64 53 65 48 17
4 538.36 54 68 52 9

Experimental Results

Similarly to Section 3.2.6, we compare five prediction techniques. However, the MSE and

NLPD cannot be used, as the true value of the communication performance at the location

of the measurements is unknown during field trials; measurements are corrupted by multiple

sources of error. Hence, to proceed with our analysis we refer to the metrics as empirical

MSE (eMSE) and empirical NLPD (eNLPD) accordingly. The eMSE and eNLPD values for

various proportions of data are presented in Figure 3.14. The 40% proportion of data includes

at least 20 measurements for the longest distant prediction, while the 80% proportion of data

corresponds to the shortest distant prediction case. In some cases the predicted values report

almost zero uncertainty, making the eNLPD values very high. At these cases, we consider

that the corresponding method has failed, as uncertainty quantification is a key element

in communication performance prediction. Since we are interested in evaluating low scaled

eNLPD values, we set its upper bound to be 100. In Figure 3.15 the prediction mean and

standard deviation of three techniques: i) OK with exponential semivariogram; ii) UK with

linear trend and exponential semivariogram; and iii) our method are presented. We select

the exponential semivariogram for both OK and UK, because they provide better predictions

in terms of eMSE and eNLPD (see Figure 3.14). The top row of Figure 3.15 corresponds to

40% proportion of data, the middle row to 59%, and the bottom row to 80%.

In mission 1 the high ambient noise affects the performance of the UK techniques. Our
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Figure 3.15: The prediction mean and standard deviation for three methods and three
proportions of data in four missions.

method performs similarly to the OK methods for long-distant predictions and profoundly

better for short-distant predictions. The eNLPD values are acceptable in all predictions

techniques and cases, except one case of UK prediction with Matérn semivariogram. In

mission 2 the high ambient noise affects the performance of all prediction techniques. Only

the proposed method quantifies the uncertainty, while all other methods fail as shown in

Figure 3.15-(b). Both parsimonious methods of OK report lower error values, yet with zero

variance. Although the error metrics of the proposed technique are not satisfactory for this

mission, the uncertainty of the proposed method is quantified, as indicated by the eNLPD

in Figure 3.14-(b) and the prediction plots in Figure 3.15-(b). Paradoxically, all methods

produce higher error values as more measurements are collected. In mission 3 and 4, the

low ambient noise results in better predictions for our method than the rest techniques.
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Table 3.5: Posterior BIC-based Selection of Semivariogram Function

Semivariogram-posterior BIC [%]

% of Mission Mission Mission Mission
Data 1 2 3 4

40 S S-33; E-33; M-34 E S-34; E-32; M-34
51 S S-33;E-33;M-34 E S
59 S S-32; E-33; M-35 E S-33; E-33; M-34
67 S-29; E-37; M-34 S-33; E-32; M-35 E S-33; E-33 ;M-34
80 S-38; E-29; M-33 S-36; E-31; M-33 E S-33; E-33; M-34

S–Spherical; E–Exponential; M–Matérn.

Particularly, in mission 3 the error and uncertainty metrics of our technique are significantly

better from the rest methods as illustrated in Figure 3.15-(c). In mission 4, all techniques

provide acceptable results in terms of eMSE, yet the proposed method is the most accurate

and the only one that quantifies the uncertainty. All other methods fail. In addition, even

though the other techniques provide low eMSE values, their uncertainty is overconfident as

indicated by the eNLPD values in Figure 3.14-(d). Realistic uncertainty bounds are reported

only from the proposed methodology, while all other techniques provide predictions with zero

variance as presented in Figure 3.15-(d). Note that for higher vehicle depth the ambient noise

deteriorates, favoring the proposed methodology, as noise scenarios are similar to missions 3

and 4.

In Table 3.5, we list the selected semivariograms based on the posterior BIC. It is evident

that there is no dominant semivariogram function and that the nested semivariogram was

employed in many cases. This emphasizes the importance of nested models and the necessity

of statistical model selection techniques for field trials in complex environments.
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3.2.7 Conclusion

This chapter proposes a model-based, data-driven learning technique for prediction of under-

water acoustic communication performance in AUVs beyond the observation area. In both

ordinary kriging (OK) and universal kriging (UK) methods the estimated parameters are af-

fected by the artificially added bias, leading to different parameter values. We show that the

proposed model-based learning yields accurate predictions, outperforming up to three orders

of magnitude other kriging methods in simulations. More specifically, for all ambient noise

profile scenarios both OK and UK prediction methods produce high error values and quantify

the uncertainty poorly. Moreover, the nested semivariogram function improves drastically

the uncertainty quantification. In addition, experimental results reveal significantly better

predictions with our method for low and high ambient noise environments. The proposed

technique reports realistic uncertainty bounds in all missions, which other mission methods

often fail to generate. In unpredictable and high ambient noise environments, our method

outperforms in prediction accuracy the techniques assessed herein.

A disadvantage of the proposed technique arises from the computational requirements of

the iterative training. More specifically, the training step entails the computation of three

candidate covariance functions with corresponding parameters at every iteration. We found

in practice that the recursive method usually terminates after two iterations, for which the

execution of the training step requires six times more computations than the traditional OK

and UK methods with fixed semivariogram functions. Another drawback that is subject to

all techniques stems from the communication. In particular, all agents must communicate

their measurements to every other agent. To this end, our focus in ongoing work is on de-

centralized approximate methods to implement kriging in multi-robot systems with reduced

computational complexity and limited inter-vehicle communication [69]. This will allow even

large networks with big data to use the proposed technique in real-time.
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Decentralized Gaussian Processes

In this chapter, we propose methodologies for fully decentralizing Gaussian processes (GPs)

[27, 43, 104] from training to prediction, so that they can be implemented efficiently on

teams of agents. More specifically, we propose three distributed optimization techniques

to implement GP hyperparameter training with maximum likelihood estimation (MLE),

based on the alternating direction method of multipliers (ADMM) [12]. Next, we synthesize

13 decentralized approximate methods to perform GP prediction with aggregation of GP

experts [77], using iterative and consensus protocols [10, 93, 130]. In addition, we introduce

a covariance-based nearest neighbor selection strategy that enables a subset of agents to

perform predictions.

4.1 Preliminaries and Problem Statement

In this section, we discuss the foundations of algebraic graph theory, overview GPs, de-

scribe existing distributed approximate methods for scalable GPs, and define the problem

of decentralized, scalable GP training and prediction.

73
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Figure 4.1: Graph topologies of multi-robot systems.

4.1.1 Foundations

The set of all positive real numbers R>0 and the set of all non-negative real numbers R≥0.

We denote by In the identity matrix of n×n dimension. The vector of n zeros is represented

as 0n and the matrix of n ×m zeros as 0n×m. The superscript in parenthesis y(s) denotes

the s-th iteration of an estimation process. The cardinality of the set K is denoted card(K),

the absolute values is denoted |·|, the L2 norm is denoted ‖·‖2, and ‖·‖∞ denotes the infinity

norm. The notation λ(F ) and λ(F ) denote the maximum and minimum eigenvalue of matrix

F respectively. The i-th row of matrix F is denoted rowi{F }, the j-th entry of the i-th row

is denoted [rowi{F }]j, and the i-th element of a vector x is denoted [x]i or xi. A collection

of elements that comprise a vector x ∈ RN is denoted {xi}Ni=1.

Suppose a network consists of M agents that can perform local computations. The network

is described by an undirected time-varying graph G(t) = (V , E(t)), where V = 1, . . . ,M is

the set of nodes and E(t) ⊆ V × V the set of edges at time t. An undirected graph implies

that for all t the communication is bidirectional. Nodes represent agents and edges their

communication. The neighbors of the i-th robot are denoted Ni(t) = {j ∈ V : (i, j) ∈ E(t)}.

The adjacency matrix of G(t) is denoted A(t) = [aij] ∈ RM×M , where aij = 1 if (i, j) ∈ E(t)
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and aij = 0 otherwise. Similarly, the degree matrix of G(t) is denoted D(t) = [dij] ∈ RM×M

and is diagonal with di =
∑M

j=1 aij. The graph Laplacian is defined as L(t) := D(t)−A(t).

The maximum degree is denoted ∆ = maxi{
∑

j 6=i aij} and represents the maximum number

of neighbors in the graph. The Perron matrix is defined as P(t) := IM − εL(t), where ε

is a parameter with range ε ∈ (0, 1]. The maximum shortest distance between any pair of

nodes in G is denoted diam(G). If the adjacency matrix A is irreducible, then the graph G

is strongly connected [93]. In addition, a graph G is strongly complete if every robot can

communicate to every other robot in the graph. We consider three decentralized network

topologies as presented in Fig.4.1.

Assumption 4.1. [78] There exists a positive integer γ ∈ Z≥0 such that for all time t the

graph H = (V , E(t) ∪ E(tγ + 1) ∪ . . . ∪ E((t+ 1)γ − 1) is strongly connected.

4.1.2 Gaussian Processes

Let the observations be modeled by,

y(x) = f(x) + ε, (4.1)

where x ∈ RD is the input location withD the input space dimension, f(x) ∼ GP(0, k(x,x′))

is a zero-mean GP with covariance function k : RD × RD → R, and ε ∼ N (0, σ2
ε ) is the

i.i.d. measurement noise with variance σ2
ε . We employ the separable squared exponential

covariance function,

k(x,x′) = σ2
f exp

{
−

D∑
d=1

‖x− x′‖2

l2d

}
, (4.2)

where σ2
f is the signal variance and ld the length-scale hyperparameter at the d-th direction

of the input space. The goal of GPs is to infer the underlying latent function f given the
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data D = {X,y}, where X = {xn}Nn=1 the inputs, y = {yn}Nn=1 the outputs, and N the

number of observations.

Training

A GP is trained to find the hyperparameters θ = {l1, . . . , lD, σ2
f , σ

2
ε} ∈ Θ ⊂ RD+2 that

maximize the marginal log-likelihood,

L = ln p(y |X) =− 1

2

(
yᵀC−1

θ y + ln|Cθ|+N ln 2π
)
, (4.3)

where Cθ = K+σ2
ε IN is the positive definite (PD) covariance matrix with K = k(X,X) �

0 ∈ RN×N the positive semi-definite (PSD) correlation matrix. The minimization problem

employs the negative marginal log-likelihood (NLL) function,

(P1) θ̂ = arg min
θ

1

2

(
yᵀC−1

θ y + ln|Cθ|+
N

ln
2π
)

s.to θj > 0, ∀j = 1, . . . , D + 2. (4.4)

The bound constraints (4.4) on the length-scales ld ensure that the correlation matrix is PSD.

Additionally, in practice even small noise variance σ2
ε is useful to avoid an ill-conditioned

covariance matrix. First-order iterative methods (e.g., conjugate gradient descent) or second-

order iterative methods with approximated Hessian (e.g., L-BFGS-B [16]) are widely used to

tackle (P1). Note that the NLL in (P1) is non-convex with respect to the hyperparameters

θ and usually multiple starting locations are randomly selected to ensure global optimality

[21]. Both optimization approaches require the computation of the gradient of (P1) which
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is given by,

∂L(θ)

∂θj
=

1

2
tr

{
(C−1

θ −C
−1
θ yy

ᵀC−1
θ )

∂Cθ

∂θj

}
, (4.5)

The partial derivative of the covariance matrix ∂Cθ/∂θj depends on the selected covariance

function k(·, ·). For our selection (4.2), the partial derivative is provided in Appendix A.1.

Prediction

After obtaining the hyperparameters θ̂, the predictive distribution of the location of interest

x∗ ∈ RD conditioned on the data D yields p(y∗ | D,x∗) ∼ N (µ(x∗), σ
2(x∗)) with prediction

mean and variance,

µfull(x∗) = kᵀ
∗C
−1
θ y, (4.6)

σ2
full(x∗) = σ2

f (k∗∗ − kᵀ
∗C
−1
θ k∗), (4.7)

where k∗ = k(X,x∗) ∈ RN and k∗∗ = k(x∗,x∗) ∈ R.

Complexity

The time complexity of the training is O(N3) for computing the inverse of the covariance

matrix in (P1) and (4.5). Note that only the inverse of the covariance matrix C−1
θ is required

to be computed for the training (P1) and not the logarithm of its determinant ln|Cθ|. That

is because the covariance matrix is symmetric and PD, and thus the Cholesky decomposition

can be employed to compute the logarithm of the covariance matrix determinant [104, Ap-

pendix A.4]. The inverse computation of the covariance matrix is performed repeatedly in

the optimization (P1) to find the hyperparameters θ̂. After solving (P1) and obtaining the
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Table 4.1: Time, Space, and Communication Complexity of GP Training

full-GP fact-GP [90] g-fact-GP [76]

Local
Time - O(N3/M3) O(8(N3/M3))
Space - O(ξ) O(2ξ + 2(N2/M2))

Global

GD
Space - O(DM + 2M) O(DM + 2M)

Communication - O(send(DM + 2M)) O(send(DM + 2M))

Final
Time O(N3) - -
Space O(N2 +DN) O(N2/M) O(4(N2/M))

Communication - O(N2/M) O(4(N2/M))

ξ = N2/M2 +D(N/M).

hyperparameter vector θ̂, we store the inverse of the covariance matrix C−1 and N observa-

tions, which results in O(N2 +DN) space complexity. For agents with limited RAM memory

capacity, the space complexity may be more restrictive than the time complexity. The pre-

diction mean (4.6) and variance (4.7) yield O(N) and O(N2) computations respectively for

matrix multiplications.

4.1.3 Centralized Scalable Gaussian Processes

Let us consider a network of M agents that can perform local computations. Each agent

i collects local observations to form the local dataset {Di = {X i,yi}}Mi=1 corresponding to

Ni observations for M robots with
∑M

i=1 Ni = N . Thus, the global dataset is composed as

D = ∪Mi=1Di. All local datasets have equal number of observations, i.e. Ni = Nj = N/M

for all i, j ∈ V with i 6= j. For privacy reasons, for example, we presume that the local

datasets Di should not be communicated to other agents. In practice, even if all agents

have access to the global dataset D, the GP computational complexity (Section 4.1.2) is

prohibitive if D is large. Furthermore, in case we assume a centralized topology, where every

entity i communicates its dataset Di to a central node with significant computational and

storage resources, then we face several problems. These problems comprise of: i) security
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and robustness, as the central node is vulnerable to malicious attacks or even failure; ii)

traffic network congestion, when all agents communicate their local datasets with the central

entity; and iii) privacy, because a single entity has access to the global dataset. In addition,

for certain cases (e.g., autonomous vehicles and multi-robot systems), distant agents may be

subject to communication range limitations. To this end, we make the following assumptions.

Assumption 4.2. Every agent i can communicate only with agents in its neighborhood Ni

and the communication shall not include any data exchange.

Assumption 4.3. Every agent i can communicate only with agents in its neighborhood Ni

and the communication shall include partial exchange of the local dataset Di.

Remark 4.4. Assumption 4.2 prohibits the communication of any observation, while As-

sumption 4.3 allows the communication of a subset of the local dataset Di. This distinction

has been made to propose different methodologies in case that partial communication of the

local dataset is permitted.

Factorized Training

The factorized GP training [30, 90], termed as FACT-GP, relies on the following assumption.

Assumption 4.5. All local sub-models Mi are independent.

The independence in Assumption 4.5 is invoked to result in the approximation of the global

marginal likelihood as,

p(y |X) ≈
M∏
i=1

pi(yi |X i), (4.8)

where pi(yi | X i) ∼ N (0,Cθ,i) is the local marginal likelihood of the i-th robot with local

covariance matrix Cθ,i = Ki + σ2
ε INi

and Ki = k(X i,X i) ∈ RNi×Ni . The factorized

approximation (4.8) implies that the covariance matrix is approximated by a block diagonal
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matrix that results in K−1 ≈ diag(K−1
1 ,K−1

2 , . . . ,K−1
M ). Subsequently, the global marginal

log-likelihood is approximated by L ≈
∑M

i=1 Li which yields,

ln p(y |X) ≈
M∑
i=1

ln pi(yi |X i),

with local marginal log-likelihood,

Li = ln pi(yi |X i)

= −1

2

(
yᵀ
iC
−1
θ,iyi + ln|Cθ,i|+Ni ln 2π

)
. (4.9)

The gradient of the global marginal log-likelihood in factorized training is computed by

∇θL =
∑M

i=1∇θLi [135, 136]. The minimization problem utilizes the local negative marginal

log-likelihood (LNLL) function and takes the form of,

(P2) θ̂ = arg min
θ

1

2

M∑
i=1

yᵀ
iC
−1
θ,iyi + ln|Cθ,i|+Ni ln 2π

s.to θi > 0D+2, ∀i ∈ V , (4.10)

where θi = {θ1,i, . . . , θD+2,i}. Similarly to (P1), constraint (4.10) imposes positivity on the

agreed hyperparameters.

Remark 4.6. A common approach to relax the positivity constraint (4.4) in (P1) and (4.10)

in (P2) is to employ the logarithmic transformation on the hyperparameter vector that has

strictly positive domain, i.e. ln(θ) : R>0 → R. After convergence the inverse transformation,

by using the exponential, yields the hyperparameter vector.

The computation of (4.9) for the FACT-GP training (P2) yields O(N3
i ) = O(N3/M3)

time complexity for each local entity to invert the local covariance matrix C−1
θ,i . Addi-
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tionally, for the storage of the local inverted covariance matrix and the local observations

O(N2
i + DNi) = O(N2/M2 + D(N/M)) space is needed. The factorized training requires

also communication from every node i to the central node. The communication complexity

depends on the selection of the optimization algorithm. Provided that the central node im-

plements gradient descent [135], every node communicates the local gradient of LNLL ∇θLi

at every iteration s. That is O(send(D+ 2)M) = O(send(DM + 2M)) total communications

from all agents to the central node, where send is the total number of iterations to reach

convergence. Additionally, the central node needs to store at each iteration: i) the hyperpa-

rameter vector on the previous iteration {θ(s)
i }Mi=1 from all M nodes; and ii) their gradient of

LNLL {∇θLi}Mi=1, which results in O((D+ 2)M + (D+ 2)) = O(DM + 2M) space complex-

ity. Finally, after the optimization algorithm converges, each node communicates the local

inverted covariance matrix C−1
θ,i that yields O(MN2

i ) = O(N2/M) communications to the

central node. All local inverted covariance matrices need to be stored in the central node to

form the block diagonal approximation for GP prediction, i.e. O(N2/M) space complexity.

A computational complexity comparison between FULL-GP and FACT-GP is provided in

Table 4.1. Since Ni = N/M < N , the time and space complexity of FACT-GP (P2) is

significantly less than the time and space complexity of FULL-GP (P1).

Aggregated Prediction

Provided the hyperparameter vector θ̂ from Problem 2 or 3, we shall employ multiple ag-

gregation of GP experts methods to perform joint prediction with local data. These are the

PoE [51], gPoE [17], BCM [126], rBCM [30], grBCM [76], and NPAE [5, 107]. The main

idea is that each local entity i develops a local GP sub-model Mi using its local dataset

Di. Then, the agents communicate local models to make joint predictions. The local GP

sub-model Mi conditioned on the local dataset is pi(y∗ | Di,xi) ∼ GP(µi(xi), σ
2
i (xi)) with
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local mean and local variance,

µi(x∗) = kᵀ
∗,iC

−1
θ,iyi, (4.11)

σ2
i (x∗) = σ2

f (k∗∗ − k
ᵀ
∗,iC

−1
θ,ik∗,i), (4.12)

where k∗,i = k(x∗,X i) ∈ RNi .

A useful definition to study the properties of joint mean predictions for local aggregation

methods is provided below.

Definition 4.7. [107] Provided N observations, an aggregate GP method with joint pre-

diction mean µA, variance σ2
A, full GP prediction mean µfull, and variance σ2

full is consistent

if,

lim
N→∞

µfull(x∗)− µA(x∗)→ 0, ∀x∗,

lim
N→∞

σ2
full(x∗)− σ2

A(x∗)→ 0, ∀x∗,

where subscript A denotes any aggregation method for GP prediction.

Proposition 4.7 implies that as the number of observations tends to infinity, the prediction

mean and variance of full GP (4.6) and the aggregated prediction mean and variance are

identical.

PoE Family : After computing the local mean (4.11) and the local variance (4.12), the
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joint mean and precision of both PoE and gPoE MA =M(g)PoE is provided by,

µ(g)PoE(x∗) = σ2
(g)PoE(x∗)

M∑
i=1

βiσ
−2
i (x∗)µi(x∗), (4.13)

σ−2
(g)PoE(x∗) =

M∑
i=1

βiσ
−2
i (x∗), (4.14)

where βi = 1 for PoE, and βi = 1/M for gPoE. The original gPoE [17] considers weight βi to

be the difference in differential entropy, but this approach limits the computational graph to

have a single layer. To allow multiple layer GP aggregation, an average weight βi is proposed

in [30]. Since for certain decentralized networks multiple layer GP aggregation is required,

we find the average weight more suitable.

Proposition 4.8. [76, Proposition 1] For a disjoint partition of local datasets Di, the con-

stant weight of PoE results in overconfident joint variance as the number of observations

N tends to infinity, i.e. limN→∞ σ
2
PoE(x∗) → 0. The average weight of gPoE produces a

conservative, yet finite joint variance as the number of observations N tends to infinity, i.e.

σ2
full < limN→∞ σ

2
gPoE(x∗) < σ2

∗∗, where σ2
full is the target variance of a full GP and σ2

∗∗ the

prior variance.

Remark 4.9. It is empirically observed that for a disjoint partition of local datasets Di, both

PoE and gPoE produce inconsistent mean predictions [76]. Specifically, as the number of ob-

servations tends to infinity both methods recover the prior mean µ∗∗, i.e. limN→∞ µ(g)PoE(x∗)→

µ∗∗ for all x∗.

Proposition 4.10. The PoE and gPoE make identical mean predictions (4.13).

Proof. The proof is provided in Appendix B.1.

The local time computational complexity of both PoE and gPoE is governed by the local
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Table 4.2: Time, Space, and Communication Complexity for Centralized GP Aggregated
Prediction

FULL-GP (g)PoE & BCM rBCM [30] grBCM [76] NPAE [107]

Local
Time - O(ζ) O(ζ) O((5 +N/M)ζ) O(Nζ)
Space - O(ξ) O(ξ) O(2ξ + 2(N2/M2)) O(ξ +DN)

Global
Time O(N2) O(M) O(M) O(M) O(M3)
Space O(N2 +DN) O(2M) O(3M) O(5M) O(M2)
Comm - O(2M) O(3M) O(5M) O(M2)

ζ = N2/M2, ξ = N2/M2 +D(N/M).

variance (4.12), that is O(N2
i ) = O(N2/M2) for the multiplication of the quadratic term.

Provided that the number of local observations is less than the observations from all local

entities Ni < N , the PoE and gPoE alleviates the computations compared to the full GP

O(N2). The space complexity requires O(N2
i + DNi) = O(N2/M2 + D(N/M)) capacity

to store the inverse of the local inverted covariance matrix C−1
θ,i and the vector of local

observations yi. Thus, the space requirement is relaxed compared to full GP that occupies

O(N2 +DN) memory. The total communication complexity from all entities to the central

node is O(2M) to transmit all local mean µi and local variance σ2
i values. A comparison of

PoE and gPoE with other aggregation methods is presented in Table 4.2.

BCM Family : The BCM, rBCM, and grBCM make an additional assumption other than

Assumption 4.5.

Assumption 4.11. The dataset of every agent i is conditionally independent from any other

dataset of agent j 6= i given the posterior distribution f∗, i.e. Di ⊥⊥ Dj | f∗.

After computing the local mean (4.11) and the local variance (4.12), the joint mean and
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precision of the BCM and rBCM MA =M(r)BCM is provided by,

µ(r)BCM(x∗) = σ2
(r)BCM(x∗)

M∑
i=1

βiσ
−2
i (x∗)µi(x∗), (4.15)

σ2
(r)BCM(x∗) =

M∑
i=1

βiσ
−2
i (x∗) + (1−

M∑
i=1

βi)σ
−2
∗∗ , (4.16)

where βi = 1 for BCM, and βi = 0.5[lnσ2
∗∗ − lnσ2

i (x∗)] for rBCM. For rBCM βi describes

the difference in the differential entropy between the prior and the posterior distribution.

Proposition 4.12. [76, Proposition 1] For a disjoint partition of local datasets Di, the BCM

and rBCM results in overconfident joint variance as the number of observations N tends to

infinity, i.e. limN→∞ σ
2
(r)BCM(x∗)→ 0.

Remark 4.13. It is empirically observed that for a disjoint partition of local datasets Di,

both BCM and rBCM produce inconsistent mean predictions [76]. However, the joint pre-

diction mean of BCM and rBCM converges to the prior mean slower than the PoE and

gPoE.

The time and space complexity of BCM is identical to PoE and gPoE. In addition, BCM

requires similar communications with the PoE family. However, the rBCM entails O(3M)

communication complexity to exchange the local mean µi, the local variance σ2
i , and the

difference in the differential entropy between the prior and posterior distribution βi. Note

that βi in rBCM can be computed by the central node and recovers the communication

complexity of PoE and gPoE. Yet, we prefer to express βi as part of the communication

exchange, because in the ensuing discussion the central node is removed. A comparison of

BCM and rBCM with other aggregation methods is illustrated in Table 4.2.

grBCM : The main idea of grBCM is to equip every agent with a new dataset that has

global information on the underlying latent function to ensure consistency (Definition 4.7).
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Every agent i selects randomly without replacement Ni/M data from its local dataset Di

to form the local sample dataset D−i ∈ RNi/M ⊂ Di. Then, the local sample datasets are

communicated to every other agent (Assumption 4.3) to compose the communication dataset

Dc = {D-i}Mi=1 = {Xc,yc}. Next, every agent i fuses the communication dataset Dc ∈ RNi

with its local dataset Di to form the local augmented dataset D+i = Di ∪ Dc ∈ R2Ni . The

local augmented dataset D+i is a new dataset for every agent i that includes the local dataset

Di and the communication dataset Dc, providing a global perspective. Note that in [76],

the authors of grBCM suggest to select randomly the communication dataset Dc from the

full dataset D. In this paper, we consider a slight variation that does not violate any result

towards a network implementation. Thus, the communication dataset Dc is selected by the

local datasets Di and then fused through information exchange.

The agents shall use the local augmented dataset D+i to compute the augmented local

mean µ+i (4.11) and the augmented local variance σ2
+i (4.12). In addition, grBCM requires

the computation of the communication local mean µc (4.11) and the communication local

variance σ2
c (4.12) using exclusively the communication dataset Dc. The joint mean and

precision of grBCM MA =MgrBCM yield,

µgrBCM(x∗) = σ2
grBCM(x∗)

[ M∑
i=1

βiσ
−2
+i (x∗)µ+i(x∗)

−
( M∑
i=1

βi − 1
)
σ−2

c (x∗)µc(x∗)
]
, (4.17)

σ−2
grBCM(x∗) =

M∑
i=1

βiσ
−2
+i (x∗) + (1−

M∑
i=1

βi)σ
−2
c (x∗), (4.18)

where β1 = 1 and βi = 1/2[lnσ2
c (x∗)− lnσ2

+i(x∗)] for i > 2.

Proposition 4.14. [76, Proposition 3] For any collection of aggregated prediction mean

values µ1(x∗), . . . , µM(x∗) the grBCM is consistent.
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The local time complexity for grBCM includes the computation of the augmented local

variance σ2
+i, the local communication variance σ2

c , and the inversion of the communication

dataset covariance matrix Kc = k(Xc,Xc). That is O((2Ni)
2 +N2

i +N3
i ) = O(N2/M2(5 +

N/M)). Then, the inverse of the local augmented covariance matrix C−1
θ,+i and the local

augmented dataset D+i occupy O((2Ni)
2 + D(2Ni)) = O(2(N2/M2 + DN/M) + 2N2/M2)

space. The total communications from all entities to the central node is O(5M) to transmit

all local augmented means µ+i, local augmented variances σ2
+i, local communication means

µc, local communication variances σ2
c , and all differences in the differential entropy βi to the

central node. A comparison of grBCM with other aggregation methods is shown in Table 4.2.

The local augmented dataset D+i is used in factorized GP training (Section 4.1.3) to relax

the block diagonal matrix approximation induced by Assumption 4.5, and produce better

estimates of the hyperparameter vector [76]. The time, space, and communication complexity

of the generalized factorized GP (g-FACT-GP) training is more demanding than the FACT-

GP training, yet remains more affordable than the FULL-GP training. A comparison of all

centralized GP training methods is presented in Table 4.1.

NPAE : The main idea of NPAE is to use covariance between sub-models Mi to ensure

consistency. The local computations of NPAE for agent i include: i) local prediction mean

µi(x∗) ∈ R (4.11); ii) i-th entry of the cross-covariance vector [kA(x∗)]i ∈ R; and iii) i-th row

of the covariance rowi{Cθ,A(x∗)} ∈ RM . Thus, NPAE requires the local computation of two

additional quantities other than (4.11). These are the cross-covariance and the covariance

for each agent i,

[kA(X i,x∗)]i = kᵀ
i,∗C

−1
θ,iki,∗, (4.19)

[rowi{Cθ,A(X i,Xj,x∗)}]j = kᵀ
i,∗C

−1
θ,iCθ,ijC

−1
θ,jkj,∗, (4.20)
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whereCθ,ij = k(X i,Xj)+σ2
ε INi

∈ RNi×Ni , ki,∗ = (X i,x∗) ∈ RNi , and kj,∗ = (Xj,x∗) ∈ RNi

for all j 6= i. The next step is to aggregate the local sub-models and obtain the joint

prediction mean and variance,

µNPAE(x∗) = kᵀ
AC

−1
θ,Aµ, (4.21)

σ2
NPAE(x∗) = σ2

f (k∗∗ − k
ᵀ
AC

−1
θ,AkA), (4.22)

where Cθ,A = {rowi{Cθ,A}}Mi=1 ∈ RM×M , kA = {kA(X i,x∗)}Mi=1 ∈ RM , and µ = {µi}Mi=1 ∈

RM .

Proposition 4.15. [5, Proposition 2] For any collection of aggregated prediction mean values

µ1(x∗), . . . , µM(x∗) the NPAE is consistent.

The local time complexity for NPAE is governed by the computation of all local inverted

covariance matrices for every other agent C−1
θ,j , j 6= i (4.19) which yields O((M − 1)N3

i ) =

O(N3/M2) computations. Additionally, the aggregated covariance Cθ,A needs to be inverted

on the central node that entails O(M3) computations. The local memory footprint is O(N2
i +

DNi+MDNi) = O(N2/M2+D(N/M)+DN), including the local inverted covariance matrix

C−1
θ,i , the local dataset Di, and the inputs of all other datasets Xj for all j 6= i. The total

communication complexity yields O((M + 1)M) = O(M2) governed by the transmission of

the row aggregated covariance rowi{Cθ,A}, for all i ∈ V . A major disadvantage of NPAE

is the high global time complexity, yet in the ensuing discussion we remove this expensive

computation by using decentralized iterative techniques. A comparison of NPAE with other

aggregation methods is provided in Table 4.2.
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4.1.4 Problem Definition

In this section we define the problems we seek to address.

Problem 2. Under Assumption 4.1, 4.2, and 4.5, solve the optimization problem (P2) to

estimate the hyperparmeters θ̂ of the GP for a decentralized network topology.

Problem 3. Under Assumption 4.1, 4.3, and 4.5, solve the optimization problem (P2) to

estimate the hyperparmeters θ̂ of the GP for a decentralized network topology.

The difference between Problem 2 and 3 is that the latter allows partial data exchange while

the former prohibits any data exchange between agents. Both problems assume a strongly

connected network of agents (Assumption 4.1) and make the independence approximation

assumption between local datasets (Assumption 4.5). Recent advancements in distributed

GP hyperparameter training [135, 136] have addressed the centralized version of Problem 2.

The focus of this paper is on decentralized networks without requiring a central coordinator

with massive computational and storage capabilities. The decentralized setup is imposed by

Assumption 4.2 and 4.3.

Problem 4. Let Assumption 4.1, 4.2, 4.5, and 4.11 hold, decentralize the computation of the

PoE, gPoE, BCM, rBCM, and NPAE using expertise from all agents. In addition, replace

Assumption 4.2 with 4.3 and decentralize the computation of grBCM.

Problem 5. Let Assumption 4.1, 4.2, 4.5, and 4.11 hold, decentralize the computation of

the PoE, gPoE, BCM, rBCM, and NPAE using expertise from statistically correlated agents.

In addition, replace Assumption 4.2 with 4.3 and decentralize the grBCM.

The difference between Problem 4 and 5 is that the latter involves the joint prediction of

only statistically correlated agents. That is because we seek to reduce the communication

from distant entities with insignificant statistic correlation to the aggregation.
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Table 4.3: Time, Space, and Communication Complexity of Centralized Factorized GP
Training with ADMM-based Methods

c-GP [136] apx-GP [135] gapx-GP (proposed)

Local
Time O(send

nest(N
3/M3)) O(N3/M3) O(8(N3/M3))

Space O(ξ) O(ξ) O(2ξ + 2(N2/M2))

Global
ADMM Comm O(send

c-GPM(D + 2)) O(send
apx-GPM(D + 2)) O(send

gapx-GPM(D + 2))

Final Comm O(N2/M) O(N2/M) O(4(N2/M))

send
c-GP < send

apx-GP ≈ send
gapx-GP, ξ = N2/M2 +D(N/M).

4.2 Centralized GP Training

In this section, we discuss existing centralized methods and propose a centralized technique to

address the factorized GP training problem (P2) based on the alternating direction method

of multipliers (ADMM) [12].

The following Assumption is required for first-order approximation methods.

Assumption 4.16. A function f : RN → R is Lipschitz continuous with positive parameter

L > 0 if it satisfies,

‖∇f(x)−∇f(y)‖2≤ L‖x− y‖2, ∀x,y. (4.23)

4.2.1 Existing Centralized GP Training Methods

To address the centralized factorized GP training problem (P2) an exact consensus ADMM

(c-ADMM) and an inexact proximal consensus ADMM (px-ADMM) have been used in [135,

136]. Using the relaxation of the positivity constraint in Remark 4.6, (P2) can be expressed
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as,

(P3) θ̂ = arg min
θ

1

2

M∑
i=1

yᵀ
iC
−1
θ,iyi + ln|Cθ,i|+Ni ln 2π

s.to θi = z, ∀i ∈ V , (4.24)

where θi = {θ1,i, . . . , θD+2,i} is the local vector of hyperparameters and z ∈ RD+2 is an

auxiliary variable. In other words, constraint (4.24) implies that every agent i is allowed

to have its own opinion for the hyperparameters θi, yet at the end of the optimization all

agents must agree on the global vector value z. Recognize that (P3) has the same problem

formulation with the c-ADMM problem. After formulating the augmented Lagrangian, the

c-GP iterative scheme [12] takes the form,

z(s+1) =
1

M

M∑
i=1

(
θ

(s)
i +

1

ρ
ψ

(s)
i

)
, (4.25a)

θ
(s+1)
i = arg min

θi

{
Li(θi) + (ψ

(s)
i )ᵀ(θi − z(s+1)) +

ρ

2
‖θi − z(s+1)‖2

2

}
, (4.25b)

ψ
(s+1)
i = ψ

(s)
i + ρ(θ

(s+1)
i − z(s+1)), (4.25c)

where ψi ∈ RD+2 is the vector of dual variables of the i-th node, s ∈ Z≥0 is the iteration

number, and ρ > 0 is the penalty constant term of the augmented Lagrangian. The steps of

c-GP are the following: i) all agents transmit their θ
(s)
i to the central node; ii) the central

node updates the global hyperparameter vector z(s+1) (4.25a); iii) the central node scatters

the updated z(s+1) vector; iv) every agent i solves locally the nested optimization problem

(4.25b) to find the local hyperparameter vector θ
(s+1)
i ; and v) every agent i updates the local

dual vector ψ
(s+1)
i (4.25c).

Let send
nest be the number of iterations required from the nested optimization problem (4.25b) to

converge. The computational complexity of c-GP is cubic in the number of local observations
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O(send
nestN

3
i ) = O(send

nest(N
3/M3)). More specifically, the nested optimization problem (4.25b)

requires the evaluation of the local log-likelihood Li(θi) at every internal iteration snest

which entails cubic computations to invert the local covariance matrix C−1
θ,i (4.9). The

communication complexity to transmit all local hyperparameter vectors yields O(sendM(D+

2)). After convergence, every agent i transmits the local inverted covariance matrix C−1
θ,i

which yields O(MN2
i ) = O(N2/M) communications. Every agent i occupies O(N2

i + 3(D+

2) + D(N/M))) = O(N2/M2 + DN/M) memory to store the local inverted covariance

matrix C−1
θ,i , the three quantities of c-GP at the previous iteration θ

(s)
i , z(s), ψ

(s)
i , and the

local dataset Di.

The major disadvantage of c-GP is the time complexity of the nested optimization problem

(4.25b). To address this issue, the authors in [135] employed the inexact px-ADMM [53] and

derived an analytical solution for the case of centralized factorized GP training to form the

analytical px-ADMM-GP (apx-GP). Note that apx-GP employs a first-order approximation

(linearization) on the local log-likelihood Li around z(s+1) which yields,

Li(θi) ≈ ∇ᵀ
θLi(z

(s+1))(θi − z(s+1)) +
Li
2
‖θi − z(s+1)‖2

2, (4.26)

where Li > 0 is a positive Lipschitz constant that satisfies Assumption 4.16 of the local

log-likelihood function Li for all i ∈ V . The apx-GP iteration steps are given by,

z(s+1) =
1

M

M∑
i=1

(
θ

(s)
i +

1

ρ
ψ

(s)
i

)
, (4.27a)

θ
(s+1)
i = z(s+1) − 1

ρ+ Li

(
∇θLi(z(s+1)) +ψ

(s)
i

)
(4.27b)

ψ
(s+1)
i = ψ

(s)
i + ρ(θ

(s+1)
i − z(s+1)), (4.27c)

where the gradient of the local log-likelihood ∇θLi has similar structure to the the gradient
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of the log-likelihood (4.5). The only difference on the workflow of apx-GP and c-GP is that

step iv) is computed analytically (4.27b), while the former incorporates a nested optimization

problem (4.25b) at every ADMM-iteration.

The space and communication complexity of apx-GP is identical to c-GP. However, c-GP

converges faster than apx-GP, i.e. send
c-GP < send

apx-GP. The time complexity of apx-GP entails

O(N3
i ) = O(N3/M3) computations, significantly reduced from O(send

nestN
3/M3) of c-GP. In

other words, there is no nested optimization problem in apx-GP (4.27) and thus requires

just one inversion of the local covariance matrix C−1
θ,i per ADMM-iteration instead of send

nest

inversions per ADMM-iteration in c-GP. Both c-GP and apx-GP inherit the convergence

properties of c-ADMM [12] and px-ADMM [53] which result in much faster convergence

than gradient descent.

A disadvantage of both centralized methods (4.25) and (4.27) is that they are based on fac-

torized GP training and thus they inherit poor approximation capabilities when the number

of nodes increases. More specifically, for a bounded space of interest, Assumption 4.5 is

violated as we increase the number of sub-models Mi.

4.2.2 Proposed Centralized GP Training

The first method we propose is a centralized factorized GP training technique that extends

apx-GP with a local augmented datatset D+i for all i ∈ V . The goal is to limit the approxi-

mation error of factorized GP training inherited by Assumption 4.5 at the cost of allowing

partial local data exchange (Assumption 4.3). A larger dataset entails more computations,

thus we build on the computationally affordable apx-GP method. We term our methodology

as generalized apx-GP (gapx-GP).

Let the communication dataset to be formed as discussed in Section 4.1.3-grBCM. Then,
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Algorithm 2 gapx-GP
Input: Di(Xi,yi), k(·, ·), ρ, Li, Ni, V, TOLADMM

Output: θ̂, C−1
θ , D+i

1: for each i ∈ V do . Local Sample Dataset
2: Dc,i ← Sample(Di)
3: communicate Dc,i to central node
4: end for
5: scatter Dc = {Dc,i}Mi=1 from central node to every agent
6: for each i ∈ V do . Local Augmented Dataset
7: D+i ← Di ∪ Dc

8: end for
9: repeat . ADMM Optimization

10: communicate θ
(s)
i to central node

11: z(s+1) ← primal_2(θ
(s)
i ,ψ

(s)
i , card(V)) (4.27a)

12: scatter z(s+1) from central node to every agent
13: for each i ∈ V do
14: θ

(s+1)
i ← primal_1(θ

(s)
i , z(s+1),ψ

(s)
i , ρ, Li,D+i) (4.27b)

15: ψ
(s+1)
i ← dual(θ

(s+1)
i , z(s+1),ψ

(s)
i , ρ) (4.27c)

16: end for
17: until ‖θ(s+1)

i − z(s+1)‖2< TOLADMM, for all i ∈ V
18: for each i ∈ V do . Local Augmented Covariance Inversion
19: θ̂ ← θend

i

20: C−1
θ,+i ← invert(k,X+i, θ̂)

21: communicate C−1
θ,+i to central node

22: end for
23: C−1

θ ← diag(C−1
θ,+1,C

−1
θ,+2, . . . ,C

−1
θ,+M ) . Block Diagonal

24: Return θ̂, C−1
θ , D+i

every agent i has access to a local augmented dataset which is the union of the corresponding

local dataset and the communication dataset D+i = Di ∪ Dc ∈ R2Ni . Next, we implement

the apx-GP (4.27), but now every agent is equipped with the local augmented dataset D+i.

The implementation details are provided in Algorithm 2.

The local time complexity of gapx-GP yields O((2Ni)
3) = O(8(N3/M3)) computations to

invert the local augmented covariance matrix Cθ,+i = K+i + σ2
ε I2Ni

∈ R2Ni×2Ni .The total

communication overhead is the same with c-GP and apx-GP. After convergence, each agent

i communicates the local augmented covariance matrix C−1
θ,+i that entails O(M(2Ni)

2) =
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O(4(N2/M)) communications. The space complexity of every agent i yields O((2Ni)
2 +

3(D + 2) + D(2Ni)) = O(4(N2/M2) + 2D(N/M)) to store the local augmented covariance

matrix, the optimization variables at the previous iteration, and the local augmented dataset.

In Table 4.3, we list the time, space, and communication complexity for all centralized

factorized GP training methods based on ADMM. The proposed method is more demanding

in space and communication than c-GP and in all complexity aspects than apx-GP. In terms

of time complexity, gapx-GP is more affordable than c-GP, because the nested optimization of

the latter (4.25b) takes on average more than eight iterations to converge, i.e., send
nest > 8. The

proposed method supports Assumption 4.5, and thus we expect to produce more accurate

hyperparameters.

Proposition 4.17. Let Assumption 4.5 and 4.18 hold for the local sub-model Mi, then the

gapx-GP converges, i.e., lims→∞‖θ(s)
i − z(s)‖2= 0 for all i ∈ V, to a stationary solution

(θ?i , z
?,ψ?

i ) of (P3).

Proof. The proof is direct consequence of [53, Theorem 2.10].

4.3 Proposed Decentralized GP Training

In this section, we propose solutions for Problem 2 and 3 based on the edge formulation of

ADMM [110] that yields parallel updates and decentralizes the factorized GP training. Let
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Assumption 4.1 hold, then (P3) can be expressed as,

(P4) θ̂ = arg min
θ

1

2

M∑
i=1

yᵀ
iC
−1
θ,iyi + ln|Cθ,i|+Ni ln 2π

s.to θi = τ ij, ∀i ∈ V , j ∈ Ni, (4.28)

θj = τ ij, ∀i ∈ V , j ∈ Ni, (4.29)

where τ ij are auxiliary variables. Constraints (4.28) and (4.29) imply that every agent i is

allowed to have its own opinion for the hyperparameters θi, yet at the end of the optimization

all agents in the neighborhood Ni must agree on the neighborhood values τ ij. The edge

formulation requires each node i to store and update variables for all of its neighbors Ni.

Conversely, one can employ the node formulation that relaxes the storage capacity, as each

agent i is required to store and update variables of itself [80].

Let us introduce an additional Assumption to study the convergence properties of the pro-

posed methods.

Assumption 4.18. A function f : RN → R is strongly convex with positive parameter m > 0

if it satisfies,

(∇f(x)−∇f(y))ᵀ(x− y) ≥ m‖x− y‖2
2, ∀x,y. (4.30)

4.3.1 DEC-c-GP

This method is based on the decentralized consensus ADMM [82]. After rendering the

augmented Lagrangian for (P4) we obtain the decentralized consensus ADMM iterative
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Algorithm 3 DEC-c-GP

Input: Di(Xi,yi), k(·, ·), ρ, Ni, send
DEC-c-GP

Output: θ̂, C−1
θ,i

1: initialize p
(0)
i = 0

2: for s = 1 to send
DEC-c-GP do . ADMM Optimization

3: for each i ∈ V do
4: communicate θ

(s)
i to neighbors Ni

5: p
(s+1)
i ← duals(p

(s)
i ,θ

(s)
i , {θ(s)

j }j∈Ni , ρ) (4.31a)

6: θ
(s+1)
i ← primal(p

(s+1)
i ,θ

(s)
i , {θ(s)

j }j∈Ni , ρ,Di) (4.31b)
7: end for
8: end for
9: for each i ∈ V do . Local Covariance Inversion

10: θ̂ ← θend
i

11: C−1
θ,i ← invert(k,Xi, θ̂)

12: end for
13: Return θ̂, C−1

θ,i

scheme,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ

(s)
i − θ

(s)
j

)
, (4.31a)

θ
(s+1)
i = arg min

θi

{
Li(θi) + θᵀip

(s+1)
i + ρ

∑
j∈Ni

∥∥∥θi − θ(s)
i + θ

(s)
j

2

∥∥∥2

2

}
, (4.31b)

where ρ > 0 is the penalty term of the augmented Lagrangian and p
(s)
i =

∑
j∈Ni

(u
(s)
ij +v

(s)
ij )

is the sum of the dual variables u
(s)
ij and v

(s)
ij corresponding to constraints (4.28) and (4.29).

Note that (4.31a) imposes initial values p
(0)
i = 0.

The workflow is as follows. Every agent i communicates to its neighbors j ∈ Ni the cur-

rent estimate of the hyperparameters θ
(s)
i . After each agent gathers all θ

(s)
j vectors from

its neighborhood, then the sum of the dual variables vector is updated (4.31a) to obtain

p
(s+1)
i . Next, every agent i solves a nested optimization problem (4.31b) to compute θ

(s+1)
i .

The method iterates until it reaches a predefined maximum iteration number send
DEC-c-GP. The

main routine of DEC-c-GP is provided in Algorithm 3. The proposed method is decentral-
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Table 4.4: Time, Space, and Communication Complexity of Decentralized Factorized GP
Training with ADMM-based Methods

DEC-c-GP DEC-apx-GP DEC-gapx-GP

Local
Time O(send

nest(N
3/M3)) O(N3/M3) O(8(N3/M3))

Space O(ξ) O(ξ) O(2ξ + 2(N2/M2))
Communication O(send

DEC-c-GP(D + 2)) O(send
DEC-apx-GP(D + 2)) O(send

DEC-gapx-GP(D + 2))

send
DEC-c-GP < send

DEC-apx-GP ≈ send
DEC-gapx-GP, ξ = N2/M2 +D(N/M).

ized (executed in parallel), requiring exclusively neighbor-wise communication as shown in

Fig. 4.2-(a). Note that the inter-agent communications do not involve any data exchange

which satisfies Assumption 4.2. Provided that the graph topology is connected (Assumption

4.1), then DEC-c-GP (4.31) addresses Problem 2.

Let the total number of iterations for the nested optimization problem (4.31b) be send
nest.

The time complexity of every agent i is dominated by the inverse of the local covariance

matrix C−1
θ,i for every iteration of the nested optimization problem (4.31b), which results

in O(send
nestN

3
i ) = O(send

nest(N
3/M3)) computations. The gradient for the nested optimization

is provided in Appendix A.2. Moreover, every agent i occupies O(N2
i + DNi + (D + 2) +

(card(Ni) + 1)(D + 2)) = O(N2/M2 +D(N/M) + (card(Ni) + 2)(D + 2)) memory to store

the local inverted covariance matrix C−1
θ,i , the local dataset Di, the sum of dual variables

vector at the previous iteration p
(s)
i , the hyperparameter vector at the previous iteration

θ
(s)
i , and the hyperparameter vectors of all neighbors at the previous iteration {θ(s)

j }j∈Ni
.

The total number of communications for each agent is O(send
DEC-c-GP(D + 2)) to transmit the

hyperparameters to its neighbors.

Proposition 4.19. Under Assumptions 4.1, 4.2, 4.5, 4.18 for the local sub-model Mi, then

DEC-c-GP (4.31) converges to a stationary solution lims→∞ θ
(s)
i = θ? of (P4) for all i ∈ V.

Proof. The proof is direct application of [82, Proposition 2].
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Figure 4.2: The structure of the proposed decentralized factorized GP training methods.
Blue dotted lines correspond to communication (strongly connected). a) Every agent i
has access to the local dataset Di. The agents are allowed to have their own opinion on
the hyperparameter θi using exclusively Di, but after communicating they all agree on the
same hyperparameters θ. b) Every agent i has access to Di. Next, they communicate to
form the local augmented dataset D+i which comprises of Di (local color) and the global
communication dataset Dc (gray color). The agents are allowed to have their own opinion
on the hyperparameter θi using exclusively D+i, but after communicating they all agree on
the same hyperparameters θ.

Remark 4.20. The main disadvantage of the proposed DEC-c-GP method is the cubic com-

putations on the number of local observations for every iteration of the nested optimization

(4.31b), which results in a computationally demanding process.

4.3.2 DEC-apx-GP

To address the computational complexity problem of DEC-c-GP (Remark 4.20) we consider

an inexact proximal step based on a first-order approximation on the local log-likelihood Li

around θ(s) which yields,

Li(θi) ≈ ∇ᵀ
θLi(θ

(s)
i )(θi − θ(s)

i ) +
κi
2
‖θi − θ(s)

i ‖2
2, (4.32)
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Algorithm 4 DEC-apx-GP

Input: Di(Xi,yi), k(·, ·), ρ, Ni, κi, send
DEC-apx-GP

Output: θ̂, C−1
θ,i

1: Identical to Algorithm 3 with (4.31b) replaced by (4.35b)

where κi > 0 is a positive constant for all i ∈ V . To this end, we obtain the DEC-px-ADMM

[19] iterative scheme,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ

(s)
i − θ

(s)
j

)
, (4.33a)

θ
(s+1)
i = arg min

θi

{
∇ᵀ
θLi(θ

(s)
i )(θi − θ(s)

i ) +
κi
2
‖θi − θ(s)

i ‖2
2

+ θᵀip
(s+1)
i + ρ

∑
j∈Ni

∥∥∥θi − θ(s)
i + θ

(s)
j

2

∥∥∥2

2

}
. (4.33b)

Essentially, the linearization (4.32) allows the evaluation of the local log-likelihood function

Li (4.9) at a fixed point θ
(s)
i and not at the optimizing variable θi. To this end, the nested

optimization of (4.33b) entails significantly less computations than (4.31b). For the special

case of factorized GP training problem (P4), an analytical solution of (4.33b) can be derived.

Theorem 4.21. Let Assumption 4.1, 4.2, 4.5, 4.16, and 4.18 hold for the local sub-model

Mi. Suppose that the penalty term of the first-order approximation κi is sufficiently large,

κi >
L2
i

m2
i

− ρλ(D +A) > 0. (4.34)

Then, the hyperparameter update (4.33b) admits a closed-form solution, resulting in the
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iterative scheme of DEC-apx-GP,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ

(s)
i − θ

(s)
j

)
, (4.35a)

θ
(s+1)
i =

1

κi + 2card(Ni)ρ

(
ρ
∑
j∈Ni

θ
(s)
j −∇θLi(θ

(s)
i ) + (κi + card(Ni)ρ)θ

(s)
i − p

(s+1)
i

)
,

(4.35b)

that converges to a stationary solution (θ?i ,p
?) of (P4) for all local entities i ∈ V.

Proof. The proof is provided in Appendix B.2.

The condition to select the penalty parameter κi (4.34) depends on the graph topology. This

implies that the stronger the network the faster the convergence.

The workflow of DEC-apx-GP is identical to DEC-c-GP, yet the hyperparameter update

step (4.35b) is performed analytically without requiring a nested optimization update as in

(4.31b) or (4.33b). Implementation details are given in Algorithm 4 and the structure is

illustrated in Fig. 4.2-(a). The gradient of the local log-likelihood ∇θLi can be computed

similarly to (4.5). The proposed iterative method (4.35) tackles Problem 2.

The local time complexity of DEC-apx-GP is reduced to O(N3
i ) = O(N3/M3) for the inver-

sion of the local covariance matrix C−1
θ,i just once at every ADMM iteration. The space com-

plexity is identical to DEC-c-GP and the total communications entail O(send
DEC-apx-GP(D+ 2))

messages.

Remark 4.22. A disadvantage of both decentralized methods DEC-c-GP and DEC-apx-

GP is the poor approximation capabilities when the number of agents increases, similarly

to Section 4.2.1. In particular, Assumption 4.5 is violated as we increase the number of

sub-models Mi.
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Algorithm 5 DEC-gapx-GP

Input: Di(Xi,yi), k(·, ·), ρ, Ni, κi, send
DEC-gapx-GP

Output: θ̂, C−1
θ,+i, D+i

1: for each i ∈ V do
2: Dc,i ← Sample(Di)
3: Dc ← flooding(Dc,i)
4: D+i = Di ∪ Dc

5: end for
6: C−1

θ,+i ← DEC-apx-GP(D+i, k, ρ,Ni, κi, send
DEC-gapx-GP)

7: Return θ̂, C−1
θ,+i, D+i

4.3.3 DEC-gapx-GP

We propose to extend the computationally efficient DEC-apx-GP method with a local aug-

mented dataset D+i for all i ∈ V to address the poor approximation capabilities of (4.31)

and (4.35) when the network has large number of nodes (Remark 4.22). The idea is similar

to the centralized gapx-GP method as presented in Section 4.2.2. In order to reduce the

approximation error, we relax Assumption 4.2 by allowing exchange of local subsets of data

Assumption 4.3. We termed the proposed method as generalized DEC-apx-GP (DEC-gapx-

GP).

Since the network has a decentralized topology, flooding [125] is employed to broadcast the

local sample datasets Dc,i and form the communication dataset Dc. The rest is a direct

application of DEC-apx-GP with the local augmented datatset D+i for all i ∈ V . Algorithm

5 presents the implementation details of DEC-gapx-GP. In Fig. 4.2-(b) the structure of

the proposed method is illustrated. Larger circular objects indicate that the augmented

covariance matrices Cθ,+i have double dimension, i.e., 2Ni × 2Ni for all i ∈ V . In addition,

the larger rectangular blocks represent the double size local augmented datasets D+i ∈ R2Ni .

The proposed method addresses Problem 3.

The local time complexity of gapx-GP entails O((2Ni)
3) = O(8(N3/M3)) computations



4.3. Proposed Decentralized GP Training 103

to invert the local augmented covariance matrix Cθ,+i = K+i + σ2
ε I2Ni

∈ R2Ni×2Ni . The

proposed method requires O((2Ni)
2 + D(2Ni) + (card(Ni) + 2)(D + 2)) = O(4(N2/M2) +

2D(N/M) + (card(Ni) + 2)(D + 2)) space to store the local augmented covariance matrix

C−1
θ,+i, the local augmented dataset D+i, the sum of dual variables vector at the previous

iteration p
(s)
i , the hyperparameter vector at the previous iteration θ

(s)
i , and the hyperparam-

eter vectors of all neighbors at the previous iteration {θ(s)
j }j∈Ni

. The total communication

overhead is O(send
DEC-gapx-GP(D + 2)).

In Table 4.4, we list the time, space, and communication complexity for the proposed de-

centralized factorized GP training methods. The DEC-c-GP is the most computationally

expensive method, but it requires less communications than the other methods to converge.

Therefore, the DEC-c-GP method favors applications with significant computational re-

sources on the local nodes. Note that this method can also be extended with local augmented

dataset D+i for all i ∈ V . Next, the DEC-apx-GP is the computationally most affordable

method. The DEC-gapx-GP stands between the two former methods on time complexity,

but requires more space. However, the latter can produce more accurate estimates of the

hyperparameters.

Remark 4.23. Assumption 4.18 requires the local log-likelihood function Li to be strongly

convex. Similarly to the global log-likelihood L, this is not guaranteed for the local log-

likelihoods Li for all i ∈ V . Usually Li is nonconvex with respect to the hyperparameters

θi [79, 96, 104]. This is a well known issue of GP hyperparameter training with MLE. A

common trick to address the nonconvexity problem is to use multiple starting points to the

optimization problem [8, 21, 104]. Consequently, in this work we follow a similar approach.

Note that as we increase the observations the local log-likelihoods tend to be unimodal

distributions around the hyperparameters, and thus Assumption 4.18 is satisfied [79].

Remark 4.24. There is no condition to evaluate the termination of the decentralized al-
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gorithms, c-GP, apx-GP, and gapx-GP. To this end, we resort to predetermined number of

iterations send which imposes additional computations, storage, and neighbor-wise commu-

nications from each agent.

4.4 Proposed Decentralized GP Prediction

In this section, we discuss the discrete-time average consensus (DAC) method [93], the

Jacobi over-relaxation method (JOR) [10, Ch. 2.4], and a distributed algorithm to solve

systems of linear equations (DALE) [78, 130]. In addition, we introduce a technique to

identify statistically correlated agents for the location of interest. We combine these tools

to approximate the aggregation of GP experts methods in a decentralized fashion.

4.4.1 Decentralized Aggregation Methods

DAC : The DAC is an iterative and parallel method to compute the average of a vector

w ∈ RM within a network. More specifically, every agent i has access to one element wi ∈ R

and the goal is to compute the average w̄ = (1/M)
∑M

i=1wi. The DAC update law yields,

w
(s+1)
i = w

(s)
i + ε

∑
j∈Ni(t)

aij(t)(w
(s)
j − w

(s)
i ), (4.36)

where ε is the parameter of the Perron matrix and aij(t) is the (i, j)-th entry of the adjacency

matrix. Use of consensus protocols implicitly requires that each node can distributively

determine convergence in the network. In other words, just because an agent converged, that

does not imply that the network has reached consensus. We employ a maximin stopping

criterion [138] to locally detect convergence in the network. An additional assumption is

required to implement the DAC.
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Assumption 4.25. The total number of agents M is known.

Lemma 4.26. [93, Theorem 2], [94, Corollary 5.2] Let Assumption 4.1 hold. If ε ∈ (0, 1/∆),

then the DAC (4.36) converges to the average w̄ for any initialization w
(0)
i with convergence

time TM(ε) = O(M3 log(M/ε)).

JOR: The JOR is an iterative and parallel method to solve a system of linear algebraic

equations in the form of Hq = b, where H = [hij] ∈ RM×M is a known non-singular matrix

with non-zero diagonal entries hii 6= 0, b ∈ RM is a known vector, and q ∈ RM is an

unknown vector. More specifically, the i-th node knows: i) the i-th row of the known matrix

rowi{H} ∈ R1×M ; and ii) the i-th element of the known vector bi ∈ R. The objective is to

find qi ∈ R, the i-th element of the unknown vector q. The JOR iterative scheme yields,

q
(s+1)
i = (1− ω)q

(s)
i +

ω

hii

(
bi −

∑
j 6=i

hijq
(s)
j

)
, (4.37)

where ω ∈ (0, 1) the relaxation parameter.

Remark 4.27. The limit of the summation in (4.37) requires communication with all agents,

as it is computed over j other than i. This means that each agent must know the update value

(4.37) of every other agent {q(s)
j }j 6=i, i.e. j 6= i =⇒ j ∈ V\i. That is a major restriction,

as it imposes a strongly complete graph topology (Figure 4.1). Although in [23, 24, 25]

JOR is used for distributed networks, it is unrealistic for many network applications due

to limited communication. However, we evaluate the use of JOR, as in some applications

with small fleet size, strongly complete networks are feasible. For not strongly complete

network topologies, distributed flooding is required at every iteration to obtain {q(s)
j }j 6=i

and implement (4.37). The number of inter-agent communications for distributed flooding

is the diameter of the graph diam(G). Thus, the total number of iterations yields sJOR =

diam(G)send
JOR.
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Agent 1 Agent 2 Agent M

GPDEC+ GPDEC+ GPDEC+

DAC

(a) DEC-(g)PoE, DEC-(r)BCM

Agent 1 Agent 2 Agent M

Cθ,1

DAC

(b) DEC-grBCM

-1 Cθ,2
-1 Cθ,M

-1

DACDAC DAC ...

Cθ,+2
-1 Cθ,+M

-1

...

DECGP GP GPDEC DEC

DAC

Cθ,+1
-1

Figure 4.3: The structure of the proposed DEC-PoE and DEC-BCM families. Blue dotted
lines correspond to communication (strongly connected). Every agent implements discrete-
time average consensus (DAC) methods.

Lemma 4.28. [127, Theorem 2] Let the graph G be time-invariant and strongly complete.

If H is symmetric and PD, and ω < 2/M , then the JOR converges to the solution for any

initialization q
(0)
i .

Lemma 4.29. [127, Theorem 4] Let the graph G be time-invariant and strongly complete.

If H is symmetric and PD, and ω? = 2/(λ(R) + λ(R)) where R = diag(H)−1H, then the

JOR converges to the solution for any initialization q
(0)
i with the optimal rate.

Remark 4.30. The difference between Lemma 4.28 and 4.29 is that the latter employs the

optimal relaxation factor ω? which is characterized by the eigenvalues of R. In principle,

the smaller the relaxation factor ω the slower the convergence speed [45]. Since ω∗ > 2/M ,

the optimal relaxation leads to faster convergence of JOR to the solution. To compute ω?

in a network of agents, additional communication is required to distributively estimate the

maximum and minimum eigenvalues of R. However, the sufficient condition for ω of Lemma

4.28 can be locally computed with no communication. Let the distributed method for the

computation of ω? entail send
ω? iterations, JOR with ω from Lemma 4.28 converge after send

JOR

iterations, and JOR with ω? from from Lemma 4.29 converge after send
JOR? iterations. Then,

ω? is communication-wise more efficient in decentralized networks when send
ω? +send

JOR? < send
JOR.
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PM : The optimal relaxation factor ω? involves the maximum eigenvalue λ(R) and minimum

eigenvalue λ(R) (Lemma 4.29). We employ the power method (PM) to compute λ(R) and

the inverse power method (IPM) to compute λ(R). The PM is a two step iterative algorithm

that follows,

g(s+1) = Re(s) (4.38a)

e(s+1) = g(s+1)/‖g(s+1)‖∞, (4.38b)

where ‖·‖∞ denotes the infinity norm. As the PM algorithm converges ‖e(s)− e(s−1)‖2→ 0,

the infinity norm approximates the dominant eigenvalue ‖g(s)‖∞≈ λ(R). After obtaining

λ(R), we formulate the spectral shift of R, that is B = R − λ(R)IM . The IPM is the

application of PM (4.38) on B. Then, we derive the minimum eigenvalue as λ(R) = |λ(B)−

λ(R)|. In order to obtain both λ(R) and λ(R), we need to execute the PM algorithm (4.38)

two sequential times. Let the first PM algorithm to converge after send
PM iterations and the

second after send
IPM iterations. The use of the optimal relaxation is communication-wise more

efficient if send
PM + send

IPM + send
JOR? < send

JOR (Remark 4.30). Note that if H is symmetric, then

R = diag(H)−1H is also symmetric, as the only changes occur in the diagonal elements,

with diag(H)−1 = {H−1
ii }Mi=1.

Lemma 4.31. [40, Chapter 8] Let the graph G be time-invariant and strongly complete. If H

is symmetric, then the PM converges to the dominant real eigenvalue λ(R) with convergence

rate O((λ2/λ)s
end
PM), where λ2 is the second largest eigenvalue.

DEC-PoE Family

The decentralized PoE (DEC-PoE) method makes use of two DAC algorithms (FIgure 4.3-

(a)). The first DAC computes the average (1/M)
∑M

i=1 βiσ
−2
i and the second DAC the aver-



108 Chapter 4. Decentralized Gaussian Processes

Table 4.5: Communication Complexity of Decentralized GP Aggregations

Method Graph Communication Complexity

DEC-PoE SC O(2χ)
DEC-gPoE SC O(2χ)
DEC-BCM SC O(2χ)
DEC-rBCM SC O(3χ)
DEC-grBCM SC O(3χ)
DEC-NPAE SCC O(2Msend

JOR + 2χ+Mξ)
DEC-NPAE? SCC O(2M(send

JOR? + send
PM) + 2χ+Mξ +M2)

SC: strongly connected, SCC: strongly complete connected, χ =
send

DACcard(Ni), ξ = N2/M2 +D(N/M).

Algorithm 6 DEC-PoE

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆

Output: µDEC-PoE, σ−2
DEC-PoE

1: ε = 1/∆
2: for each i ∈ V do
3: µi ← localMean(x∗, k, θ̂,Di,C−1

θ,i ) (4.11)

4: σ−2
i ← localVariance(x∗, k, θ̂,Di,C−1

θ,i , ) (4.12)

5: initialize w
(0)
µ,i = βiσ

−2
i µi, w

(0)
σ−2,i

= βiσ
−2
i , βi = 1

6: repeat

7: communicate w
(s)
µ,i , w

(s)
σ−2,i

to agents in Ni
8: w

(s+1)
µ,i ← DAC(ε, w

(s)
µ,i , {w

(s)
µ,j}j∈Ni ,Ni) (4.36) . DAC1

9: w
(s+1)
σ−2,i

← DAC(ε, w
(s)
σ−2,i

, {w(s)
σ−2,j
}j∈Ni ,Ni) (4.36) . DAC2

10: until maximin stopping criterion

11: σ−2
DEC-PoE = Mw

(end)
σ−2,i

(4.14)

12: µDEC-PoE = σ2
DEC-PoEMw

(end)
µ,i (4.13)

13: end for

age (1/M)
∑M

i=1 βiσ
−2
i µi, where βi = 1. At every iteration of DAC each agent communicates

both computed values w
(s)
µ,i , w

(s)

σ−2,i to its neighbors Ni. After convergence, each DAC average

is multiplied by the number of nodes M and follow (4.13), (4.14) to recover the DEC-PoE

prediction mean and precision. The implementation details are given in Algorithm 6. The

time and space complexity are identical to the local time and space complexity of the PoE

family as listed in Table 4.2. Let send
DAC be the maximum number of iterations of the two DAC
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Algorithm 7 DEC-gPoE

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆

Output: µDEC-gPoE, σ−2
DEC-gPoE

1: Identical to Algorithm 6 with βi = 1/M instead of βi = 1 (line 5)

Algorithm 8 DEC-BCM

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆

Output: µDEC-BCM, σ−2
DEC-BCM

1: ε = 1/∆
2: for each i ∈ V do
3: µi ← localMean(x∗, k, θ̂,Di,C−1

θ,i ) (4.11)

4: σ−2
i ← localVariance(x∗, k, θ̂,Di,C−1

θ,i , ) (4.12)

5: σ2
∗∗ = k(x∗,x∗)

6: initialize w
(0)
µ,i = βiσ

−2
i µi, w

(0)
σ−2,i

= βiσ
−2
i , βi = 1

7: repeat

8: communicate w
(s)
µ,i , w

(s)
σ−2,i

to agents in Ni
9: w

(s+1)
µ,i ← DAC(ε, w

(s)
µ,i , {w

(s)
µ,j}j∈Ni ,Ni) (4.36) . DAC1

10: w
(s+1)
σ−2,i

← DAC(ε, w
(s)
σ−2,i

, {w(s)
σ−2,j
}j∈Ni ,Ni) (4.36) . DAC2

11: until maximin stopping criterion

12: σ−2
DEC-BCM = Mw

(end)
σ−2,i

+ (1−
∑M

i=1 βi)σ
−2
∗∗ (4.16)

13: µDEC-BCM = σ2
DEC-BCMMw

(end)
µ,i (4.15)

14: end for

to converge. The total communications are O(2send
DACcard(Ni)) for all i ∈ V (Table 4.5).

Next, we form the decentralized gPoE (DEC-gPoE) (Figure 4.3-(a)). The DEC-gPoE is

identical to the DEC-PoE, but βi = 1/M instead of βi = 1 (Algorithm 7). The time,

space, and communication complexity are identical to the DEC-PoE. Both DEC-PoE and

DEC-gPoE methods address Problem 4.

DEC-BCM Family

The decentralized BCM (DEC-BCM) method employs two DAC algorithms (Figure 4.3-(a)).

The first DAC computes the average (1/M)
∑M

i=1 βiσ
−2
i and the second DAC the average

(1/M)
∑M

i=1 βiσ
−2
i µi, where βi = 1. At every iteration of DAC each agent communicates
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Algorithm 9 DEC-rBCM

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆

Output: µDEC-rBCM, σ−2
DEC-rBCM

1: ε = 1/∆
2: for each i ∈ V do
3: µi ← localMean(x∗, k, θ̂,Di,C−1

θ,i ) (4.11)

4: σ−2
i ← localVariance(x∗, k, θ̂,Di,C−1

θ,i ) (4.12)

5: σ2
∗∗ = k(x∗,x∗)

6: initialize w
(0)
µ,i = βiσ

−2
i µi, w

(0)
σ−2,i

= βiσ
−2
i , w

(0)
βi

= βi, βi = 0.5[lnσ2
∗∗ − lnσ2

i ]
7: repeat

8: communicate w
(s)
µ,i , w

(s)
σ−2,i

, w
(s)
βi

to agents in Ni
9: w

(s+1)
µ,i ← DAC(ε, w

(s)
µ,i , {w

(s)
µ,j}j∈Ni ,Ni) (4.36) . DAC1

10: w
(s+1)
σ−2,i

← DAC(ε, w
(s)
σ−2,i

, {w(s)
σ−2,j
}j∈Ni ,Ni) (4.36) . DAC2

11: w
(s+1)
βi

← DAC(ε, w
(s)
βi
, {w(s)

βj
}j∈Ni ,Ni) (4.36) . DAC3

12: until maximin stopping criterion

13: σ−2
DEC-rBCM = Mw

(end)
σ−2,i

+ (1−Mw
(end)
βi

)σ−2
∗∗ (4.16)

14: µDEC-rBCM = σ2
DEC-rBCMMw

(end)
µ,i (4.15)

15: end for

both computed values w
(s)
µ,i , w

(s)

σ−2,i to its neighbors Ni. After convergence, each DAC average

is multiplied by the number of nodes M and follow (4.15), (4.16) to recover the DEC-BCM

mean and precision. The implementation details are provided in Algorithm 8. The time,

space, and communication complexity are identical to the DEC-PoE family. The DEC-BCM

addresses Problem 4.

We introduce the decentralized rBCM (DEC-rBCM) technique that utilizes three DAC algo-

rithms to compute the averages (1/M)
∑M

i=1 βiσ
−2
i , (1/M)

∑M
i=1 βiσ

−2
i µi, and (1/M)

∑M
i=1 βi,

where βi = 0.5[lnσ2
∗∗ − lnσ2

i ]. At every iteration of DAC each agent communicates w
(s)
µ,i ,

w
(s)

σ−2,i, w
(s)
βi

to its neighbors Ni. After convergence, each DAC average is multiplied by the

number of nodes M and follow (4.15), (4.16) to recover the DEC-rBCM prediction mean

and precision. Implementation details are given in Algorithm 9. The local time and space

complexity are identical to the rBCM (Table 4.2). Let send
DAC be the maximum number of

iterations of the three DAC to converge. The total communications are O(3send
DACcard(Ni))
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Algorithm 10 DEC-grBCM

Input: D+i(X+i,y+i), θ̂, C−1
θ,+i, Ni, k, M , x∗, ∆

Output: µDEC-grBCM, σ−2
DEC-grBCM

1: ε = 1/∆
2: for each i ∈ V do
3: µ+i ← localMean(x∗, k, θ̂,D+i,C

−1
θ,+i) (4.11)

4: σ−2
+i ← localVariance(x∗, k, θ̂,D+i,C

−1
θ,+i) (4.12)

5: σ2
c = k(Xc,Xc)

6: initialize w
(0)
µ,i = βiσ

−2
+i µ+i, w

(0)
σ−2,i

= βiσ
−2
+i , w

(0)
βi

= βi, βi = 0.5[lnσ2
c − lnσ2

+i]
7: repeat

8: communicate w
(s)
µ,i , w

(s)
σ−2,i

, w
(s)
βi

to agents in Ni
9: w

(s+1)
µ,i ← DAC(ε, w

(s)
µ,i , {w

(s)
µ,j}j∈Ni ,Ni) (4.36) . DAC1

10: w
(s+1)
σ−2,i

← DAC(ε, w
(s)
σ−2,i

, {w(s)
σ−2,j
}j∈Ni ,Ni) (4.36) . DAC2

11: w
(s+1)
βi

← DAC(ε, w
(s)
βi
, {w(s)

βj
}j∈Ni ,Ni) (4.36) . DAC3

12: until maximin stopping criterion

13: σ−2
DEC-grBCM = Mw

(end)
σ−2,i

+ (1−Mw
(end)
βi

)σ−2
c (4.18)

14: µDEC-grBCM = σ2
DEC-grBCM(Mw

(end)
µ,i − (Mw

(end)
βi

− 1)σ−2
c µc) (4.17)

15: end for

for all i ∈ V (Table 4.5). The DEC-rBCM addresses Problem 4.

We propose the decentralized grBCM (DEC-grBCM) method which employs three DAC

algorithms (Figure 4.3-(b)) to compute the averages (1/M)
∑M

i=1 βiσ
−2
+i , (1/M)

∑M
i=1 βiσ

−2
+i µi,

and (1/M)
∑M

i=1 βi, where βi = 0.5[lnσ2
c − lnσ2

+i]. At every iteration of DAC each agent

communicates w
(s)
µ,i , w

(s)

σ−2,i, w
(s)
βi

to its neighbors Ni. After convergence, each DAC average

is multiplied by the number of nodes M and follow (4.17), (4.18) to recover the prediction

mean and precision. Implementation details are given in Algorithm 10. The local time and

space complexity are identical to the grBCM (Table 4.2). Let send
DAC be the maximum number

of iterations of the three DAC to converge. The total communications are O(3send
DACcard(Ni))

for all i ∈ V (Table 4.5). The DEC-grBCM addresses Problem 5.

Proposition 4.32. Let the Assumption 4.1, 4.3, 4.5, 4.11, 4.25 hold throughout the approx-

imation. If ω < 2/M then the DEC-grBCM is consistent for any initialization.
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Proof. The proof is a direct consequence of Proposition 4.14 and Proposition 4.26.

DEC-NPAE Family

An additional assumption is required to implement the DEC-NPAE family methods.

Assumption 4.33. The graph topology is strongly complete, i.e. every agent i can commu-

nicate with every other node j 6= i.

Remark 4.34. Assumption 4.33 is conservative, but mandatory for the implementation of

the PM and JOR algorithms. In order to use the DEC-NPAE family with strongly connected

graph topologies, flooding is required (Remark 4.27).

We present dec-NPAE which combines JOR and DAC to decentralize the computations

(4.21), (4.22) of NPAE (Figure 4.4-(a)). We execute two parallel JOR algorithms with

known matrix H = Cθ,A and known vectors: i) b = µ; and ii) b = kA. The first JOR is

associated with the prediction mean (4.21) and the second with the variance (4.22). Note

that Cθ,A is a symmetric and PD covariance matrix. Implementation details are provided

in Algorithm 11. We split up the computation in two parts. First, each entity computes

three quantities: i) the local mean µi (4.11); ii) the local cross covariance [kA]i (4.19); and

iii) the local row covariance rowi{Cθ,A} (4.20). For the local computation of (4.20) the

agents must know the inputs {Xj}j 6=i of all other agents, to find Cθ,ij and kj,∗. The inputs

{Xj}j 6=i are communicated between agents. The local inverted covariance matrices of all

other agents {C−1
θ,j}j 6=i can be locally computed, but it is computationally very expensive

to invert M − 1 matrices, i.e. O(MN3
i ) = O(N3/M2). Since every agent i has already

stored its local covariance matrix from the training step (Section 4.3), we select to exchange

{C−1
θ,j}j 6=i between agents (Algorithm 11-[Line 3]). After every JOR iteration, each agent i

communicates the computed values q
(s)
µ,i , q

(s)

σ2,i to its neighbors Ni (Algorithm 11-[line 10]).
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Algorithm 11 DEC-NPAE

Input: Di(Xi,yi), X, θ̂, C−1
θ,i , Ni, k, M , x∗, ∆

Output: µDEC-NPAE, σ2
DEC-NPAE

1: initialize ω = 2/M ; ε = 1/∆
2: for each i ∈ V do
3: communicate C−1

θ,i , Xi to agents in V\i
4: µi ← localMean(x∗, k, θ̂,Di,C−1

θ,i ) (4.11)

5: [kA]i ← crossCov(x∗, k, θ̂,Xi,C
−1
θ,i ) (4.19)

6: rowi{Cθ,A} ← localCov(x∗, k, θ̂,X,C−1
θ,i , {C

−1
θ,j}j 6=i) (4.20)

7: [H]i = rowi{Cθ,A}; bµ,i = µi; bσ2,i = [kA]i

8: initialize q
(0)
µ,i = bµ,i/[H]ii, q

(0)
σ2,i

= bσ2,i/[H]ii
9: repeat . 2×JOR

10: communicate q
(s)
µ,i , q

(s)
σ2,i

to agents in V\i
11: q

(s+1)
µ,i ← JOR(ω, [H]i, bµ,i, q

(s)
µ,i , {q

(s)
µ,j}j 6=i) (4.37)

12: q
(s+1)
σ2,i

← JOR(ω, [H]i, bσ2,i, q
(s)
σ2,i

, {q(s)
σ2,j
}j 6=i) (4.37)

13: until maximin stopping criterion

14: initialize w
(0)
µ,i = [kA]iq

(end)
µ,i , w

(0)
σ2,i

= [kA]iq
(end)
σ2,i

15: repeat

16: communicate w
(s)
µ,i , w

(s)
σ2,i

to agents in Ni
17: w

(s+1)
µ,i ← DAC(ε, w

(s)
µ,i , {w

(s)
µ,j}j∈Ni ,Ni) (4.36) . DAC1

18: w
(s+1)
σ2,i

← DAC(ε, w
(s)
σ2,i

, {w(s)
σ2,j
}j∈Ni ,Ni) (4.36) . DAC2

19: until maximin stopping criterion

20: µDEC-NPAE = Mw
(end)
µ,i

21: σ2
DEC-NPAE = σ2

f (k∗∗ −Mw
(end)
σ2,i

)
22: end for

Next, we compute an element of the unknown vectors qµ,i = [C−1
θ,Aµ]i, qσ2,i = [C−1

θ,AkA]i

(Algorithm 11-[lines 11, 12]) with the JOR method. When JOR converges, each agent

computes locally the i-th element of the resulting summation from: i) the multiplication

between the vectors kᵀ
A and C−1

θ,Aµ (4.21), that is wµ,i = [kA]iq
(end)
µ,i ; and ii) the multiplication

between the vectors kᵀ
A and C−1

θ,AkA (4.22), that is wσ2,i = [kA]iq
(end)

σ2,i . Second, since all

agents have stored a part of the summations wµ,i, wσ2,i, we use the DAC to compute the

averages (1/M)
∑M

i=1[kA]iq
(end)
µ,i and (1/M)

∑M
i=1[kA]iq

(end)

σ2,i . After every DAC iteration, each

agent i communicates the computed values w
(s)
µ,i , w

(s)

σ2,i to its neighbors Ni. When both DAC

converge, each agent follows (4.21), (4.22) to recover the DEC-NPAE mean and variance.
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Algorithm 12 PowerMethod
Input: R, Ni, M , ηPM

Output: λ(R)

1: initialize e(0) = 1/M
2: repeat

3: g
(s+1)
i = rowi{R}e(s) (4.38a)

4: communicate g
(s+1)
i to agents in V\i

5: ‖g(s+1)‖∞= max{|gs+1|}
6: e(s+1) = g(s+1)/‖g(s+1)‖∞ (4.38b)
7: until ‖e(s+1) − e(s)‖2< ηPM

8: λ(R) = ‖g(end)‖∞

Algorithm 13 DEC-NPAE*

Input: Di(Xi,yi), X, θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηPM

Output: µDEC-NPAE? , σ2
DEC-NPAE?

1: for each i ∈ V do
2: communicate rowi{Cθ,A} to agents in V\i
3: diag(Cθ,A)−1 = diag({Cθ,A}−1

ii )
4: R = diag(Cθ,A)−1Cθ,A

5: λ(R)← PowerMethod(R,Ni,M, ηPM) . PM1
6: B = R− λ(R)IM
7: λ(B)← PowerMethod(B,Ni,M, ηPM) . PM2
8: λ(R) = |λ(B)− λ(R)|
9: ω? = 2/(λ(R) + λ(R))

10: end for
11: DEC-NPAE(Di,X, θ̂,C−1

θ,i ,Ni, k,M,x∗,∆, ω
?)

The local time and space complexity are identical to the local NPAE as shown in Table 4.2.

Let send
JOR and send

DAC be the maximum number of iterations of the JOR and DAC to converge

respectively. The total communications for a strongly complete topology yields O(2send
JORM+

2send
DACcard(Ni) +MN2

i +MDNi) = O(2send
JORM + 2send

DACcard(Ni) +M(N2/M2 +DN/M) for

all i ∈ V as listed in Table 4.5.

The decentralized NPAE? (DEC-NPAE?) method (Figure 4.4-(b)) is similar to the DEC-

NPAE, but includes an additional routine (Algorithm 12) to compute the optimal relaxation

factor ω? (Lemma 4.29). More specifically, we employ the PM iterative scheme (4.38) to

estimate the largest λ and smallest λ eigenvalues of R. The workflow is as follows. To
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compute the matrix of interest R = diag(Cθ,A)−1Cθ,A, each agent i constructs Cθ,A after

exchanging {rowj{Cθ,A}}j 6=i (Algorithm 13-[Line 2]). Next, each agent i executes the PM

(Algorithm 12) to obtain the maximium eigenvalue λ(R). Then, the spectral shift matrix B

is composed (Algorithm 13-[line 6]). UsingB as an input to the PM algorithm, its maximum

eigenvalue is obtained λ(B). To this end, the minimum eigenvalue of R can be computed

(Algorithm 12-[Line 8]). Subsequently, the optimal relaxation ω? is computed according

to Lemma 4.29. Provided ω?, the DEC-NPAE (Algorithm 11) is executed. Let send
PM be the

iterations required for the PM to converge. Then, the total communications are O(2send
PMM+

M2)+O(DEC-NPAE) to exchange: i) the g
(s)
i for two PM routines (Algorithm 12-[Line 4]); ii)

the rowi{Cθ,A} (Algorithm 13-[Line 2]); and iii) the quantities of DEC-NPAE. A comparison

of the communication complexity for all decentralized GP aggregation methods is presented

in Table 4.5. In Figure 4.4 we illustrate the structure of the DEC-NPAE family. Both

methods of the DEC-NPAE family address Problem 5.

Proposition 4.35. Let the graph G be strongly complete during the JOR and PM iterations

(Assumption 4.33), and strongly connected during the DAC iterations (Assumption 4.1). In

addition, let Assumption 4.3, 4.5, 4.25 hold throughout the approximation. If ω < 2/M ,

ε ∈ (0, 1/∆), then the DEC-NPAE is consistent for any initialization. Provided that the

conditions for JOR hold for the PM iterations and that ω? = 2/(λ(R) + λ(R)), then the

DEC-NPAE? is consistent for any initial conditions.

Proof. The proof for DEC-NPAE is a direct consequence of Proposition 4.15 and Propo-

sition 4.26, 4.28. Similarly for DEC-NPAE?, the proof follows from Proposition 4.15 and

Proposition 4.26, 4.29.
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Agent 1 Agent 2 Agent M

DECGP GP GPDEC DEC

DAC

row{      }Cθ,A1

(a) DEC-NPAE

Agent 1 Agent 2 Agent M

Cθ,1

JOR JOR JOR...

DAC

DACDAC

(b) DEC-NPAE*

JOR* JOR* JOR*...

DAC ...

-1 Cθ,2
-1 Cθ,M

-1...

PM
IPM

PM
IPM

PM
IPM

...

...row{      } row {      }Cθ,AM

...

Cθ,A2

DECGP GP GPDEC DEC

Cθ,1
-1 Cθ,2

-1 Cθ,M
-1

DAC

Figure 4.4: The structure of the DEC-NPAE family. Blue dotted lines correspond to com-
munication (strongly complete). (a) DEC-NPAE incorporates Jacobi over-relaxation (JOR)
and discrete-time average consensus (DAC). (b) DEC-NPAE? makes use of the power method
(PM) to obtain the optimal relaxation factor and execute JOR?, and DAC.

4.4.2 Nearest Neighbor Decentralized Aggregation Methods

DALE : An alternative method to solve a linear system of algebraic equations, but for

strongly connected (Assumption 4.1) and not strongly complete topology (Assumption 4.33)

is DALE. The latter is an iterative method with identical setup to JOR Hq = b, where H is

a known matrix, b a known vector, and q an unknown vector. The i-th node knows: i) i-th

row of H i = rowi{H} ∈ R1×M ; and ii) i-th entry of bi ∈ R. In addition, DALE is formulated

as a consensus problem, where the goal for all agents is to obtain the same solution qi ∈ RM

and not just an element of the unknown vector as in JOR. The DALE follows,

q
(s+1)
i = Hᵀ

i (H iH
ᵀ
i )
−1bi +

1

card(Ni(t))
P i

∑
j∈Ni(t)

q
(s)
j , (4.39)
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where P i = IM −Hᵀ
i (H iH

ᵀ
i )
−1H i ∈ RM×M is the orthogonal projection onto the kernel of

H i. In addition, DALE can be executed in a time-varying network under Assumption 4.1.

Assumption 4.36. Matrix H is full row rank.

Lemma 4.37. [78, Theorem 3] Let Assumption 4.1, 4.36 hold. There exists a constant

φ ∈ (0, 1) such that all q
(s)
i converge to the solution for any initialization q

(0)
i with worst case

convergence speed φs.

Remark 4.38. The convergence speed constant φ depends on the number of robots M and

the diameter of the graph diam(G). The larger the fleet size and the diameter the slower the

convergence.

Remark 4.39. The i-th node using DALE (4.39) exchanges information only with its neigh-

bors j ∈ Ni and not with the whole network (see in contrast Proposition 4.27 for JOR).

In addition, DALE is concurrently a consensus algorithm and updates the whole vector

q
(s)
i ∈ RM , while JOR updates just the corresponding entry [q

(s)
i ]i ∈ R. Thus, DALE is

equivalent to the operation of both JOR and DAC.

CBNN : To identify statistically correlated agents for a location of interest x∗ we introduce

the covariance-based nearest neighbor (CBNN) method. Let every agent i to have its own

opinion for the location of interest {µ1, . . . , µM}, where µi = E[y(x∗) | Di,θ] computed as

a GP local mean (4.11). In other words, every agent makes a prediction µi for the location

of interest x∗ based on its local dataset Di. Then, we use the local mean values to form the

mean dataset Dµ = ({X i}Mi=1, {µi}Mi=1) = (X,µ), where X i ∈ RD×Ni , X ∈ RD×N , µi ∈ R,

and µ ∈ RM .

Definition 4.40. Let the vector of random variables (µ1(x∗), . . . , µM(x∗), y(x∗))
ᵀ ∈ RM+1

to form a random process, where the first two moments exist with zero mean µµ = 0 and a

finite covariance Cθ,µ.
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Agent M

CBNN

DEC-XX

GPDEC

Agent 1 Agent 2 Agent M-1

Cθ,1

CBNN

-1 Cθ,2
-1 Cθ,M-1

-1

CBNN...

DECGP GP GPDEC DEC

CBNN

Cθ,M
-1

Figure 4.5: The structure of the proposed nearest neighbor decentralized aggregation meth-
ods. Blue dotted lines correspond to communication (strongly connected). The covariance-
based nearest neighbor (CBNN) method identifies statistically correlated agents—in this
illustration the CBNN set is VNN ∈ [2,M − 1]. Next, a decentralized aggregation method
among the DEC-PoE and DEC-BCM families is executed within the VNN nodes. After
convergence, the predicted values are communicated to the rest agents of the network.

Algorithm 14 DEC-NN-PoE

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηNN

Output: µDEC-NN-PoE, σ−2
DEC-NN-PoE

1: for each i ∈ V do
2: [kµ,∗]i ← CrossCovCBNN(x∗, k, θ̂,Xi,C

−1
θ,i ) (4.40)

3: for each j ∈ Ni do
4: if [kµ,∗]j < ηNN then
5: NNN,i = Ni\j
6: communicate j to all agents in V\i
7: VNN = V\j
8: end if
9: end for

10: MNN = card(VNN)
11: end for
12: DEC-PoE(Di, θ̂,C−1

θ,i ,NNN,i, k,MNN,x∗,∆)

13: communicate µDEC-NN-PoE and σ2
DEC-NN-PoE to agents in V\VNN

Proposition 4.41. [5, Proposition 3] The random process (Definition 4.40) approximates a

GP, (µ1(x∗), . . . , µM(x∗), y(x∗))
ᵀ ∼ GP(µµ,Cθ,µ) as N →∞.



4.4. Proposed Decentralized GP Prediction 119

Algorithm 15 DEC-NN-gPoE

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηNN

Output: µDEC-gPoE, σ−2
DEC-gPoE

1: Identical to Algorithm 14 with routine DEC-PoE replaced by DEC-gPoE

The covariance of the new GP (Proposition 4.41) yields,

Cθ,µ = Cov[µ(x∗), y(x∗)] =

Kµ kᵀ
µ,∗

kµ,∗ k∗∗

 ,
where kᵀ

µ,∗ ∈ RM is the cross-covariance. Interestingly, the cross-covariance elements [kµ,∗]i ∈

R≥0 represent the correlation of a local datasetDi with the location of interest x∗. Essentially,

this means that when the corresponding entry tends to zero {kµ,∗}i → 0, then agent i is

statistically uncorrelated to the location of interest x∗. Every agent i can compute locally

its cross-covariance element as,

[kµ,∗]i = kᵀ
i,∗C

−1
θ,iki,∗, (4.40)

where ki,∗ = k(X i,x∗). The workflow of CBNN is as follows. Every agent i computes its

cross-covariance [kµ,∗]i (4.40). When the correlation of agent i to the location of interest is

below a threshold [kµ,∗]i < ηNN, then the agent does not take place to the aggregation of

GP experts. In other words, the agent is not allowed to have an opinion for x∗. After all

agents compute their correlation, the nearest neighbor subset of nodes is derived VNN ⊆ V

with MNN = card(VNN) ≤M .

Lemma 4.42. The exclusion of agents from the aggregation using CBNN preserves network

connectivity.

Proof. The proof is provided in the Appendix.
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Algorithm 16 DEC-NN-BCM

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηNN

Output: µDEC-BCM, σ−2
DEC-BCM

1: Identical to Algorithm 14 with routine DEC-PoE replaced by DEC-BCM

Algorithm 17 DEC-NN-rBCM

Input: Di(Xi,yi), θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηNN

Output: µDEC-rBCM, σ−2
DEC-rBCM

1: Identical to Algorithm 14 with routine DEC-PoE replaced by DEC-rBCM

The advantages of using CBNN to identify statistically correlated agents are: i) the selection

of nearest neighbors is justified through a covariance not just by using an arbitrary radius;

ii) only the local dataset Di is required to compute (4.40) with no data exchange, which

satisfies Assumption 4.2; iii) the total communications are reduced, as a subset of the agents

takes part to the aggregation VNN; iv) the DAC converges faster (Lemma 4.26); and v) the

DALE can be employed as H is ensured to be full row rank.

DEC-NN-PoE Family

The decentralized nearest neighbor PoE (DEC-NN-PoE) family is identical to the DEC-PoE

family with a CBNN selection as shown in Figure 4.5. The implementation details for DEC-

NN-PoE are given in Algorithm 14 and for DEC-NN-gPoE in Algorithm 15. The workflow

is as follows. Every agent i computes the local cross-covariance of CBNN [kµ,∗]i (4.40) and

evaluates its involvement to the aggregation (Algorithm 14-[Line 4]). After the CBNN termi-

nates, the remaining agents VNN run the DEC-PoE family routines (Algorithm 6, 7). Finally,

the predicted values are transmitted to the agents that did not take part to the aggregation

V\VNN. The time and space computational complexity is identical to the local PoE fam-

ily (Table 4.2). The communication complexity for both methods is O(2send
DACcard(NNN,i)).

Both methods address Problem 4.
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Algorithm 18 DEC-NN-grBCM

Input: D+i(X+i,y+i), θ̂, C−1
θ,+i, Ni, k, M , x∗, ∆, ηNN

Output: µDEC-NN-grBCM, σ−2
DEC-NN-grBCM

1: Identical to Algorithm 14 with routine DEC-PoE replaced by DEC-grBCM

...

...
Agent M

Cθ,M

CBNN

-1

CBNN

GPDEC

Agent 1 Agent 2 Agent M-1

Cθ,1

CBNN

-1 Cθ,2
-1 Cθ,M-1

-1

...

DECGP GP GPDEC DEC

CBNN

DALE DALE

Figure 4.6: The structure of the proposed nearest neighbor decentralized aggregation meth-
ods. Blue dotted lines correspond to communication (strongly connected). The covariance-
based nearest neighbor (CBNN) method identifies statistically correlated agents—in this
illustration the CBNN set is VNN ∈ [2,M − 1]. Next, a distributed algorithm for solving a
linear system of equations (DALE) is executed within the VNN nodes. After convergence,
the predicted values are communicated to the rest agents of the network.

DEC-NN-BCM Family

The decentralized nearest neighbor BCM (DEC-NN-BCM) family is identical to the DEC-

BCM family with a CBNN selection (Figure 4.5). The implementation details for DEC-NN-

BCM are given in Algorithm 16, for DEC-NN-rBCM in Algorithm 17, and for DEC-NN-

grBCM in Algorithm 18. The time and space complexity is identical to the local complexity

of the DEC-BCM family (Table 4.2). The communication complexity for DEC-NN-BCM and

DEC-NN-rBCM isO(2send
DACcard(NNN,i)), while for DEC-NN-grBCM isO(3send

DACcard(NNN,i)).

The DEC-NN-BCM and DEC-NN-rBCM methods address Problem 4, while DEC-NN-

grBCM addresses Problem 5.
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Algorithm 19 dec-NN-NPAE

Input: Di(Xi,yi), X, θ̂, C−1
θ,i , Ni, k, M , x∗, ∆, ηNN

Output: µDEC-NN-NPAE, σ2
DEC-NN-NPAE

1: for each i ∈ V do
2: [kA]i ← crossCov(x∗, k, θ̂,Xi,C

−1
θ,i ) (4.19)

3: [kµ,∗]i ← CrossCovCBNN(x∗, k, θ̂,Xi,C
−1
θ,i ) (4.40)

4: for each j ∈ Ni do
5: if [kµ,∗]j < ηNN then
6: NNN,i = Ni\j; VNN = V\j
7: communicate j to all agents in VNN\i
8: else
9: communicate [kA]j to all agents in VNN\i

10: end if
11: end for
12: end for
13: for each i ∈ VNN do
14: µi ← localMean(x∗, k, θ̂,Di,C−1

θ,i ) (4.11)

15: communicate C−1
θ,i , Xi to agents in VNN\i

16: kNN,A = [kA]i ∪ {[kA]j}j∈VNN

17: rowNN,i{Cθ,A} ← localCov(x∗, k,X, θ̂,VNN) (4.20)
18: H i = rowNN,i{Cθ,A}; MNN = card(VNN)
19: bµ,i = µNN,i; bσ2 = kNN,A

20: P i = IMNN
−Hᵀ

i (H iH
ᵀ
i )
−1H i

21: initialize q
(0)
µ,i = bµ,i �H i; q

(0)
σ2,i

= bσ2 �H i

22: repeat . 2×DALE

23: communicate q
(s)
µ,i, q

(s)
σ2,i

to neighbors NNN,i

24: q
(s+1)
µ,i ← DALE(P i,H i, bµ,i, {q(s)

µ,j}j∈NNN,i
,NNN,i) (4.39)

25: q
(s+1)
σ2,i

← DALE(P i,H i, bσ2,i, {q
(s)
σ2,j
}j∈NNN,i

,NNN,i) (4.39)
26: until maximin stopping criterion
27: µDEC-NN-NPAE = kᵀNN,Aq

end
µ,i

28: σ2
DEC-NN-NPAE = σ2

f (k(x∗,x∗)− kᵀNN,Aq
end
σ2,i)

29: end for

Proposition 4.43. Let the Assumption 4.1, 4.3, 4.5, 4.11, 4.25 hold throughout the approx-

imation. If ω < 2/M then the DEC-NN-grBCM is consistent for any initialization.

Proof. The proof is a direct consequence of Proposition 4.14 and Proposition 4.26, 4.42.
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DEC-NN-NPAE

We introduce the decentralized nearest neighbor NPAE (DEC-NN-NPAE) method to dis-

tribute the computations (4.21), (4.22) of NPAE (Figure 4.6). The DEC-NN-NPAE employs

the CBNN and DALE (4.39) methods. By using CBNN, one can satisfy Assumption 4.36 and

use the DALE. Thus, the DEC-NN-NPAE relaxes the strongly complete topology (Assump-

tion 4.33) to a time-invariant strongly connected topology (Assumption 4.1) as discussed

in Remark 4.39. Implementation details are given in Algorithm 19. The workflow is as

follows. First, each entity computes: i) the local cross covariance [kA]i (4.19); and ii) the

cross-covariance of CBNN [kµ,∗]i (4.40). Next, we execute the CBNN routine to select the

nearest neighbors. During the CBNN, if a criterion is met for an agent j to stay in idle

(Algorithm 19-[Line 5]), it is removed from the list of agents VNN = V\j; and if not, the

corresponding element of the local cross covariance [kA]j is communicated to all other agents

VNN\i. When the CBNN routine terminates, we execute the DALE method on the nearest

neighbors VNN. Similarly to DEC-NPAE, the inputs {Xj}j 6=i and the local inverted covari-

ance matrices {C−1
θ,j}j 6=i are communicated between CBNN agents. Next, we execute two

parallel DALE algorithms with known matrix H = Cθ,A and known vectors: i) b = µ; and

ii) b = kA. The first DALE is associated with the prediction mean µDEC-NN-NPAE (Algo-

rithm 19-[Line 24]) and the second with the variance σ2
DEC-NN-NPAE (Algorithm 19-[Line 25]).

After every DALE iteration, each agent i communicates the computed vectors q
(s)
µ,i, q

(s)

σ2,i to

its neighbors NNN,i (Algorithm 19-[Line 23]). Next, we update the vectors qµ,i, qσ2,i (Algo-

rithm 11-[Lines 24, 25]) with the DALE method. When both DALE converge, each agent

follows (4.21), (4.22) to recover the DEC-NN-NPAE mean and variance. The local time and

space complexity are identical to the local NPAE as shown in Table 4.2. Let send
DALE be the

maximum number of iterations of DALE to converge. The total communications during the

CBNN yields O(MNN) and during DALE O(2send
DALEcard(NNN,i) + MNNN

2
i + MNNDNi) =
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O(2send
DALEcard(NNN,i) + MNN(N2/M2

NN + DN/MNN)) for all i ∈ VNN. DEC-NN-NPAE ad-

dresses Problem 5.

Proposition 4.44. Let Assumption 4.1, 4.3, 4.5, 4.25 hold throughout the approximation.

Then, the DEC-NN-NPAE is consistent for any initialization of DALE.

Proof. The proof is a direct consequence of Proposition 4.15 and Proposition 4.37, 4.42

4.5 Numerical Experiments

We perform numerical experiments to illustrate the efficiency of the proposed methods.

Synthetic data with known hyper-parameters values are employed to evaluate the GP train-

ing methods in four aspects: i) hyper-parameter estimation accuracy; ii) computation time

per agent; iii) communications per agent; and iv) comparison with centralized GP train-

ing techniques. A real-world dataset of sea surface temperature (SST) [22, 59] and the

kin40k dataset [17, 30, 76, 90, 113, 123] are used to assess the GP prediction algorithms

in four aspects: i) prediction accuracy; ii) uncertainty quantification; iii) communications

per agent; and iv) comparison with aggregation of GP experts methods. All numerical

experiments are conducted in MATLAB using the GPML package [103] on an Intel Core

i7-6700 CPU @3.40 GHz with 32.0 GB memory RAM. Demonstration code can be found at:

github.com/gkontoudis/decentralized-GP.

4.5.1 Decentralized GP Training

We generate two sets of data with total size N = 8, 100 and N = 32, 400 using the ob-

servation model (4.1) and the separable squared exponential covariance function (4.2) with

hyper-parameter values θ = (l1, l2, σf , σε)
ᵀ = (1.2, 0.3, 1.3, 0.1)ᵀ. For every set of random

https://github.com/gkontoudis/decentralized-GP
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Figure 4.7: Five replications of the synthetic GP with known hyper-parameter values θ =
(1.2, 0.3, 1.3, 0.1)ᵀ for N = 8, 100 data.

Figure 4.8: Accuracy of GP hyper-parameter training using N = 8, 100 data for four fleet
sizes and 10 replications. The true values are demonstrated with a black dotted line. The
existing GP training methods are shown in blue boxes (FULLGP, FACT-GP [30], g-FACT-
GP [76], c-GP [136], apx-GP [135]) and the proposed in maroon boxes (gapx-GP, DEC-c-GP,
DEC-apx-GP, and DEC-gapx-GP).

functions we perform 10 replications to avoid random assignment of data. An example of

five replications for N = 8, 100 data is presented in Figure 4.7. Note that the smaller the

length-scale l, the more wiggly is the random function. Since l2 < l1, the profile of the

produced random functions is more uneven along the y-axis rather than the x-axis. Next,

we equally partition the space of interest S = [0, 2]2 along the x-axis according to fleet sizes

M = {4, 10, 20, 40}, and assign local datasets that lie in the corresponding local space, e.g.,

for M = 10 agents see Figure 4.10-(b). We compare the centralized GP training methods
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Table 4.6: Time & Communication Rounds of GP Training Methods

N = 8, 100 N = 32, 400

M Method Time [s]
Comms

Time [s]
Comms

send send

FULL-GP 2,114.2 - - -

4

FACT-GP [30] 75.9 186.0 2,361.9 196.0
g-FACT-GP [76] 332.1 160.0 ¿3,000 -
c-GP [136] 404.1 141.4 - -
apx-GP [135] 26.8 43.6 817.6 45.2
gapx-GP 67.3 39.7 2,074.2 42.1

DEC-c-GP 414.1 100 - -
DEC-apx-GP 61.9 100 1,821.3 100
DEC-gapx-GP 328.1 100 ¿3,000 -

10

FACT-GP [30] 9.8 179.6 228.2 194.2
g-FACT-GP [76] 31.8 131.8 1,035.6 155.2
c-GP [136] 92.1 193.8 - -
apx-GP [135] 3.8 47.8 88.8 46.8
gapx-GP 15.1 42.2 522.2 44.3

DEC-c-GP 82.4 100 - -
DEC-apx-GP 8.4 100 188.8 100
DEC-gapx-GP 38.5 100 1,123.4 100

20

FACT-GP [30] 2.6 172.6 46.6 226.2
g-FACT-GP [76] 7.0 127.2 199.4 167.6
c-GP [136] 31.4 127.8 - -
apx-GP [135] 1.3 56.2 18.3 49.8
gapx-GP 4.1 50.6 85.8 45.6

DEC-c-GP 30.4 100 - -
DEC-apx-GP 2.2 100 36.9 100
DEC-gapx-GP 8.1 100 185.8 100

40

FACT-GP [30] 0.5 139.6 9.1 160.0
g-FACT-GP [76] 1.8 112.2 30.9 128.6
c-GP [136] 8.9 66.6 - -
apx-GP [135] 0.3 56.4 4.6 54.4
gapx-GP 1.2 51.2 17.9 49.2

DEC-c-GP 9.1 100 - -
DEC-apx-GP 0.5 100 8.2 100
DEC-gapx-GP 2.5 100 36.4 100

FACT-GP [30], g-FACT-GP [76], c-GP [136], and apx-GP [135] to the proposed gapx-GP.

In addition, we include in the comparison the proposed decentralized GP training methods

DEC-c-GP, DEC-apx-GP, and DEC-gapx-GP. All decentralized GP training methods fol-
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low a path graph topology as depicted in Figure 4.1. Thus, the maximum degree of the

graph is ∆ = 2 and its diameter diam(G) = M − 1. All methods start from the same

initial vector value (l
(0)
1 , l

(0)
2 , σ

(0)
f , σ

(0)
ε )ᵀ = (2, 0.5, 1, 1)ᵀ. The penalty parameter of the aug-

mented Lagrangian is set to ρ = 500, the decentralized ADMM tolerance for convergence

TOLADMM = 10−3, the positive Lipschitz constant of the approximation (4.26) Li = 5, 000,

and the regulation positive constant of the approximation (4.32) κi = 5, 000 for all i ∈ V .

For the nested optimization problem of c-GP (4.25b) and DEC-c-GP (4.31b) we use gradi-

ent descent with step size α = 10−5. All decentralized GP training methods terminate after

send = 100 predetermined communication rounds (Remark 4.24), yielding identical commu-

nication complexity (Table 4.4). Any algorithm that takes over 3,000 s to be executed is

terminated.

In Figure 4.8, we show the boxplots of the estimated hyper-parameters for all GP train-

ing methods and all fleet sizes using N = 8, 100 data. Blue boxes illustrate existing GP

training methods and maroon boxes represent the proposed GP training methods. The cor-

responding average computation time per agent and the communication rounds are shown

in Table 4.6. Provided the communication rounds send, the communication complexity can

be computed according to Table 4.1, 4.3. For the case of M = 4 agents, all centralized

methods provide accurate hyper-parameters estimates except of the c-GP on l1. In terms

of computation time, c-GP is the more demanding method, while FACT-GP, apx-GP, and

gapx-GP convergence very fast, outperforming FULL-GP two orders of magnitude for sim-

ilar or even better level of accuracy. The least communication rounds are achieved by the

proposed methodology gapx-GP which results in the lowest communication complexity. Re-

garding the decentralized methods, both DEC-apx-GP and DEC-gapx-GP produce accurate

hyper-parameter estimates, while DEC-c-GP is inaccurate on l1. DEC-apx-GP requires less

computation time per agent than the other two decentralized methods. As we increase the
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Figure 4.9: Accuracy of GP hyper-parameter training using N = 32, 400 data for four fleet
sizes and 10 replications. The true values are demonstrated with a black dotted line. The
existing GP training methods are shown in blue boxes (FACT-GP [30], g-FACT-GP [76],
apx-GP [135]) and the proposed in maroon boxes (DEC-apx-GP, and DEC-gapx-GP).

number of agents (M = 10 and M = 20 agents), the hyper-parameter estimation accuracy

deteriorates for all centralized methods except of the proposed gapx-GP. In addition, gapx-

GP results in the lowest communication complexity and in competitive computation time per

agents, outperformed only by apx-GP. Regarding the decentralized GP training methods,

the hyper-parameter estimation of DEC-gapx-GP is the most accurate. Both DEC-apx-GP

and DEC-c-GP provide reasonable estimates for all hyper-parameters other than l1 which is

inaccurate. The lowest computation per entity is measured for DEC-apx-GP, while the most

accurate method DEC-gapx-GP requires four times more computations than DEC-apx-GP.

For M = 40 agents, the proposed gapx-GP produces the most accurate hyper-parameter es-

timates with only g-FACT-GP competing with reasonable accuracy. However, g-FACT-GP

requires more computation time per agent and exchanges double the amount of messages

to converge than the proposed gapx-GP. From the proposed decentralized methods, only

DEC-gapx-GP is accurate (Remark 4.22) and requires reasonable computation per agent.
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We present the boxplots of the estimated hyper-parameters using N = 32, 400 data and

for all fleet sizes in Figure 4.9, while in Table 4.6 we list the corresponding computation

time per agent as well as the communication rounds. The FULL-GP, c-GP, and DEC-c-

GP methods are not implemented for N = 32, 400 data, as we expect significantly high

computation time (Remark 4.20). For M = 4 agents, both g-FACT-GP and DEC-gapx-GP

exceeded the time limit (3,000 s) for convergence. Among the feasible centralized methods

for N = 32, 400 data, apx-GP and gapx-GP are more accurate than FACT-GP. All methods

are computationally expensive as each agent i is assigned with Ni = 32, 400/4 = 8, 100

data, yet apx-GP is the fastest. Regarding the decentralized methods, DEC-apx-GP is the

only feasible method and produces accurate hyper-parameter estimates. As we increase the

number of agents (M = 10 and M = 20 agents), the number of data is distributed to local

agents, and thus g-FACT-GP and DEC-gapx-GP can be implemented. Since the number of

data is high, all centralized methods produce accurate hyper-parameters estimates. Yet, apx-

GP is computationally more efficient. Although the proposed gapx-GP requires more time

to converge, the communication overhead is the least. Among the decentralized methods,

DEC-gapx-GP is more accurate, but computationally more demanding than DEC-apx-GP.

For the case of M = 40 agents, the most accurate centralized hyper-parameter estimator

is the gapx-GP with the lowest information exchange requirements. The fastest centralized

method is the apx-GP, yet its accuracy is moderate. Regarding the decentralized methods,

DEC-gapx-GP remains accurate and requires reasonable computation time.

Overall, for N = 8, 100 the proposed gapx-GP is the most accurate centralized GP training

method, especially as the fleet size increases. Moreover, gapx-GP requires reasonable com-

putations and it is the most efficient method with respect to communication. Among the

proposed decentralized GP training methods, DEC-gapx-GP is the most accurate method,

yet DEC-apx-GP produces competitive hyper-parameter estimates for medium and small
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fleet size. DEC-apx-GP is the fastest decentralized GP training method, while DEC-gapx-

GP is more demanding, yet requires reasonable computational resources. In principle, as we

increase the number of agents, the computation is distributed and thus yields lower compu-

tation time per agent. Note that the hyper-parameter estimation accuracy improves as we

obtain more data which leads to higher accuracy for N = 32, 400 data (Remark 4.23). Some

techniques are not scalable for the larger dataset N = 32, 400, especially when the fleet size

is small M = 4. However, for larger fleet size the distribution of data facilitates the exe-

cution of most methods. Among the centralized methods, apx-GP is accurate and requires

significantly less computational time for small fleet size, but as we increase the number of

agents the proposed gapx-GP becomes computationally more efficient and remains accurate.

Similarly, DEC-apx-GP is accurate and computationally less demanding for small fleet size,

but DEC-gapx-GP becomes more computationally efficient as we distribute the data to more

agents.

4.5.2 Decentralized GP Prediction

We use a real-world dataset of sea surface temperature (SST) [22, 59]. We extract 122, 500

SST values from (36.4o,−73.0o) to (40.0o,−69.4o) measured in Kelvins. The area corre-

sponds to 400 km × 400 km of the Atlantic ocean and for demonstration is normalized over

[0, 1]2 (Figure 4.10-(a)). Additionally, we add iid noise ε ∼ N (0, 0.25) to the observations

(4.1). We use 20, 000 observations, equally distributed for four fleet sizes M = {4, 10, 20, 40}.

An example of data distribution assignment for M = 10 agents is shown in Figure 4.10-(b).

The GP training of the hyper-parameters is performed with the DEC-gapx-GP method. We

employ 13 techniques over Nt = 100 prediction points: i) DEC-PoE with path graph; ii)

DEC-NN-PoE with path graph; iii) DEC-gPoE with path graph; iv) DEC-NN-gPoE with

path graph; v) DEC-BCM with path graph; vi) DEC-NN-BCM with path graph; vii) DEC-
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Figure 4.10: (a) SST field [59]; (b) Observations of each agent for M = 10.

rBCM with path graph; viii) DEC-NN-rBCM with path graph; ix) DEC-grBCM with path

graph; x) DEC-NN-grBCM with path graph; xi) DEC-NPAE with strongly complete graph;

xii) DEC-NPAE? with path graph and strongly complete graph; and xiii) DEC-NN-NPAE

with path graph, where the graph types are shown in Figure 4.1. For every scenario we

perform 15 replications to avoid random assignment of data.

The quality assessment is accomplished with two metrics. The root mean square error

RMSE = [1/N
∑N

i=1(µ(x∗) − y(x∗))
2]1/2 assesses the prediction mean. The negative log

predictive density NLPD = −1/N
∑N

i=1 log p(ŷ∗ | D,x∗) characterizes the prediction mean

and variance, where p(ŷ∗ | D,x∗) is the predictive distribution [102].

In Figure 4.11, we show the average RMSE and NLPD values for four fleet sizes and 15

replications using the decentralized PoE-based methods. Since the proposed algorithms

DEC-PoE, DEC-NN-PoE; DEC-gPoE, and DEC-NN-gPoE approximate the PoE; and gPoE

respectively, the optimal RMSE and NLPD values are that of PoE [51] and gPoE [17]. All

PoE-based methods produce identical RMSE accuracy, illustrating that the proposed decen-

tralized methods converge with almost zero approximation error. Indeed, PoE and gPoE

have identical mean prediction values, validating Proposition 4.10. In terms of uncertainty

quantification, DEC-PoE and DEC-NN-PoE. Moreover, they all fail to report NLPD val-
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Figure 4.11: Average RMSE and NLPD values for four fleet sizes and 15 replications with
the PoE-based methods on a path graph topology.

Figure 4.12: Average RMSE and NLPD values for four fleet sizes and 15 replications with
the BCM-based methods on a path graph topology.

ues for larger fleet sizes (M = 20 and M = 40 agents), as the predictive variance of PoE

(4.14) is additive and leads to overconfident results which subsequently yield infinite values

of NLPD. Similarly, DEC-gPoE and DEC-NN-gPoE report identical NLPD values with the

gPoE. Both nearest neighbor methods (DEC-NN-PoE and DEC-NN-gPoE) produce results

that are indistinguishable to PoE and gPoE respectively, even though 42.5% of agents were

excluded on average from the aggregation (Table 4.7).

In Figure 4.12, we present the average RMSE and NLPD values for four fleet sizes and 15
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Figure 4.13: Average RMSE and NLPD values for four fleet sizes and 15 replications with
the NPAE-based methods on a strongly complete topology.

replications using the decentralized BCM-based methods. Since the proposed algorithms

DEC-BCM, DEC-NN-BCM; DEC-rBCM, DEC-NN-rBCM; DEC-grBCM, and DEC-NN-

grBCM approximate the BCM [126]; rBCM [30]; and grBCM [76] respectively, the optimal

RMSE and NLPD values are that of BCM, rBCM and grBCM. We observe that DEC-BCM

and DEC-NN-BCM converge to BCM as they report identical RMSE and NLPD values.

Similarly, for the rest decentralized methods, i.e., DEC-rBCM, DEC-NN-rBCM converge to

rBCM, and DEC-grBCM, DEC-NN-grBCM converge to grBCM with almost zero approx-

imation error. All nearest neighbor methods DEC-NN-BCM, DEC-NN-rBCM, and DEC-

NN-grBCM make identical predictions to BCM, rBCM, and grBCM, although a subset of

agents are selected to participate in the prediction.

The average RMSE and NLPD values for four fleet sizes and 15 replications using the de-

centralized NPAE-based methods are presented in Figure 4.13, 4.14. The difference between

Figure 4.13 and Figure 4.14 is that the latter demonstrates methods in a strongly connected

network topology (path graph), while the former methods in a strongly complete network

topology (see Figure 4.1 for differences). Since the proposed algorithms DEC-NPAE, DEC-

NPAE?, and DEC-NN-NPAE approximate the NPAE, the optimal RMSE and NLPD val-
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Figure 4.14: Average RMSE and NLPD values for four fleet sizes and 15 replications with
the NPAE-based methods on a path graph topology.

ues are that of NPAE [107]. The main difference of DEC-NPAE and DEC-NPAE? lies in

the estimation of the optimal relaxation factor rather than selecting the relaxation factor

based on the fleet size (Remark 4.30). All DEC-NPAE, DEC-NPAE?, and DEC-NN-NPAE

produce an approximation error, and thus they do not converge to the optimal RMSE and

NLPD values of NPAE. More specifically, DEC-NPAE? has the smallest approximation error

(Figure 4.13), while DEC-NN-NPAE reports high approximation error (Figure 4.14). Since

send
ω? + send

JOR? < send
JOR, the DEC-NPAE? converges faster than DEC-NPAE. This advocates

that the proposed scheme to estimate the optimal relaxation factor before implementing the

JOR, is more efficient both in speed and accuracy. Thus, the proposed method outperforms

other approaches that employ the JOR [23, 24, 25].

In Table 4.7, we compare the average computation time for each agent and the communica-

tion rounds of all nearest neighbor methods on a path graph network topology. In addition,

we compute the average number of nearest neighbors from 15 replications that participate

in the prediction MNN for all Nt = 100 prediction points of each fleet size. The results reveal

a 42.5% agent reduction with no approximation error for DEC-NN-PoE, DEC-NN-gPoE,

DEC-NN-BCM, DEC-NN-rBCM, and DEC-NN-grBCM (Figure 4.11, 4.12); and significant
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Table 4.7: Decentralized CBNN Aggregation Methods

M Method
Nearest Time per Comms

Neighbors MNN Agent [s] send

4

DEC-NN-PoE

2.3±0.1

0.0312 3.6
DEC-NN-gPoE 0.0339 3.6
DEC-NN-BCM 0.0323 3.6
DEC-NN-rBCM 0.0469 3.6
DEC-NN-grBCM 0.0516 3.6
DEC-NN-NPAE 1.1683 69.4

10

DEC-NN-PoE

5.7±0.2

0.0122 7.2
DEC-NN-gPoE 0.0121 7.2
DEC-NN-BCM 0.0126 7.2
DEC-NN-rBCM 0.0172 7.2
DEC-NN-grBCM 0.0167 7.2
DEC-NN-NPAE 0.4844 247.2

20

DEC-NN-PoE

11.3±0.4

0.0087 6.8
DEC-NN-gPoE 0.0083 6.8
DEC-NN-BCM 0.0086 6.8
DEC-NN-rBCM 0.0126 7.0
DEC-NN-grBCM 0.0124 7.0
DEC-NN-NPAE 0.2698 625.6

40

DEC-NN-PoE

23.6±1.1

0.0052 7.4
DEC-NN-gPoE 0.0049 7.4
DEC-NN-BCM 0.0051 7.4
DEC-NN-rBCM 0.0073 7.4
DEC-NN-grBCM 0.0071 7.4
DEC-NN-NPAE 2.7009 1,824.1

approximation error for DEC-NN-NPAE (Figure 4.14). The computation time per agent

and the communication rounds are similar for all methods other than the DEC-NN-NPAE.

Thus, DEC-NN-NPAE is insufficient in accuracy, computation time per agent, and commu-

nications, while all other decentralized nearest neighbor methods report optimal RMSE and

NLPD values, scalable computation time, and require little information exchange.

In Figure 4.15, we compare five out of the 13 proposed methods that produce accurate

predictions and properly quantify the uncertainty. The comparison includes the DEC-NN-
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Figure 4.15: Comparison of accuracy, uncertainty quantification, communication rounds
send, and computation time per agent for four fleet sizes and 15 replications on decentralized
GP predictions at Nt = 100 unknown locations using N = 20, 000 observations in a path
graph network topology. Lower RMSE and NLPD values indicate better accuracy and better
uncertainty quantification respectively. The comparison includes the five best decentralized
GP prediction methods out of the 13 proposed methods.

gPoE, DEC-NN-rBCM, DEC-NN-grBCM, DEC-NPAE?, and DEC-NN-NPAE for all fleet

sizes in a path graph topology. Accuracy is evaluated with RMSE, uncertainty quantifi-

cation with NLPD, communication complexity with communication rounds, and scalability

with computation time per agent. In terms of accuracy all methods perform well by pro-

ducing low RMSE values for small fleet sizes. However, as we increase the fleet size only

DEC-NN-rBCM, DEC-NN-grBCM, and DEC-NPAE? recover good accuracy with the later

being the most accurate. Similarly for uncertainty quantification, all methods quantify sat-

isfactorily the uncertainty by reporting low NLPD values for small fleet size (4 agents). Yet,

as the fleet sizes increases only DEC-NN-gPoE, DEC-NN-grBCM, and DEC-NPAE? main-

tain good level of uncertainty quantification with DEC-NPAE? being the best. Inter-agent

communication favors DEC-NN-gPoE, DEC-NN-rBCM, and DEC-NN-grBCM for all fleet
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Table 4.8: Qualitative Assessment of Decentralized GP Methods

Method
RMSE NLPD

Comms Scalable
Accuracy UQ

DEC-NN-gPoE Moderate Moderate Excellent Excellent
DEC-NN-rBCM Excellent Bad Excellent Excellent
DEC-NN-grBCM Excellent Excellent Excellent Excellent
DEC-NPAE? Excellent Excellent Bad Moderate
DEC-NN-NPAE Bad Moderate Moderate Bad

sizes. Notably the most accurate method both in terms of RMSE and NLPD (DEC-NPAE?)

requires signification information exchange to converge. In terms of scalability, DEC-NN-

gPoE, DEC-NN-rBCM, and DEC-NN-grBCM are executed very fast, while DEC-NPAE?

requires reasonable computations.

A qualitative assessment of the comparison in Figure 4.15 for all four aspects is presented

on Table 4.8. The results reveal that DEC-NN-grBCM is overall the best decentralized GP

prediction method; DEC-NPAE? is an accurate method, quantifies the uncertianty well, and

entails reasonable computations, but requires signification communication; and DEC-NN-

rBCM is accurate, scalable, requires little information exchange, but quantifies the uncer-

tainty poorly.

4.6 Conclusion

This chapter proposes decentralized methods that cover a broad spectrum of multi-agent

learning applications as they can be employed both for decentralized GP training and decen-

tralized GP prediction on various fleet sizes with different computation and communication

capabilities of local agents. We utilize distributed optimization methods of ADMM to per-

form accurate and scalable GP training in networks. More specifically, a closed-form solu-

tion of the decentralize ADMM is derived for the case of GP hyper-parameter training with
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maximum likelihood estimation. DEC-apx-GP is shown to achieve competitive accuracy in

hyper-parameter estimates for small and medium fleet sizes, while DEC-gapx-GP produces

accurate hyper-parameter estimates for all fleet sizes with reasonable computations of local

entities. Additionally, we propose a centralized GP training method, the gapx-GP, that im-

proves the accuracy of hyper-parameter estimates for medium and large fleet sizes, entails

reasonable computations, and requires little information exchange. Next, we use iterative

and consensus protocols to decentralize the implementation of various aggregation of GP ex-

perts methods. We propose 13 techniques that can be used in various applications depending

on the fleet size, the computational resources of local agents, and the communication capa-

bilities. Moreover, we introduce a nearest neighbor selection method, namely CBNN, that

excludes agents with no statistical correlation from the GP prediction. Although the CBNN

achieves on average 42.5% agent reduction, it does not sacrifice prediction accuracy, and leads

to significant computation and communication reduction. Most of the proposed decentral-

ized GP prediction methods converge to the optimal values without reporting approximation

error for all fleet sizes. The decentralized NPAE-based methods converge with approximation

error, yet for DEC-NPAE? the error is insignificant. DEC-NPAE? and DEC-NN-grBCM are

the most competitive methods for all fleet sizes both in terms of accuracy and uncertainty

quantification, yet DEC-NN-grBCM is also scalable with low communication overhead.



Chapter 5

Conclusion and Future Work

This dissertation illustrates deficiencies in kriging for generating communication performance

predictions, arising mainly from the structure of the assumptions. Moreover, our work shows

that using range as a secondary variable in a cokriging formulation of the problem, yields

lower absolute errors and performs better in long-term estimates. More specifically, we com-

pare the proposed methodology with ordinary kriging and we show that the proposed frame-

work provides better communication performance estimates with lower absolute errors in all

simulation scenarios. Only in short-term estimates and in certain cases the ordinary kriging

computes lower absolute errors. However, at distant locations of interest from the acquired

measurements the proposed methodology provides better results. The simulations reveal

that for realistic applications the assumption of stationary global mean of both techniques

is rather conservative and develops unacceptable absolute errors. To address these problems

we propose a model-based, data-driven learning technique for prediction of UWA commu-

nication performance in autonomous underwater vehicles beyond the observation area. The

training with the proposed iterative technique, advocates to a bias-free and robust approach.

We show that the proposed model-based learning yields accurate predictions, outperform-

ing even three orders of magnitude other kriging methods in simulations. Moreover, the

nested semivariogram function improves drastically the uncertainty quantification. In ad-

dition, experimental results reveal profoundly better predictions with our method for low

ambient noise environments. In unpredictable and high ambient noise environments, there is

139
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no method that provides accurate predictions. Yet, in such cases the proposed methodology

identifies the ambient noise by reporting realistic uncertainty bounds.

To make the prediction of communication performance compatible for decentralized networks

we propose methods to decentralize GPs. The proposed methods cover a broad spectrum

of multi-agent learning applications as they can be employed both for decentralized GP

training and decentralized GP prediction on various fleet sizes with different computation

and communication capabilities of local agents. We utilize distributed optimization methods

of ADMM to perform accurate and scalable GP training in networks. More specifically, a

closed-form solution of the decentralize ADMM is derived for the case of GP hyper-parameter

training with maximum likelihood estimation. DEC-apx-GP is shown to achieve competitive

accuracy in hyper-parameter estimates for small and medium fleet sizes, while DEC-gapx-GP

produces accurate hyper-parameter estimates for all fleet sizes with reasonable computations

of local entities. Additionally, we propose a centralized GP training method, the gapx-GP,

that improves the accuracy of hyper-parameter estimates for medium and large fleet sizes,

entails reasonable computations, and requires little information exchange. Next, we use it-

erative and consensus protocols to decentralize the implementation of various aggregation of

GP experts methods. We propose 13 techniques that can be used in various applications de-

pending on the fleet size, the computational resources of local agents, and the communication

capabilities. Moreover, we introduce a nearest neighbor selection method, namely CBNN,

that excludes agents with no statistical correlation from the GP prediction. Although the

CBNN achieves on average 42.5% agent reduction, it does not sacrifice prediction accuracy,

and leads to significant computation and communication reduction. Most of the proposed

decentralized GP prediction methods converge to the optimal values without reporting ap-

proximation error for all fleet sizes. The decentralized NPAE-based methods converge with

approximation error, yet for DEC-NPAE? the error is insignificant. DEC-NPAE? and DEC-
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NN-grBCM are the most competitive methods for all fleet sizes both in terms of accuracy

and uncertainty quantification, yet DEC-NN-grBCM is also scalable with low communica-

tion overhead.

Ongoing work is focusing on decentralized active learning techniques to design multi-agent

motion planning strategies that aim to reduce the uncertainty of areas in search missions.

In addition, Bayesian model calibration will be used to calibrate variables of a realistic

underwater acoustic propagation model using limited field data.
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Appendix A

Gradients

A.1 Partial derivative of SE covariance function

The partial derivative of the covariance function (4.5) is computed with respect to each

hyperparameter as ∂Cθ/∂θ = (∂Cθ/∂l1, ∂Cθ/∂l2, . . . , ∂Cθ/∂lD, ∂Cθ/∂σf , ∂Cθ/∂σε)
ᵀ. In

particular, for each length-scale ld we obtain,

[
∂Cθ

∂ld

]
ij

= σ2
f

[
exp

{
−‖xid − xjd‖

2

ld

}
‖xid − xjd‖2

l2d

]
ij

,

where ∂Cθ/∂ld ∈ RN×N . For the signal variance we get,

[
∂Cθ

∂σf

]
ij

= 2σf

[
exp

{
−

D∑
d=1

‖xi − xj‖2

ld

}]
ij

,

where ∂Cθ/∂σf ∈ RN×N . Lastly, for the measurement noise variance ∂Cθ/∂σε = 2σεIN .
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A.2 Gradient for nested problem of DEC-c-ADMM-

GP

Let the objective for the nested optimization problem (4.31b) of the DEC-c-ADMM-GP to

be K = Li(θi) + θᵀip
(s+1)
i + ρ

∑
j∈Ni

∥∥∥θi − (θ
(s)
i + θ

(s)
j )/2

∥∥∥2

2
, then its gradient yields,

∂K
∂θi

= ∇θiLi(θi) + p
(s+1)
i + 2ρ

∑
j∈Ni

θi −
θ

(s)
i + θ

(s)
j

2
.

Note that ∇θiLi can be computed as in Appendix A.1.



Appendix B

Proofs

B.1 Proof of Proposition 4.10

The prediction mean value of any agent i using PoE yields,

µPoE(x∗) = σ2
PoE(x∗)

M∑
i=1

βiσ
−2
i (x∗)µi(x∗)

=

(
M∑
i=1

βiσ
−2
i (x∗)

)−1 M∑
i=1

βiσ
−2
i (x∗)µi(x∗)

=
M∑
i=1

σ2
i (x∗)

M∑
i=1

σ−2
i (x∗)µi(x∗). (B.1)
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The prediction mean of the i-th agent using gPoE yields,

µgPoE(x∗) = σ2
gPoE(x∗)

M∑
i=1

βiσ
−2
i (x∗)µi(x∗)

=

(
M∑
i=1

βiσ
−2
i (x∗)

)−1 M∑
i=1

βiσ
−2
i (x∗)µi(x∗)

=

(
M∑
i=1

1

M
σ−2
i (x∗)

)−1 M∑
i=1

1

M
σ−2
i (x∗)µi(x∗)

=

(
1

M

)−1
1

M

M∑
i=1

σ2
i (x∗)

M∑
i=1

σ−2
i (x∗)µi(x∗)

=
M∑
i=1

σ2
i (x∗)

M∑
i=1

σ−2
i (x∗)µi(x∗). (B.2)

Hence, from (B.1), (B.2) µPoE(x∗) = µgPoE(x∗) for all i ∈ V .

B.2 Proof of Theorem 4.21

Let us employ the local objective of (4.33b) as,

Qi = ∇ᵀ
θLi(θ

(s)
i )(θi − θ(s)

i ) +
κi
2

∥∥∥θi − θ(s)
i

∥∥∥2

2
+ θᵀip

(s+1)
i + ρ

∑
j∈Ni

∥∥∥θi − θ(s)
i + θ

(s)
j

2

∥∥∥2

2
,

where Qi : RD+2 → R. Next, factor out the optimizing parameter θi to obtain,

Qi =∇ᵀ
θLi(θ

(s)
i )θi − c1 +

κi
2

(
θᵀi θi − 2θᵀi θ

(s)
i + c2

)
+ θᵀip

(s+1)
i + Ti

=θᵀi

[
∇θLi(θ(s)

i )− κiθ(s)
i + p

(s+1)
i

]
+
κi
2
θᵀi θi + Ti, (B.3)

where Ti = ρ
∑

j∈Ni
‖θi − (θ

(s)
i + θ

(s)
j )/2‖2

2, c1 = −∇ᵀ
θLi(θ

(s)
i )θ

(s)
i , and c2 = θ

ᵀ(s)
i θ

(s)
i . Note

that c1, c2 are constants with respect to the optimizing parameter θi and thus irrelevant to
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the problem. For any strongly connected graph topology, the term Ti can be expressed as,

Ti = ρ
∑
j∈Ni

∥∥∥θi − θ(s)
i + θ

(s)
j

2

∥∥∥2

2

= ρ
∑
j∈Ni

θᵀi θi − θ
ᵀ
i (θ

(s)
i + θ

(s)
j ) + c3

= ρcard(Ni)θᵀi θi − ρ
∑
j∈Ni

θᵀi θ
(s)
i + θᵀi θ

(s)
j

= ρcard(Ni)θᵀi θi − ρcard(Ni)θᵀi θ
(s)
i − ρθ

ᵀ
i

∑
j∈Ni

θ
(s)
j

= card(Ni)ρθᵀi θi − ρθ
ᵀ
i

[
card(Ni)θ(s)

i +
∑
j∈Ni

θ
(s)
j

]
, (B.4)

where c3 = (1/4)(θ
(s)
i + θ

(s)
j )ᵀ(θ

(s)
i + θ

(s)
j ) is a constant for the optimizing parameter θi and

thus ignored. The local objective Qi by combining (B.3), (B.4) results in,

Qi =θᵀi

[
∇θLi(θ(s)

i )− κiθ(s)
i + p

(s+1)
i

]
+
κi
2
θᵀi θi

+ card(Ni)ρθᵀi θi − ρθ
ᵀ
i

[
card(Ni)θ(s)

i +
∑
j∈Ni

θ
(s)
j

]
=θᵀi

[
∇θLi(θ(s)

i )−
(
κi + card(Ni)ρ

)
θ

(s)
i + p

(s+1)
i

− ρ
∑
j∈Ni

θ
(s)
j

]
+
(κi

2
+ card(Ni)ρ

)
θᵀi θi. (B.5)

Next, we show that the local objective Qi (B.5) is a convex function in a quadratic form [11]

by computing its Hessian,

HQi
=
∂2Qi
∂θ2

i

= (κi + 2card(Ni)ρ) ID+2 � 0.
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Since the local objective Qi is convex and quadratic, we can obtain a closed-form solution

by computing the first derivative,

∂Q
∂θi

= ∇θLi(θ(s)
i )−

(
κi + card(Ni)ρ

)
θ

(s)
i + p

(s+1)
i − ρ

∑
j∈Ni

θ
(s)
j + 2

(κi
2

+ card(Ni)ρ
)
θi,

and then set ∂Q/∂θi = 0, which yields,

θi =
1

κi + 2card(Ni)ρ

[
ρ
∑
j∈Ni

θ
(s)
j −∇θLi(θ

(s)
i ) +

(
κi + card(Ni)ρ

)
θ

(s)
i − p

(s+1)
i

]
.

The rest proof is a direct consequence of [19, Theorem 1].

B.3 Proof of Lemma 4.42

The separable squared exponential kernel (4.2) is a monotonically decreasing function. Note

that the rate of decrease depends on the signal variance σ2
f and the length-scales ld for all

d = 1, . . . , D. In particular, the CBNN is described by a sub-graph GNN = (VNN, ENN(t)),

where VNN = {i ∈ V : ‖xi − x∗‖≤ rNN} for all x∗ with rNN the covariance-based radius and

ENN(t) ⊆ VNN × VNN. Hence, the CBNN maintains strong connectivity.
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