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Abstract— Gaussian process (GP) training of kernel hy-
perparameters still remains a major challenge due to high
computational complexity. The typical GP training method em-
ploys maximum likelihood estimation to solve an optimization
problem that requires cubic computations for each iteration.
In addition, GP training in multi-agent systems requires sig-
nificant amount of inter-agent communication that typically
involves sharing of local data. In this paper, we propose a
scalable optimization algorithm for decentralized learning of
GP hyperparameters in multi-agent systems. To distribute the
implementation of GP training, we employ the alternating
direction method of multipliers (ADMM). We provide a closed-
form solution of the nested optimization of decentralized prox-
imal ADMM for the case of GP modeling with the separable
squared exponential kernel. Decentralized federated learning is
promoted by prohibiting local data exchange between agents.
The efficiency of the proposed method is illustrated with
numerical experiments.

I. INTRODUCTION

Teams of agents have received considerable attention in re-
cent years, as they can address tasks that cannot be performed
efficiently by a single entity. Multi-agent systems are attrac-
tive for their inherent property of collecting simultaneously
data from multiple locations—a group of agents can collect
more data than a single agent during the same time period.
Central to machine learning (ML) methodologies is the col-
lection of large datasets in order to ensure reliable training.
To this end, networks of agents favor learning techniques due
to their data collection capabilities. However, they face major
challenges including limited computational resources and
communication restrictions. A typical approach to address
these challenges relies on centralizing the collected data in a
single node (e.g., cloud or data center), which requires high
computational and storage resources. Yet, gathering data to
a central server may lead to network traffic congestion and
security/privacy issues. To ensure data privacy, a promising
solution is federated learning (FL). FL aims to implement
ML techniques in centralized or decentralized networks, but
with no communication of real data. For certain applications,
such as in GPS-denied environments, it is unfeasible to
implement ML algorithms in a centralized network, as distant
nodes may not be able to establish communication directly
with the central node due to communication range limitations
or bandwidth. Such cases include autonomous vehicles and
multi-robot systems in underwater, underground. and extreme
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weather applications. Our aim in this work is to develop
a fully decentralized algorithm for approximate Gaussian
process (GP) training that relaxes the computation and com-
munication requirements with no data sharing and achieves
similar performance to centralized methods.

Gaussian processes [1] are used in various multi-agent ap-
plications [2]–[16], but their major disadvantage is the poor
scalability with the number of observations. In particular,
provided N observations, the training entails O(N3) and
the prediction O(N2) computations. Although GP training is
significantly more expensive than GP prediction, the majority
of research is focused on improving the GP prediction
scalability by assuming a priori knowledge of the hyperpa-
rameters. This is a strong assumption and in practice leads
to inaccurate regression and deteriorates the adaptability
of GPs. Another limitation for multi-agent systems is the
communication [17]. For centralized GPs, every agent has
to communicate to a central node. However, excessive com-
munication is challenging in decentralized networks, because
the agents can pass messages only within a range, which may
vary in space and time [18].

Two major directions for GP approximations are based
on global and local approaches [19]. Global approximation
methods promote sparsity by using either a subset of Nsub
observations or by constructing a set of Nsub pseudo-inputs,
where Nsub ≪ N to perform GP training with a much
smaller dataset [20], [21]. Sparse GPs have been used in
mobile sensor networks to model spatial fields [3]. In [2], a
GP with truncated observations in a mobile sensor network
is proposed, and in [4] a subset of observations is used for
traffic modeling. These methods require global knowledge of
data, which increases inter-agent communications.

The second direction uses local approximation methods to
reduce the computational burden of GP training [19]. A local
approximate method with maximum likelihood estimation
(MLE) is the factorized GP training [22]. That is a central-
ized method which is based on a server-client structure and
distributes the computations to multiple entities. The main
idea is to assume independence between sub-models, which
results in the approximation of the inverse covariance matrix
by the inverse of a block diagonal matrix. To this end, a
significant reduction in computing the inverse of multiple
covariance matrices is achieved at the cost of excessive com-
munication overhead. Recently, Xu et al. [23] reformulated
the factorized GP training method using the exact consensus
alternating direction method of multipliers (ADMM) [24].
Consensus ADMM reduces the communication overhead of
GP training, but requires high computational resources to
solve a nested optimization problem at every ADMM itera-
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Fig. 1. Decentralized GP training in multi-agent systems using federated learning. (a) The exploration area of interest is an unknown spatial field. The
unknown field can be of higher input dimension, i.e. D > 2, but for illustrative reasons we depict a 2D input environment. (b) The observation locations
of local datasets. Same colored circles correspond to a local dataset of the matching colored robot. (c) Each agent trains a local GP model using its dataset.
(d) The agents coordinate to produce a global GP model with no data exchange that promotes federated learning.

tion. Subsequently, the authors in [25] employed the inexact
proximal ADMM [26] to alleviate the computation demand.
However, both ADMM-based factorized GP training methods
require a centralized network topology. In [27], the authors
introduced an efficient centralized methodology, termed as
generalized factorized GP training, that entails additional
communication between agents to enrich local datasets with a
global random dataset. Multiple studies revealed that ADMM
is appealing in centralized multi-robot cases [28], [29].
Alternatively, many methods employ active learning of GP
surrogates [30]–[36], to sequentially build small yet efficient
datasets, but our focus is on local GP approximations.

The contributions of this paper are: i) the formulation
of a decentralized GP training method (DEC-apx-GP) for
connected graph topologies with no data exchange; and
ii) the derivation of a closed-form solution for the nested
optimization problem of the GP hyperparameter optimiza-
tion. The proposed method achieves similar GP hyperpa-
rameter estimation accuracy with centralized GP training
methods [22], [25]. The closed-form solution of the nested
optimization problem enables scalable computations for GP
training. Since the majority of multi-robot systems cannot
rely on centralized methods for long-term operation, we
envision that our method can effectively be used to address
model learning problems with network topology challenges.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we discuss the foundations of algebraic
graph theory, overview GP training, describe the factorized
GP training method, and state the problem.

A. Foundations

The notation here is standard. The vector of n zeros is
represented as 0n and the matrix of n×m zeros as 0n×m.
The superscript in parentheses y(s) denotes the s-th iteration
of an estimation process. The cardinality of the set K is
denoted card(K), the absolute values is denoted |·|, and
the L2 norm is denoted ∥·∥2. The notation λ(F ) and λ(F )

denote the maximum and minimum eigenvalue of matrix F
respectively. The i-th element of a vector x is denoted xi and
xi denotes the vector x of agent i. A collection of elements
that comprise a vector x ∈ RN is denoted {xi}Ni=1.

Suppose a network consists of M agents that can perform
local computations. The network is described by an undi-
rected graph G = (V, E), where V = v1, . . . , vM is the set
of nodes and E ⊆ V × V the set of edges. Nodes represent
agents and edges their communication. The neighbors of the
i-th node are denoted Ni = {vj ∈ V | (vi, vj) ∈ E}. The
adjacency matrix of G is denoted A = [aij ] ∈ RM×M , where
aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise. We consider
a decentralized network topology described by a path graph
that represents the most parsimonious connected graph [37].

Assumption 1. [38] A graph G is strongly connected if for
every pair of distinct agents (vi, vj) there exists a path.

B. Gaussian Process Training

Let the observations be modeled by,

y(x) = f(x) + ϵ, (1)

where x ∈ RD is the input location with D the input
dimension, f(x) ∼ GP(0, k(x,x′)) is a zero-mean GP with
covariance function k : RD×RD → R, and ϵ ∼ N (0, σ2

ϵ ) is
the i.i.d. measurement noise with variance σ2

ϵ > 0. We use
the separable squared exponential (SSE) covariance function,

k(x,x′) = σ2
f exp

{
−1

2

D∑
d=1

(xd − x′
d)

2

l2d

}
, (2)

where σ2
f > 0 is the signal variance and ld > 0 the length-

scale hyperparameter at the d-th direction of the input space.
The goal of GPs is to infer the underlying latent function
f given the data D = {X,y}, where X = {xn}Nn=1 the
inputs, y = {yn}Nn=1 the outputs, and N the number of
observations.

A GP is trained to find the hyperparameters θ =
(l1, . . . , lD, σf , σϵ)

⊺ ∈ Θ ⊂ RD+2 that maximize the



marginal log-likelihood,

L = log p(y | X) = −1

2

(
y⊺C−1

θ y + log|Cθ|+N log 2π
)
,

where Cθ = K + σ2
ϵ IN is the positive definite covariance

matrix with K = k(X,X) ⪰ 0 ∈ RN×N the positive
semi-definite correlation matrix. The minimization problem
employs the negative log-likelihood function,

(P1) θ̂ = argmin
θ

y⊺C−1
θ y + log|Cθ| (3a)

s.to θ > 0D+2. (3b)

The bound constraints (3b) on the length-scales ld ensure
that the correlation matrix is positive semi-definite.

C. Factorized GP Training (FACT-GP)
Let each agent i to collect local observations and form

the local dataset {Di = {Xi,yi}}Mi=1 corresponding to Ni

observations for M agents with
∑M

i=1 Ni = N and global
dataset D = ∪M

i=1Di. All local datasets have the same
number of observations, i.e., Ni = Nj = N/M for all
i, j ∈ V with i ̸= j. For privacy reasons, we presume that the
local datasets Di cannot be communicated to other agents.
Factorized GP training (FACT-GP) [22], [39] considers a
centralized topology, where every entity i communicates to
a central node with significant computational and storage
resources. The centralized topology arises several problems
such as security, traffic network congestion, and privacy.
In addition, for certain cases (e.g., autonomous vehicles
and multi-robot systems), distant agents may be subject to
communication range limitations.

Assumption 2. Every agent i can communicate only with
agents in its neighborhood Ni and the communication shall
not include any data exchange.

Assumption 3. All local sub-models Mi are statistically
independent.

The factorized GP training relies on Assumption 3. This
implies that the global marginal likelihood can be approxi-
mated by the product of local likelihoods, which leads to,

p(y | X) ≈
M∏
i=1

pi(yi | Xi), (4)

where pi(yi | Xi) ∼ N (0,Cθ,i) is the local marginal like-
lihood of the i-th node with local covariance matrix Cθ,i =
Ki + σ2

ϵ INi . Moreover, the factorized approximation (4)
yields a block diagonal approximation of the covariance
matrix C−1

θ ≈ diag(C−1
θ,1, . . . ,C

−1
θ,M ). Thus, the global

marginal log-likelihood is approximated by L ≈
∑M

i=1 Li

which results in,

log p(y | X) ≈
M∑
i=1

log pi(yi | Xi),

with local marginal log-likelihood Li = log pi(yi | Xi),

Li = −1

2

(
y⊺
i C

−1
θ,iyi + log|Cθ,i|+Ni log 2π

)
. (5)

The gradient of the global log-likelihood in FACT-GP is
computed by ∇θL =

∑M
i=1 ∇θLi [23], [25]. The optimiza-

tion uses the local negative log-likelihood,

(P2) θ̂ = argmin
θ

M∑
i=1

y⊺
i C

−1
θ,iyi + log|Cθ,i| (6a)

s.to θi > 0D+2, ∀i ∈ V, (6b)

where θi = {l1,i, . . . , lD,i, σf,iσϵ,i} the local hyperparam-
eters of agent i. Similarly to (3), constraint (6b) imposes
positivity on the hyperparameters for all agents i ∈ V .

D. Problem Definition

Problem 1. Under Assumption 2, solve the optimization
problem (P2) in (6) to estimate the GP hyperparmeters θ̂ for
a connected decentralized network topology (Assumption 1)
with independent datasets for each agent (Assumption 3).

III. PROPOSED DECENTRALIZED GP TRAINING

In this section, we introduce a method to address Prob-
lem 1 based on the edge formulation of ADMM [40] that
yields parallel updates and decentralizes the factorized GP
training. Let us consider the edge formulation of ADMM
to formulate the optimization problem. This is a variation
of the consensus ADMM [24] for decentralized networks. If
Assumption 1 holds, then the consensus ADMM problem is
equivalent to the edge formulation of ADMM that yields,

(P3) θ̂ = argmin
θ

M∑
i=1

y⊺
i C

−1
θ,iyi + log|Cθ,i| (7a)

s.to θi = τ ij , ∀i ∈ V, j ∈ Ni, (7b)
θj = τ ij , ∀i ∈ V, j ∈ Ni, (7c)

where τ ij are auxiliary variables. Constraints (7b) and (7c)
imply that each agent i is allowed to have its own opinion for
the hyperparameters θi, yet at the end of the optimization all
agents in the neighborhood Ni must agree on the neighbor-
hood values τ ij . The edge formulation requires each node i
to store and update variables for all of its neighbors Ni.
Conversely, one can employ the node formulation that relaxes
the storage capacity, as each agent i is required to store
and update variables of itself [41]. In addition, the group
ADMM [42] offers a decentralized optimization method, yet
for a specific graph topology. Thus, we find that the edge
formulation is more suitable for decentralized GP training.

The formulation of the decentralized consensus ADMM is
discussed in [43]. After rendering the augmented Lagrangian
for (P3) in (7) we obtain the decentralized consensus ADMM
iterative scheme,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (8a)

θ
(s+1)
i = argmin

θi

{
Li(θi) + θ⊺

i p
(s+1)
i +

ρ
∑
j∈Ni

∥∥∥∥∥θi −
θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 , (8b)
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Fig. 2. The structure of the proposed decentralized GP training method
(DEC-apx-GP). Blue dotted lines correspond to communication. Every
agent i has access to its local dataset Di. The agents are allowed to have
their own opinion on the GP hyperparameter θi using exclusively Di, but
after communicating they all agree on the same GP hyperparameter vector θ.

where ρ > 0 is the penalty term of the augmented Lagrangian
and p

(s)
i =

∑
j∈Ni

(u
(s)
ij + v

(s)
ij ) is the sum of the dual

variables u
(s)
ij and v

(s)
ij corresponding to constraints (7b)

and (7c). Note that (8a) imposes initial values p
(0)
i = 0.

Remark 1. A disadvantage of (8) is the cubic computations
on the number of local observations for every iteration of the
nested optimization. That is because at every ADMM itera-
tion we need to solve the nested optimization problem (8b)
which entails the computation of Li (5) that involves the
inversion of the local covariance matrix C−1

θ,i .

To address the scalability of decentralized ADMM (8),
we extend the decentralized inexact proximal consensus
ADMM [44] with an analytical solution of the nested op-
timization. A proximal step is taken based on a first-order
approximation of the local log-likelihood Li (5) around θ(s),

Li(θi) ≈ ∇⊺
θLi

(
θ
(s)
i

)(
θi − θ

(s)
i

)
+

κi

2

∥∥∥θi − θ
(s)
i

∥∥∥2
2
,

(9)
where κi > 0 is a penalty parameter of the proximal term
for all i ∈ V . After rendering the augmented Lagrangian
for (P3) in (7) we obtain the decentralized inexact proximal
consensus ADMM iterative scheme,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (10a)

θ
(s+1)
i = argmin

θi

{
∇⊺

θLi

(
θ
(s)
i

)(
θi − θ

(s)
i

)
+

κi

2

∥∥∥θi − θ
(s)
i

∥∥∥2
2
θ⊺
i p

(s+1)
i +

ρ
∑
j∈Ni

∥∥∥∥∥θi −
θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 . (10b)

The linearization (9) allows the evaluation of the local
log-likelihood Li (5) at a fixed point θ

(s)
i and not at the

optimizing variable θi. Thus, the nested optimization (10b)
entails significantly less computations than (8b), because we
need to compute ∇⊺

θLi(θ
(s)
i ) just once (10b) and not at every

iteration of the nested optimization (8b) (Remark 1). Next,
we provide our main Theorem that extends [44] by deriving
a closed-form solution for the nested optimization (10b) to
reduce the computations and improve the accuracy.

Theorem 1. Consider a strongly connected decentralized
network (Assumption 1) where the agents are not allowed
to communicate their datasets (Assumption 2). Let Assump-
tion 3 hold for the local sub-models Mi and allow the
penalty term of the first-order approximation κi to be suffi-
ciently large,

κi >
L2
i

m2
i

− ρλ(D +A) > 0, ∀i ∈ V, (11)

where Li > 0 and mi > 0 are positive parameters of
Lipschitz continuity and strong convexity respectively. Then,
the nested optimization for the hyperparameter update (10b)
admits a closed-form solution, resulting in the iterative
optimization scheme of DEC-apx-GP,

p
(s+1)
i = p

(s)
i + ρ

∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (12a)

θ
(s+1)
i =

1

κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+

(
κi + card(Ni)ρ

)
θ
(s)
i − p

(s+1)
i

)
, (12b)

that converges to a stationary solution (θ⋆
i ,p

⋆) of (P3) in (7)
for all agents i ∈ V .

Proof: (Sketch) After rearrangement and manipulation,
the local objective Qi of the nested optimization (10b) is
expressed as,

Qi(θi) = θ⊺
i

(
∇θLi

(
θ
(s)
i

)
−

(
κi + card(Ni)ρ

)
θ
(s)
i

+ p
(s+1)
i − ρ

∑
j∈Ni

θ
(s)
j

)
+
(κi

2
+ card(Ni)ρ

)
θ⊺
i θi. (13)

Next, we show that the Hessian of (13) is positive definite
HQi

= ∇2
θi
Qi ≻ 0 that leads to convex and quadratic

local objective Qi. Thus, a closed-form solution of the nested
optimization is derived by computing ∂Qi/∂θi = 0,

θi =
1

κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+

(κi + card(Ni)ρ)θ
(s)
i − p

(s+1)
i

)
.

The rest of the proof is a consequence [44, Theorem 1]. ■

Remark 2. The condition to select the penalty parameter
κi (11) depends on the graph topology as the minimum
eigenvalue of the degree and adjacency matrix is required
λ(D +A). Thus, the stronger the network connectivity, the
faster the convergence of the proposed DEC-apx-GP (12).

The DEC-apx-GP routine is provided in Algorithm 1.
Every agent i communicates to its neighbors j ∈ Ni the
current estimate of the hyperparameters θ

(s)
i . After each

agent gathers all θ(s)
j from its neighborhood, then the sum of



Fig. 3. Accuracy of GP hyperparameter training using N = 8, 100 on five generative GP functions data for four fleet sizes and 50 replications. The true
values are demonstrated with a black dotted line. The existing GP training methods are shown in blue boxes and the proposed in maroon coloured box.

Algorithm 1 DEC-apx-GP
Input: Di(Xi,yi), k(·, ·), ρ, Ni, α, send

DEC-apx-GP

Output: θ̂
1: for s = 1 to send

DEC-apx-GP do
2: for each i ∈ V do
3: communicate θ

(s)
i to neighbors Ni

4: p
(s+1)
i ← duals(p(s)

i ,θ
(s)
i , {θ(s)

j }j∈Ni , ρ) (12a)
5: θ

(s+1)
i ← prim(p(s+1)

i ,θ
(s)
i , {θ(s)

j }j∈Ni , ρ, α,Di) (12b)
6: end for
7: end for

the dual variables vector is updated (12a) to obtain p
(s+1)
i .

Next, every agent i computes analytically the hyperpa-
rameters θ

(s+1)
i (12b). The method iterates until a prede-

fined iteration number send
DEC-apx-GP is reached. The proposed

method is decentralized, requiring exclusively neighbor-wise
communication as shown in Fig. 2. Note that information
exchange does not involve any data exchange (Assumption 2)
to satisfy the requirements of federated learning.

The local time complexity of DEC-apx-GP is reduced to
O(N3

i ) = O(N3/M3) for the inversion of the local covari-
ance matrix C−1

θ,i just once at every ADMM iteration (12).
Every agent i occupies O(N2/M2 +D(N/M)) memory to
store C−1

θ,i , Di, p
(s)
i , θ(s)

i , and {θ(s)
j }j∈Ni

. The total number
of communications for each agent is O(send

DEC-apx-GP(D + 2))
to transmit the hyperparameter vector for all iterations.

IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments with
synthetic data of known hyperparameters values to evaluate
the GP training methods in four aspects: i) hyperparameter
estimation accuracy; ii) computation time per agent; iii)

communications per agent; and iv) comparison with central-
ized GP training techniques. All numerical experiments are
conducted in MATLAB using [45] on an Intel Core i7-6700
CPU @3.40 GHz with 32.0 GB memory RAM.

We conduct 2,000 numerical experiments where we gen-
erate datasets by using the observation model (1) and the
separable squared exponential kernel (2) with hyperparame-
ters θ = (l1, l2, σf , σϵ)

⊺ = (1.2, 0.3, 1.3, 0.1)⊺. In particular,
we have two dataset sizes (N = 8, 100 and N = 32, 400) for
five generative random functions and perform 50 replications
on each function. Moreover, we equally partition the space of
interest S = [0, 2]2 along the x-axis according to fleet sizes
M = {4, 10, 20, 40}, and assign local datasets. We compare
the global GP training FULL-GP; the centralized methods
FACT-GP [22], generalized FACT-GP (g-FACT-GP) [27], c-
GP [23], and apx-GP [25]; and the proposed decentralized
DEC-apx-GP. The decentralized network follows a path
graph topology that is the most parsimonious connected
network. Thus, we study the worst case scenario in terms
of network connectivity (Remark 2). The penalty parameter
of the augmented Lagrangian is set to ρ = 500, the decentral-
ized ADMM tolerance for convergence TOLADMM = 10−3,
and the regulation of the approximation κi = 5, 000 for all
i ∈ V . After send

DEC-apx-GP = 100 communication rounds the
proposed DEC-apx-GP is completed.

In Fig. 3, we show the boxplots of the estimated hyperpa-
rameters using N = 8, 100 data. Blue boxes illustrate exist-
ing GP training methods and the maroon box represents the
proposed method. The corresponding average computation
time per agent and the communication rounds are shown in
Table I. For the case of M = 4 agents, all methods provide
accurate hyperparameters estimates except of the c-GP on l1.
In terms of computation time, c-GP is the more demanding



Fig. 4. Accuracy of GP hyperparameter training using N = 32, 400 data on five generative GP functions for four fleet sizes and 50 replications. The
true values are demonstrated with a black dotted line. The existing GP training methods are shown in blue boxes and the proposed in maroon box.

TABLE I
TIME & COMMUNICATION ROUNDS OF GP TRAINING METHODS

N = 8, 100 N = 32, 400

M Method Time [s] Comms Time [s] Comms
send send

FULL-GP 2,114.2 - >3,000 -

4

FACT-GP [22] 75.9 186.0 2,361.9 196.0
g-FACT-GP [27] 332.1 160.0 >3,000 -
c-GP [23] 404.1 141.4 - -
apx-GP [25] 26.8 43.6 817.6 45.2

DEC-apx-GP 61.9 100 1,821.3 100

10

FACT-GP [22] 9.8 179.6 228.2 194.2
g-FACT-GP [27] 31.8 131.8 1,035.6 155.2
c-GP [23] 92.1 193.8 - -
apx-GP [25] 3.8 47.8 88.8 46.8

DEC-apx-GP 8.4 100 188.8 100

20

FACT-GP [22] 2.6 172.6 46.6 226.2
g-FACT-GP [27] 7.0 127.2 199.4 167.6
c-GP [23] 31.4 127.8 - -
apx-GP [25] 1.3 56.2 18.3 49.8

DEC-apx-GP 2.2 100 36.9 100

40

FACT-GP [22] 0.5 139.6 9.1 160.0
g-FACT-GP [27] 1.8 112.2 30.9 128.6
c-GP [23] 8.9 66.6 - -
apx-GP [25] 0.3 56.4 4.6 54.4

DEC-apx-GP 0.5 100 8.2 100

method, while FACT-GP, apx-GP, and the proposed DEC-
apx-GP converge very fast, outperforming FULL-GP by two
orders of magnitude for similar model estimation accuracy.
As we increase the fleet size (M = 10, M = 20, and
M = 40 agents), the hyperparameter estimation accuracy
deteriorates for all centralized and decentralized methods

except g-FACT-GP, but the local computations are becoming
significantly low (Table I). In particular, DEC-apx-GP pro-
duces reasonable estimates for all hyperparameters other than
l1 and requires three orders of magnitude lower computations
for each robot than FULL-GP.

We present the boxplots of the estimated hyperparameters
using N = 32, 400 data in Fig. 4. The FULL-GP and c-GP
cannot be implemented for N = 32, 400 data, as they entail
significantly high computations (Remark 1). For M = 4
agents, g-FACT-GP exceeds the time limit of 3,000 s for
convergence. All methods are computationally expensive as
each agent i is assigned Ni = 32, 400/4 = 8, 100 data,
yet apx-GP is the fastest. In addition, all feasible methods
produce accurate hyperparameter estimates. As we increase
the number of agents (M = 10, M = 20, and M = 40
agents), the number of data is distributed to local agents,
and thus g-FACT-GP can be implemented. Since the number
of data is high, all centralized methods produce accurate hy-
perparameters estimates. The proposed decentralized method
produces accurate hyperparameter estimates other than l1 and
requires competitive computations for its implementation.

V. CONCLUSION AND FUTURE WORK

This paper proposes a decentralized federated learning
method for GP training in teams of robots. The proposed
decentralized method is suitable for long-term multi-robot
missions where centralized network topologies cannot be
implemented and inter-agent sharing of local data is pro-
hibited. The closed-form solution of the nested optimization
of decentralized ADMM improves the GP model accuracy
and scalability. DEC-apx-GP is shown to achieve competitive
accuracy in hyperparameter estimates for small and medium
fleet sizes. Ongoing work focuses on improving the hyperpa-
rameter estimation accuracy of GP training for large fleets.
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