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Abstract—With the emergence of agile manufacturing in highly
automated industrial environments, the demand for efficient
robot adaptation to dynamic task requirements is increasing. For
assembly tasks in particular, classic robot programming methods
tend to be rather time intensive. Thus, effectively responding
to rapid production changes requires faster and more intuitive
robot teaching approaches. This work focuses on combining
programming by demonstration with path optimization and local
replanning methods to allow for fast and intuitive programming
of assembly tasks that requires minimal user expertise. Two
demonstration approaches have been developed and integrated
in the framework, one that relies on human to robot motion
mapping (teleoperation based approach) and a kinesthetic teach-
ing method. The two approaches have been compared with the
classic, pendant based teaching. The framework optimizes the
demonstrated robot trajectories with respect to the detected
obstacle space and the provided task specifications and goals. The
framework has also been designed to employ a local replanning
scheme that adjusts the optimized robot path based on online
feedback from the camera-based perception system, ensuring
collision-free navigation and the execution of critical assembly
motions. The efficiency of the methods has been validated through
a series of experiments involving the execution of assembly tasks.
Extensive comparisons of the different demonstration methods
have been performed and the approaches have been evaluated in
terms of teaching time, ease of use, and path length.

Index Terms—flexible manufacturing, assembly, programming
by demonstration, system integration
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Fig. 1. The robot arm and gripper system performing a peg-in-hole task on a
polishing machine replica. The insertion is executed in a heavily constrained
space, which corresponds to real-life assembly scenarios.

I. INTRODUCTION

Industrial robots have allowed production and assembly
lines to reach extraordinary levels of automation, increasing
process efficiency and minimizing faults. Adapting to the high
rate of technological advancement, the market has started to
move away from mass production, demanding progressively



more customized products. In order to effectively respond
to the rapidly changing task requirements, robot systems
must allow for fast and efficient re-programming that does
not require expert knowledge in the field. Traditional robot
programming methods (such as pendant teaching) have proven
to be less efficient in cases where the system must be adapted
to novel, complex tasks on a regular basis. Online, pendant-
based teaching methods are often tedious, time-consuming,
and introduce production delays because the robot must be
halted for the duration of re-programming. Offline, simulation-
based methods can be utilized without using the physical
robot, but require professional knowledge and a considerable
amount of effort to be properly configured. These issues have
motivated several industrial and research groups to develop al-
ternative methods of transferring human skill to robot systems.

Most skill transfer approaches are based on Programming by
Demonstration (PbD), where the human operator demonstrates
a task or skill, which is then transferred to the target robot
system. The skill transfer can be arbitrarily complex, ranging
from simple trajectory reproduction to sophisticated skill ac-
quisition that interprets the task context and adapts to external
disturbances. Teaching by showing comes naturally to human
operators, making most developed PbD approaches accessible
to untrained operators. From the user perspective, the time
and effort required to program tasks of varying complexity is
fairly low when using an effective PbD framework. The flex-
ibility offered by such approaches facilitates the development
of reconfigurable manufacturing environments suited for the
future. In addition, it introduces new automation frontiers for
smaller businesses that may require the robots to perform short
term, daily changing tasks. The concept of PbD can also play
a major role in human-robot collaboration, where the robot
can learn and adapt its behavior based on human observation.

This paper presents a human to robot skill transfer method-
ology that combines programming by demonstration with path
optimization and local replanning to allow for the efficient exe-
cution of assembly tasks. The methodology performs collision-
aware optimization of non-functional demonstrated trajectory
segments in terms of path length, ensuring fast execution of
the desired task. This reduces the effects of sub-optimal user
demonstrations that may influence the quality of programmed
motions in other, learning based approaches [1]. The system
can adapt to dynamic task goal changes by employing a local
replanning scheme that updates the tail of the global path
during its execution, based on real-time feedback from the
perception system. The efficiency of the proposed methods
has been validated with a series of experiments focusing on
the execution of peg-in-hole assembly tasks with a robot
arm and gripper system. As a secondary contribution, three
different task demonstration approaches have been compared
and evaluated in terms of teaching time and ease-of-use.

The rest of the paper is organized as follows: Section II
introduces the related work, Section III describes the utilized
apparatus, Section IV presents the developed framework, Sec-
tion V presents and discusses the results, while Section VI
concludes the paper.

II. RELATED WORK

This section provides a brief literature review of the fields
relevant to this work. This includes related work in PbD,
trajectory optimization, and path planning.

A. Programming by Demonstration

Over the last decades, significant research effort has been
invested in the field of PbD, with developments ranging from
simple trajectory mapping to high level representations of
complete task procedures [1]–[3]. Such approaches have also
been employed in robotic assembly studies [4], where much
of the work has focused on a set of representative tasks, such
as peg-in-hole, pick-and-place, bolt screwing, etc.

Several methods of capturing user demonstrations have been
considered in literature. Kinesthetic teaching and teleoperation
produce data that is recorded directly on the target robotic plat-
form with the human operator compensating for kinematic and
dynamic embodiment differences. This makes the demonstra-
tions easier to interpret, but can sometimes be inconvenient for
the operator and prevent them from effectively demonstrating
the target skill [5]. Alternatively, a PbD scheme can be based
on motions that the operators execute with their own bodies,
mapping them to the target platforms [6], [7]. Although this
is more intuitive for the operator, it requires additional human
to robot motion mapping methods [8].

Once the demonstration trajectories have been obtained, the
simplest approach is to map them directly to the robot plat-
form. While this might be sufficient for simple motions with
loose accuracy requirements, such an approach is typically
inadequate for assembly oriented applications. Such a basic
motion replay cannot account for external disturbances and any
operator errors are propagated to the robot. These errors can
be amended either through independent trajectory optimization
or by employing appropriate local replanning methods.

B. Trajectory Optimization

In assembly tasks, the operator is typically trying to program
short, efficient robot motions that complete a given task as
quickly as possible. Human demonstrations are in most cases
sub-optimal in terms of speed of execution. To effectively
shorten the path length, the human demonstrated trajectories
can be efficiently optimized by employing appropriate path
planning algorithms [9]. Moreover, given an existing robot
trajectory, methods such as the Shortcut or the Partial Shortcut
[10], are able to refine and shorten the path with respect to the
identified obstacles in the space. Alternatively, reinforcement
learning methods that produce a set of feasible trajectories in
constrained environments can also be employed [11]. As such
methods discard any functional motion that may be present in
the segment, they can only be applied to the non-functional
parts of the demonstrated skill. In this context, functional
motions refer to trajectory segments and force profiles that
are critical for the success of a particular assembly task, such
as part alignment and insertion. Non-functional motions refer
to trajectory segments that can be significantly altered without
affecting task success, such as the reach to grasp path.



Fig. 2. The employed parallel-jaw gripper with the pre-shaped adaptive robot
fingers. A single actuator is used to control both fingers, which move in a
coupled manner on linear rails. Upon contact with the object, the pre-shaped
fingers conform to the object shape. An off-centered mount houses the Intel
RealSense RGBD camera.

C. Path Planning and Local Replanning

The path planning problem for continuous obstacle spaces
and arbitrary robot shapes has been addressed by sampling-
based algorithms, such as the rapidly-exploring random tree
(RRT) [12] and the probabilistic roadmaps (PRM) [13]. A
variant of the RRT with rewiring of the search-tree, the RRT?,
was proposed in [14]. RRT? is a probabilistically complete and
asymptotically optimal, single-query algorithm that can be ap-
plied only to static environments. Replanning can be employed
to efficiently identify a new path for dynamic or even uncer-
tain environments. An asymptotically optimal sampling-based,
single-query framework for dynamic environments, namely
RRTX, was presented in [15]. The methodology performs local
replanning to repair and refine the precomputed global search-
graph. The authors in [16] introduced the informed RRT?

that significantly reduces the convergence rate of RRT?. The
latter instead of employing the sampling-based algorithm in
the whole space, it reduces the problem to a relatively smaller
space (prolate hyperspheroid) and dynamically compresses the
local space based on the gathered information. In [17], local
replanning was utilized to recompute a path in an online
fashion. In this approach, the RRT? has been executed on a
relatively small space, where motion planning completeness is
guaranteed with topological connectedness tools.

III. APPARATUS

In this section, the employed apparatus is presented. The
robot platform is based on a 6 Degrees of Freedom (DoF)
serial manipulator with a maximum payload of 5 kg. The
gripper used is a parallel-jaw design with adaptive, pre-
shaped fingers [18] (see Fig. 2). The gripper is chosen as it
maximizes the contact area with the objects while grasping
and compensates for object positioning uncertainties. The
perception module relies on an Intel RealSense depth camera
(model D435) mounted on the robot end-effector. The hand-
eye calibration is performed through fiducial marker detection,
as described in [19].

Fig. 3. The proposed dataglove system that comprises of IMU and magnetic
motion capture sensors.

The system was experimentally validated with a peg-in-hole
task executed on a replica of the Rana-3 sample polishing
machine (Fig. 1). The task involves inserting cylindrical spec-
imens into the carrier disk of the polishing machine, which
stops at an arbitrary angle after every polishing cycle. The
cylindrical samples have varying height and a diameter of
Ø29.5±0.1 mm, while the hole diameter is Ø30.2±0.1 mm.
Since the samples are circular, this insertion task is comparably
easier than one involving prismatic shapes. Even though this
is not evaluated in this work, the in-hand object pose tracking
component of the framework is designed to account for such
object pose considerations.

A. Dataglove

To record human demonstrations, a dataglove combining an
inertial and a magnetic motion capture system was developed
(Fig. 3). The Synertial Cobra sensors were selected as the
inertial motion capture system. More precisely, 16 Inertial
Measurement Units (IMUs) were used per hand and two
additional IMUs were used for the forearm and the upper-
arm. The Cobra system does not suffer from occlusion-related
issues and is reasonably robust to magnetic disturbances.
However, since it is IMU-based, the system accuracy is limited
and the measured angles tend to drift over time. These errors
propagate through the skeleton to the fingertips. Furthermore,
the inertial glove is not able to measure the hand pose with
respect to the global coordinate frame and a system with
absolute pose estimation capability is required. To overcome
the drift and absolute reference issues, a magnetic motion
capture system was included to track the fingertips and correct
the inertial system data. For this purpose, the Polhemus Liberty
magnetic motion capture system was chosen. The Liberty
system offers accurate pose tracking through standard sensors
that can be attached to the hand or arm, and micro sensors that
can be mounted on the fingertips (Fig. 3). The measurements
are expressed in the form of transformation matrices with
respect to the global reference frame and are therefore not
prone to drifting, making the system appropriate for correcting
the IMU-based system. The proposed dataglove thus combines
in a synergistic manner IMU and magnetic motion capture
sensors to provide accurate and robust measurements.



Fig. 4. Framework architecture for the proposed Programming by Demonstration methodology. Pendant and kinesthetic teaching are executed manually. The
glove based teleoperation involves a human to robot motion mapping procedure that projects the demonstrated motions onto the robot joint space.

B. Trajectory Optimization

The correction of the joint angles from the inertial motion
capture system is performed by solving the inverse kinematics
as a constrained numerical optimization problem, where the
goal pose is the Liberty pose estimate for each finger. The
decision variables are the joint angles, and the non-equality
constraints are determined by the joint limits. The same
formulation is used for all five fingers of the hand and the
combined results provide the calibrated joint values of the
full human arm hand system. Let R represent the current
rotation matrix and Rgoal the goal rotation matrix, then the
angle difference ∆θ can be obtained by,

∆θ = arccos

 trace
(
(R)−1 Rgoal

)
−1

2

, (1)

Furthermore, let x = f (q) be the forward kinematics mapping
from joint to task space for each finger and q is the vector
of joint angles for each finger. Let also xgoal ∈ R3 be the
goal translation vector. Then, the objective function for the
correction of the joint angles can be defined as,

C(q) := wx
∥∥x−xgoal

∥∥+wr∆θ +ws ‖q−qimu‖ , (2)

where wx and wr are the position and rotation goal weights
and ws is the weight of the similarity measure and q is the
joint angle vector from the inertial motion capture system. The
weights are nonnegative and they sum up to one. Finally, the
optimal pose is obtained by,

q? = argmin
q∈Q

C(q), (3)

where Q ∈ (q−,q+) is the feasible joint set bounded by the
lower q− and upper q+ joint limits.

IV. FRAMEWORK

The PbD framework was implemented with the Robot
Operating System (ROS) [20], which provided the neces-
sary communication, testing, and visualization utilities. Its
architecture is presented in Fig. 4, where the blocks con-
ceptually correspond to the implemented ROS node structure.
The Demonstration module handles capturing and translating
human demonstrations to the robot platform, relying on either
kinesthetic teaching or dataglove teleoperation. Trajectories
generated from human demonstrations are executed on the
physical robot system, which forms the Robot Platform mod-
ule, along with their respective interfaces built with ROS
Control [21]. The Perception module contains an interface for
the Intel RealSense camera that streams color and depth data to
the network. The data is filtered by the point cloud processing
module, which also handles object tracking and target pose
estimation. The module relies on the PCL library [22]. The
Path Planning module relies on the MoveIt [23] development
platform, which maintains a simulated environment based on
the robot state and collision space. The global planning and
local replanning strategies are based on the RRT* algorithm
[14]. The PbD Master module represents the central frame-
work component, handling state control and task execution.

A. Demonstration Approaches

Trajectory samples were captured through two demonstra-
tion methods: i) kinesthetic teaching and ii) teleoperation
based teaching. Kinesthetic teaching was based on the built-in
robot gravity compensation mode, with an external trigger for
gripper opening and closing. In this setting, the user physically
guides the robot, operating the gripper when necessary. In
the second approach, hand and finger motion data obtained
from the dataglove are mapped to the robot arm and gripper
in real time. This mapping allows the user to execute the



Algorithm 1: HoleEstimate (Pbase,T
target
base , l,α,Pobj,ρ)

1 Thole
base← Ttarget

base ;
2 Ptarget← TransformCloud(Pbase,T

target
base );

3 Plocal← CropCloud(Ptarget, l);
4 if Plocal 6= /0 then
5 (Pinliers,Cmodel)← SACPlaneSegmentation(Plocal);
6 Pplane← ProjectInliers(Pinliers,Cmodel);
7 Ppolygons← ConcaveHull(Pplane,α);
8 dmin← l;
9 for each : P ∈ Ppolygons do

10 if AreaRatio(P,Pobj)> ρ then
11 d←

∥∥thole− tP
∥∥;

12 if d < dmin then
13 Thole

base← TP
base;

14 dmin← d;

15 return Thole
base;

task without physically interacting with the platform. In this
case, translation mapping is relative to the initial position,
while rotation mapping is absolute with respect to a common
reference frame. Gripper aperture control is based on the
distance between the human thumb and index fingertips.

B. Perception

The perception module handles filtering and interpretation
of streamed point cloud data for the purposes of obstacle space
identification, pose tracking of the grasped object, and target
(hole) estimation. A distance limit filter is applied to remove
the gripper points from the point cloud set before passing the
depth data to the path planning module. Object pose tracking
during grasping and manipulation is crucial for the success
of most assembly tasks, especially when utilizing non-rigid,
adaptive grippers, which are susceptible to grasping inaccuracy
and post-contact reconfiguration. The grasped object pose with
respect to the end-effector is in this setting tracked through a
two-stage, parallel point cloud processing procedure. The first
component performs global pose estimation by aligning Fast
Point Feature Histogram (FPFH) features [24] of the object
mesh to the observed scene. To ensure adequate alignment
speed, a pre-rejective variant of the Random Sample Con-
sensus (RANSAC) procedure [25], is used. Once an initial
pose estimate is available, continuous, real-time tracking is
performed by the Iterative Closest Point (ICP) algorithm [26].

In several applications, including the one examined in
this work, the assembly target pose may change between
executions. For the peg-in-hole task, an online, vision-based
goal pose estimation algorithm was developed, as presented in
Algorithm 1. The procedure takes as input the raw point cloud
data in the base reference frame Pbase = {pi}N

i=1 where pi ∈R3,
the goal object pose obtained from human demonstration
Ttarget

base ∈R4×4, the local hole search volume defined by a cube
with side l ∈ R+, the α ∈ R+ parameter determining con-

cave hull computation, the point cloud of the grasped object
Pobj = {p j}M

j=1 where p j ∈ R3, and the area ratio threshold
ρ ∈ R+. First, the demonstrated target Ttarget

base is assigned as
the initial hole pose estimate Thole

base. The TransformCloud

function takes as input the point cloud data defined in the
base reference frame Pbase and projects them onto the target
frame Ttarget

base , which yields Ptarget. The transformed cloud Ptarget
is cropped using the CropCloud function to extract a volume
of interest around the goal point. If the extracted volume Plocal
is not empty, a plane model is fitted to the cloud through the
SACPlaneSegmentation function, which employs a sample
consensus approach to return a collection of resulting plane
inliers Pinliers and the plane parameters Cmodel. The plane
parameters Cmodel are used to construct the plane S ∈R2. The
ProjectInliers function projects the input point cloud of
inliers Pinliers onto the plane S, generating a flattened set of
points Pplane. The ConcaveHull function applies an alpha-
shape based concave hull extraction algorithm to its input
cloud Pplane, producing a set of polygons Ppolygons = {Pk}K

k=1
corresponding to closed contours in the plane. The AreaRatio
function compares the area of polygon P with the projection
of the object model Pobj onto the polygon plane, returning a
scalar ratio. If the areas match within the provided threshold ρ ,
the centroid transform TP

base of the current polygon P is stored
as a hole pose candidate Thole

base. The polygon with its centroid
closest to the human demonstration target Ttarget

base is selected as
the final hole pose estimate Thole

base. To achieve this, the distance
d between the translation vector of the current hole estimate
thole ∈R3 and each translation vector of the examined polygon
centroids tP ∈ R3 is calculated.

C. Global Planning
Human demonstrations are often sub-optimal in terms of

path length, containing unnecessary motion segments. To
compensate for this redundancy, the trajectory segments that
are not critical for the demonstrated assembly task are refined
using the RRT* path planning algorithm [14].

Let the known obstacle closed space denoted Xobs ⊂X . For
multiple obstacles, the obstacle space is defined as Xobs :=⋃Q

q=1Xobs,q, where Q ∈ N is the total number of obstacles.
The free open space results in Xfree := (Xobs)

{ =X\Xobs. Let
the known initial start state represented as xinit

start and the known
initial goal state as xinit

goal. The RRT? algorithm rewires the tree
by considering the potential cost-to-go to every node v ∈ V
(we refer to nodes v and states x interchangeably), that lies
in a circular set near the node of interest. The computational
complexity of the RRT? is Θ(|V | log |V |), where |V | denotes
the cardinality of the set of nodes V and Θ(·) a tight bound.
Thus, RRT? is a computationally demanding algorithm for
large spaces. However, if we consider a small subspace, this
methodology allows for real-time implementation.

The RRT? is used to compute offline the global graph
G(V,E) which contains the global path π(xinit

start,xinit
goal). The

RRT? is presented in Algorithm 2 and is described as follows.
The Sample provides a random state xrand by randomly
sampling the free state space Xfree with a uniform distribution.



Algorithm 2: RRT* (X ,Xobs,xinit
start,xinit

goal,N)

1 V ← xinit
start,xinit

goal; E← /0;
2 for n = 1 to N do
3 xrand← Sample(Xfree,N);
4 xnearest← Nearest(V,xrand);
5 xnew← Steer(xnearest,xrand);
6 if NoCollision(xnearest,xnew,Xobs) then
7 Xnear← Near(V,xnew);
8 η ← Line(xnearest,xnew);
9 (xmin,cmin) ← Parent(xnew,Xnear,η);

10 V ← V ∪{xnew};
11 E← E ∪{(xmin,xnew)};
12 G ← Rewire(G,Xnear,xnew);

13 return G(V,E);

Then, the randomly sampled state xrand and the rest states
in the set of nodes V are compared to yield the nearest
state xnearest to the random state. The function Steer indi-
cates a new state xnew which is closer to nearest state, by
connecting the xrand and xnearest with a steering function. In
our case, the steering function follows a straight path. Next,
the NoCollision function examines potential collisions from
xnew to xnearest with the obstacle space Xobs. If the path is
collision free, the algorithm proceeds to the rewiring process.
The function Near collects the set of states that lie in the circle
‖xnew− xnearest‖ ≤ γ(logNs/Ns)

1/(n+1), where γ ∈ R+ is the
connection radius for the rewiring process, Ns is the number of
samples, and n is the state space dimension [27]. The function
Line connects the nearest state xnearest to the new state xnew
with a straight line. The subroutine Parent identifies a parent
state xmin and a corresponding cost-to-go cmin from any state
in the near set Xnear to the new state xnew. Next, the new
state xnew is added to the set of nodes V and the new edge
connecting the parent state xmin with the new state xnew to the
set of edges E. The Rewire function indicates the path with
minimum cost, by adding or discarding edges between states
in the near set Xnear accordingly. After evaluating Ns number of
samples, the process terminates and returns the graph G(V,E).

D. Local Replanning

The final phase of the task consists of placing the peg
exactly above the hole. That is a challenging task, as the
exact location of the hole is not known a priori. To this
end, we exploit the perception system throughout the task
execution to estimate the exact location of the hole. Then,
we set the location of the hole as the final goal. Next, the
local replanning framework is employed to modify the tail of
the path accordingly to the final goal.

The overall framework is illustrated in Figure 5. The robot
starts at the initial start state xinit

start and computes the global path
π(xinit

start,xinit
goal). The initial goal state xinit

goal is selected from one
of the demonstration goal states. Through the task execution,
the perception system seeks to observe the final goal state of

x
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xgoal

xstart
loc

Xobs
Xobs

xgoal
init

xstart

xobservX

X free
loc

O

r
+

init

final

x

x

xgoal
final

xstart
loc

Fig. 5. The space of the global path is compressed to a sufficiently small
subspace that allows the implementation of the RRT? in real time. The
computed subspace on the right side of the figure is the relative complement of
the obstacle space in the circular space. The geometric center O of the circular
space is the center of the line, connecting xloc

start and xfinal
goal . Additionally, xobserv

denotes the first state at which the final goal is observed. The dotted line
denotes the part of the global trajectory that the system keeps following until
the replanned trajectory is executed.

the hole xfinal
goal in real time. We name the first state at which

the final goal state is observed as xobserv. The corresponding
traversed path from the initial start state to the observation
state is shown with a blue dashed line in Fig. 5. Since the
RRT? is computationally demanding, we provide sufficient
time for the replanning computation, by assigning as the local
replanning start state xloc

start a future state after the observation
of the hole. The traversed path from xobserv up to the xloc

start
follows the global path and is indicated with blue dotted
line in Fig. 5. We condense the original space by defining a
circular subspace X loc

circle := {x ∈ Xfree | ‖x−O‖2 ≤ r2}, based
on the local replanning start state and the final goal state
O = (xloc

start + xfinal
goal)/2 and with radius r = ‖xloc

start− xfinal
goal‖, i.e.

the geometric center of xloc
start and xfinal

goal . Next, the local free
subspace X loc

free is produced as the relative complement of the
obstacle space in the circular subspace X loc

free =X loc
circle\Xobs, as

shown in the right part of Fig. 5. The completeness of the
RRT? in the local free subspace is assessed with topological
connectedness tools [17]-(Lemma 3). The resulted local free
subspace is sufficiently small to allow for the computation
of the local path in real time. Lastly, provided the local start
state xloc

start and the final goal state xfinal
goal we execute the RRT?

algorithm in the X loc
free to obtain a new path π(xloc

start,xfinal
goal).

To verify that the peg-in-hole task is completed, the system
exploits the adaptive nature of the utilized gripper. After
arriving to the final goal state, the end-effector executes a "Z"
motion in the estimated hole plane, while tracking the object
pose with respect to the camera frame. This final alignment
motion can also compensate for minor hole estimation inac-
curacies. When the object is detected within the hole edges,
the task execution is considered successful.

V. RESULTS AND DISCUSSION

To validate the implemented system experimentally, a group
of five able-bodied subjects (male, ages: 26 ± 1) was in-
structed to demonstrate the peg-in-hole task using three differ-
ent approaches: pendant-based teaching, kinesthetic teaching,
and dataglove-based teleoperation. The pendant-based method



Fig. 6. Comparison of object trajectories for (a) kinesthetic and teleoperated user demonstrations, and (b) optimized trajectory executions of the corresponding
demonstrations. Subfigures (c) and (d) isolate a demonstrated and optimized trajectory obtained through kinesthetic teaching. More precisely, subfigure (c)
presents the full motion from grasp to sample placement, and subfigure (d) focuses on the local replanning. In subfigure (c), point A corresponds to the
object grasping pose, point B to the initial pose for local replanning, and point C represents the sample insertion / placement point. The sharp rerouting of
the optimized trajectory is due to the geometry and structure of the obstacle space.

served as a comparison baseline, utilizing the translation and
rotation jog interface on the robot control box to guide the end-
effector to the desired position. The demonstrations obtained
through teleoperation and kinesthetic teaching were examined
with- and without path optimization and local replanning
enabled. For each experiment, the sample was placed in a pre-
defined initial position on a tray adjacent to the experimental
platform. Only demonstrations that resulted in the successful
execution of the assembly task have been considered for
comparison and optimization. After completing the teaching
experiments, subjects were instructed to complete a survey
asking them to evaluate the three demonstration approaches.

The first stage of the system evaluation consisted of a
comparison between the different demonstration approaches in
terms of teaching time and ease of use. For each subject and
demonstration approach, the teaching time was measured as
the time between grasping the object on the tray and releasing
it after successful insertion. The ease of use was obtained
through the survey, where the subjects were asked to evaluate
teaching difficulty on a scale of 0 to 10 (0 being very easy
and 10 being very difficult). The obtained average teaching
time and ease of use values for each demonstration approach
are collected in Table I. The kinesthetic teaching approach

has proven to be the fastest and most user friendly among
the three, with subjects completing the task nearly four times
faster than with the pendant. Even though teleoperation was
reported to be very engaging, it was rather difficult to use
due to the necessary safety distance from the operated robot.
It must be noted, however, that the robot platform was not
as large compared to the human user, which contributed to
the better kinesthetic teaching score. For bigger robots, the
teleoperation approach would likely be more appropriate from
a safety and accessibility perspective.

The demonstrated and optimized object trajectories obtained
through kinesthetic teaching and teleoperation are presented in
Fig. 6, where a single pair of kinesthetic teaching trajectories is
isolated in subfigures (c) and (d) to allow for closer inspection.
Examining the figures, it is clear that the raw user paths are
longer and contain jittery motion that compromises execution
efficiency. Such perturbations are particularly evident closer
to the goal, where the user needs to guide the robot end-
effector (adaptive gripper) with greater precision. Directly
replaying a demonstration results in speed fluctuations and
rarely results in successful sample insertion due to grasping
and positioning inaccuracies. The teleoperated demonstration
path lengths were on average 20% longer than the kinesthetic



TABLE I
AVERAGE TEACHING TIME, EASE-OF-USE SCORE, AND TRAJECTORY

LENGTH COMPARISON

Teaching
Method

Teaching Time
[s]

Ease of Use
[0−10]

User
Trajectory

[m]

Optimized
Trajectory

[m]

Pendant 85.16 5.80 / /
Kinesthetic 22.15 1.00 1.02 0.81

Teleoperation 49.75 5.00 1.21 0.86

demonstrations, as the users need significantly more time and
alignment effort in teleoperation due to the safety distance and
decreased visibility. The optimized trajectories, on the other
hand, are much smoother. The local replanning (from point B
to point C, depicted in Fig. 6) took on average less than 0.1 s
due to the constrained search space and introduced no delay in
the overall task execution. The optimized kinesthetic teaching
and teleoperation trajectories were on average 20.3% and
28.9% shorter than the demonstrations, respectively. Overall,
the optimized trajectories were on average 26.4% shorter than
the demonstrations across all teleoperation and kinesthetic
teaching trials. The experiments involving both the demon-
strated and the optimized trajectories are presented in the
accompanying video, which is available in HD quality at the
following URL: www.newdexterity.org/skilltransfer

VI. CONCLUSION

This work focused on combining programming by demon-
stration with path optimization and local replanning methods
to facilitate a fast and intuitive execution of assembly tasks
requiring minimal user expertise and involvement. The frame-
work can also be extended to enhance task programming in
service robotics. Two demonstration approaches were devel-
oped, integrated into the framework, and compared: i) kines-
thetic teaching and ii) teleoperation based teaching. The two
approaches have also been compared with the classic, pendant
based teaching. Both developed methods require a trajectory
optimization step that transforms the demonstrated robot tra-
jectories considering the obstacle space and the provided task
specifications. The local replanning adjusts the optimized robot
path based on online feedback from the perception system,
guaranteeing a collision-free navigation and the efficient task
execution. The efficiency of the methods has been validated
with a series of experiments involving the execution of a
complex assembly task with a robot arm and gripper system.
The different approaches have been evaluated in terms of
teaching time, ease of use, and path length.
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