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Abstract—In this paper, we propose RRT-Q X
∞, an online and

intermittent kinodynamic motion planning framework for dy-
namic environments with unknown robot dynamics and unknown
disturbances. We leverage RRTX for global path planning and
rapid replanning to produce waypoints as a sequence of boundary
value problems (BVPs). For each BVP, we formulate a finite-
horizon, continuous-time zero-sum game, where the control input
is the minimizer, and the worst-case disturbance is the maxi-
mizer. We propose a robust intermittent Q-learning controller for
waypoint navigation with completely unknown system dynamics,
external disturbances, and intermittent control updates. We
execute a relaxed persistence of excitation technique to guarantee
that the Q-learning controller converges to the optimal controller.
We provide rigorous Lyapunov-based proofs to guarantee the
closed-loop stability of the equilibrium point. The effectiveness of
the proposed RRT-Q X

∞ is illustrated with Monte-Carlo numerical
experiments in numerous dynamic and changing environments.

I. INTRODUCTION

Safe motion planning of mobile robots in dynamic environ-
ments is a challenging task with applications in autonomous
vehicles and human-crowded robotic navigation. One diffi-
culty of safe motion planning in dynamic environments lies
in the limited ability of perception and inference, which
leads to inaccuracies in multiple aspects of understanding
the environment. Examples include inaccurate motion predic-
tion for obstacles or other agents, false representation map
of the environment, and imprecise localization of the ego
agent. Whenever the environment model is updated, a fast
replanning is needed. Moreover, optimal control is desired
for autonomous systems, yet it typically requires extensive,
cumbersome offline computation. In addition, precomputed
optimal control suffers from the uncertain nature of the sys-
tem dynamics, which compromises its optimality and safety.
External disturbances are usually stochastic and unknown a
priori. In practice, rejecting external disturbances is essential
not only for optimality of the control policy, but also for
maintaining safety in planning. Furthermore, mobile robots
are often equipped with limited on-board computation and
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communication capabilities—their energy resources are lim-
ited and require judicious distribution. In this work, our focus
is on providing a safe, online, and model-free kinodynamic
motion planning methodology in finite horizon without any
offline computation and with intermittent communication.

Sampling-based algorithms, e.g., the Rapidly-exploring
Random Tree (RRT) [1], are efficient in high-dimensional mo-
tion planning tasks. While RRT is probabilistically complete,
RRT⋆ provides solutions that are probabilistically complete
as well as asymptotically optimal in static environments by
rewiring the search tree [2]. In dynamic environments, the
Execution-extended RRT (ERRT) is considered as one of the
first algorithms for real-time replanning [3]. While ERRT
rebuilds a new tree from the current robot configuration to
goal when replanning, the Dynamic RRT (DRRT) [4] only
rebuilds part of the tree from the colliding nodes to goal and
thus reports higher efficiency in execution time. The authors
in [5] present the RRTX, an asymptotically optimal motion
planning algorithm for both static and dynamic environments.
Growing from goal to start, RRTX keeps the main spanning
tree while replanning. During replanning, while also perform-
ing the rewiring operation as RRT⋆ to guarantee asymptotic
optimality, RRTX improves efficiency by maintaining a limited
neighborhood size and having a relaxed rewiring cascade.

For kinodynamic motion planning, optimization-based tech-
niques are used in kinodynamic RRT⋆ [6] where the optimal-
ity of paths is ensured for controllable linear systems. Yet,
this open-loop approach is vulnerable to disturbances, model
inaccuracies, and requires offline computation. Another kin-
odynamic motion planning technique is the Linear Quadratic
Regulator Trees (LQR-Trees) presented in [7]. This approach
employs convex optimization tools to compute Lyapunov func-
tions and regions of attraction for feedback motion planning
in linearized systems. A similar approach [8] that combines
LQR and RRT⋆, considers time as an additional dimension
of the state space. The authors in [9] present RRT-Q⋆, an
online, model-free kinodynamic motion planning framework
that computes approximately optimal control policies for mo-
tion planning in static environments. The Stable Sparse RRT
(SST) and SST⋆ are introduced in [10] for asymptotically
near-optimal and optimal sampling-based kinodynamic motion
planning, respectively. They propagate the system dynamics
forward-in-time using Monte-Carlo-based random control and
random propagation time without solving the boundary-value
problems (BVP). Similarly to RRT, SST and SST⋆ provide
only high-level paths without low-level control laws. A multi-
query algorithm for asymptotically optimal kinodynamic mo-
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tion planning that sample edges instead of configurations is
proposed in [11]. A survey on sampling-based motion planning
algorithms appears in [12] and a benchmark in [13].

The authors in [14] combine a variant of deep reinforce-
ment learning (RL) with RRT and propose the RL-RRT for
kinodynamic motion planning. They first use deep RL to learn
an obstacle avoiding policy with the system dynamics, serving
as a local planner and controller. Based on the RL policy, they
use supervised learning to predict the time to reach a state and
guide the growth of the tree. However, this method requires ex-
tensive offline computations for policy training and still needs
higher accuracy for safe navigation. In [15], a geometric ver-
sion of kinodynamic motion planning is proposed. The authors
combine sampling-based motion planning techniques in static
environments and model-based adaptive control, to develop
a robust trajectory tracking controller. The authors in [16]
construct an optimal motion planning algorithm for static
environments by employing RL [17] and artificial harmonic
potential fields [18]. A probabilistic roadmap method of kino-
dynamic motion planning with known trajectories of moving
obstacles is presented in [19]. This method samples new nodes
in the state-time space and then maps them into the physical
state space, using random control inputs of known dynamics.
In [20], the authors propose an online kinodynamic motion
planning framework which includes a replanning scheme to re-
duce replanning events in dynamic environments. Also, offline
machine learning techniques drastically reduce the number
of BVPs and facilitate the online implementation. However,
the feasibility of this technique depends solely on the offline
training of the reachability sets. The work of funnel libraries
[21] employs similar convex optimization tools as in the
LQR-Trees, yet incorporates the influence of bounded model
uncertainties and disturbances. Online kinodynamic motion
planning is addressed in unknown environments after comput-
ing offline the computationally expensive funnel libraries. The
authors in [22] present a sampling-based kinodynamic motion
planning framework that uses supervised learning to train a
neural network controller for solving BVPs offline and apply
it in real-time. The authors in [23] propose an end-to-end deep-
learning-based kinodynamic motion planning, where they use
a deep neural network to predict waypoints and use model
predictive control to drive the system to the next waypoint. A
real-time feedback motion planning and replanning method for
nonlinear systems in dynamic environments with a novel graph
data structure is proposed in [24]. A two-player zero-sum game
(TPZSG) is formulated in [25] for the worst-case disturbance
rejection in controller synthesis. Bounded rationality [26]–[28]
has been combined with RRT-QX [29] to perform multi-agent,
human-like motion planning [30].

These motion planning works have reported outstanding
results in various applications. Yet, almost all of them are
model-based methods, requiring accurate knowledge of sys-
tem dynamics and external disturbances for robust control
synthesis. Besides, all motion planning methods are executed
with constant update of the controller, leading to significant
communication requirements. The constant update of control
laws is not always necessary, especially when optimality can
be guaranteed with an intermittent update.

Approximate dynamic programming [17] serves as a con-
nection between adaptive control [31] and optimal control [32]
by employing the principles of RL. In [33], a partially model-
free algorithm is introduced to solve the optimal control
problem online via policy iteration. In [34], a Q-learning tech-
nique is presented to solve the infinite-horizon optimal control
problem with unknown continuous-time linear systems. The
authors in [35] developed an intermediate method between
policy iteration and value iteration for discrete-time systems.

Intermittent control is able to operate optimally in real-
istic systems with limited communication between sensors,
controllers, and actuators [36]. The systems evaluate a user-
defined triggering condition to determine whenever the loop
should be closed. The decision is determined by the equilib-
rium stability of the closed-loop system. The authors in [37]
propose a Q-learning approach with event-trigger conditions
to solve an infinite-horizon game-theoretic problem.

The authors in [38] employ experience replay mechanisms
to reduce the non-stationarities and instability of the reinforce-
ment learning algorithm. The latter captures previous data to
alleviate the update process. A similar constraint appears in
adaptive control [31] that the probing signal is required to be
persistently exciting for convergence of weight parameters to
the ideal values. That condition is conservative and is hard
to accomplish in real-world applications. In [39], [40] the
authors utilize previous experiences concurrently with current
data to relax the condition of persistence of excitation, which
makes it easier to implement in practice. Experience replay is
more recently leveraged to relax the persistence of excitation
requirement in Hamiltonian-driven methods [41].

Preliminary results of this work are presented in [29], [42].
In this paper, we extend the mathematical formulation to
systems with external disturbances as a two-player zero-sum
game in Sections II and III and propose a robust intermittent
Q-learning method in Section IV to solve it. We also provide
an in-depth discussion of the algorithm along with a com-
putational complexity analysis in Section V. In Section VI
we illustrate the efficiency of the methodology in more chal-
lenging dynamic environments and present the variation of
the maximum kinodynamic distances in different scenarios.
Finally, in the Appendix we provide a complete Lyapunov-
based stability proof by considering external disturbances.

Contribution. The contribution of this paper is threefold.
First, we develop a robust intermittent Q-learning method
for solving a finite-horizon game-theoretic control problem
for continuous-time linear systems, without any knowledge
of the system dynamics (Sections III to V). Compared to
existing control techniques, our method can achieve robust
intermittent control with unknown dynamics and a relaxed
persistence of excitation for the finite-horizon optimal control
problem. Then, we provide rigorous stability, robustness, and
convergence guarantees (Theorems 2 and 3). Finally, we
propose a decoupled, real-time motion planning framework,
RRT-Q X

∞, which combines robust intermittent Q-learning and
a sampling-based motion planner. The proposed RRT-Q X

∞ can
achieve safe, online, robust kinodynamic motion planning in
unpredictable dynamic environments without offline computa-
tion/training (Table I).



Structure. In Section II we formulate the problem. Sec-
tion III provides an intermittent optimal solution to the
TPZSG. The robust intermittent Q-learning method is shown
in Section IV. In Section V we discuss the algorithmic
details of the proposed technique. Section VI illustrates the
efficacy of the proposed motion planning method in dynamic
environments, and Section VII concludes the paper.

Notation and Nomenclature. See the following.

R, N real numbers, natural numbers
R+, Rn×m positive real numbers, n×m real matrices
λ(A), λ(A) minimum, maximum eigenvalues of matrix A

∥v∥ Euclidean norm of vector v
vech(A) half-vectorization of matrix A
vec(A) vectorization of matrix A
mat(A) matrization of matrix A

A[a: b, c: d] submatrix of row a to b and column c to d of matrix A
κ(·) a class K function
⊗ Kronecker product of two matrices
⊕ Minkowski sum of two sets
0p vector of length p with all elements 0

∇x(y) gradient of y with respect to x

M , R penalizing matrices
γ disturbance rejection constant
ρ admissible window for completing a BVP problem

L, L1 Lipschitz constraints
Drob, Dkin

rob kinodynamic distance, maximum kinodynamic distance
Wc, Wa, Wd critic, control actor, disturbance actor approx. weights
αc, αa, αd gradient descent learning rates

II. PROBLEM FORMULATION

In this section, we first present the formulation of a model-
free two-player zero-sum game (TPZSG). Then, we incor-
porate the solution of the game into sampling-based path
planning for dynamic environments.

A. System Description

Consider the following continuous time linear time-invariant
system describing the motion of the system,

9x(t) = Ax(t) +Bu(t) + Fd(t), x(0) = x0, t ≥ 0,

where x(t) ∈ X ⊆ Rn is a measurable state vector, u(t) ∈
U ⊆ Rm is the control input, d(t) ∈ D ⊆ Rq is the disturbance
input, A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q are the unknown
plant, input, and disturbance matrices, respectively. We seek to
use an intermittently updated control input to drive the system
from an initial state x0 to a desired state xr in a finite horizon
T ∈ R+. Thus, we define a new state of differences x̄(t) :=
x(t)− xr, to obtain the new system,

9̄x(t) = Ax̄(t)+Bu(t)+Fd(t), x̄(0) = x0−xr, t ≥ 0. (1)

To conserve computational resources and reduce communi-
cation efforts, we shall employ a sampled version of the state
for intermittent learning, which is defined as,

ˆ̄x(t) :=

{
x̄(rj), t ∈ (rj , rj+1]

x̄(t), t = rj

where x̄(rj) is the state of flow dynamics, x̄(t) is the state of
jump dynamics, and rj is a strictly monotonically increasing

sequence of samples {rj}∞j=1. The trigger of the control signal
update at t = rj is based on an error gap described as,

e(t) := ˆ̄x(t)− x̄(t). (2)

We formulate the problem as a non-cooperative zero-sum
game in a strategic form G = (N , {Si}i∈N , J), where N =
{P1, P2} is the set of players, P1 is the control player selecting
ud that desires to minimize the cost and P2 is the disturbance
player selecting d that aims to maximize the cost, S = S1 ×
S2 = U × D is the set of strategies, and J : S → R is the
finite-horizon common cost function, which is formulated as,

J(x̄;ud,d; t0, T ) (3)

= ϕ(T ) +
1

2

∫ T

t0

(x̄⊺Mx̄+ u⊺dRud − γ2∥d∥2) dτ,

where ud := κ(ˆ̄x(t)) is the intermittent control input, ϕ(T ) :=
1
2 x̄

⊺(T )P (T )x̄(T ) is the final cost with x(T ) the free final
state and P (T ) ∈ Rn×n ≻ 0 a user-defined, symmetric, and
positive-definite final Riccati matrix, M ∈ Rn×n ⪰ 0 and
R ∈ Rm×m ≻ 0 are user-defined matrices penalizing the state
and the control input respectively, and γ ∈ R+ is a disturbance
rejection constant, γ ≥ γ⋆, where γ⋆ is the smallest value that
can stabilize system (1) [43]. In the finite-horizon boundary-
value problem (BVP) we seek to drive the system from an
initial state to a desired state in a finite time.

We seek to obtain a saddle-point equilibrium (u⋆d , d
⋆)

such that, J(x̄;u⋆d , d; t0, T ) ≤ J(x̄;u⋆d , d
⋆; t0, T ) ≤

J(x̄;ud, d
⋆; t0, T ), for all x̄, ud, d, provided by the optimiza-

tion J(x̄0;u
⋆
d , d

⋆; t0, T ) = minud maxd{J(x̄;ud, d; t0, T )}
subject to system (1). To solve the game given the cost function
(3), we define a value function,

V ⋆(x̄; t0, T ) := (4)

min
uc

max
d

{
ϕ(T ) +

1

2

∫ T

t0

(x̄⊺Mx̄+ u⊺cRuc − γ2∥d∥2) dτ

}
.

Assumption 1: The unknown pair (A, B) is controllable
and the unknown pair (

?
M , A) is detectable. l

B. Motion Planning Foundations

We now provide basic foundations for the motion plan-
ning case. We consider the known obstacle closed space as,
Xobs :=

⋃No

l=1 Xobs,l ⊂ X , where No ∈ N is the total
number of obstacles. Thus, the free space is the open space
Xfree = (Xobs)

A = X\Xobs. In dynamic environments, the
obstacle space Xobs and the free space Xfree are functions
of time. Denote the unpredictable change of the obstacle
space as ∆Xobs, where ∆Xobs is unknown. For path planning,
we employ RRTX that provides an optimal sub-tree which
contains the planned path π(x0,k, xr,k; t) ∈ R2(K×n), with
k = 1, . . . ,K, K ∈ N the index of BVPs. Each BVP is
described by its initial and desired states as a tuple (x0,k, xr,k).
Since the obstacle space Xobs evolves in time, π is also a
function of time, and thus K also changes accordingly. RRTX

constructs a graph G = (V,E), with V the set of nodes and E
the set of edges. As a slight abuse of notation, we shall refer
to nodes v ∈ V as states x ∈ X .



Next, let us provide connections of the game-theoretic
formulation to the motion planning problem. For each BVP
provided by RRTX, we aim to drive the unknown system to
the desired state considering the worst-case disturbance d⋆ that
seeks to maximize the value function (4). For the k-th BVP,
define the initial distance as the distance from the initial state
x0,k to the desired state xr,k as,

D0(x̄0,k) := ∥x0,k − xr,k∥= ∥x̄0,k∥, ∀x̄0 ∈ Rn, (5)

and the agent’s relative distance to xr,k as,

D(x̄) := ∥x− xr,k∥= ∥x̄∥, ∀x̄ ∈ Rn. (6)

Since the problem has a free-final state, x(T ) will converge
to a close neighborhood around xr,k [32], [44]. Therefore, to
reduce the navigation time, we consider that xr,k is reached
when the state vector enters its close neighborhood within a
finite horizon. That is to say, when D(x̄) ≤ ρD0(x̄0,k), where
ρ is the user-defined admissible window, the agent has reached
the desired state xr,k. Subsequently, the system will continue
on the (k + 1)-th problem.

Moreover, since the system dynamics are unknown, when
RRTX generates the collision-free path π, it can only use
straight-line paths as edges in E. However, the agent’s actual
trajectory is curved due to the dynamical constraints (1) as well
as the optimal requirement (3). Thus, the actual trajectory is
deviated from π, and collisions may occur when π is very
close to the obstacles. To address this issue, we follow an
obstacle augmentation strategy similarly to [9]. In particular,
the algorithm constantly computes the kinodynamic distance,

Drob(x̄) :=
|x̄0,k × x̄|
D0,k

, (7)

to capture the deviation of the agent’s position from the cor-
responding straight path determined by (x0,k, xr,k). Then, an
augmented obstacle space X aug

obs is obtained based on the max-
imum kinodynamic distance , Dkin

rob, via the Minkowski sum,

X aug
obs := Xobs ⊕Xkin, (8)

where Xkin is the space of a compact set bounded by a circle
with center at the origin and radius Dkin

rob. Every time Dkin
rob is

updated, X aug
obs will be updated by (8), and then RRTX will

replan a path that is further from the actual obstacles with the
newly-invalid nodes and their descendants pruned.

III. INTERMITTENT TWO-PLAYER ZERO-SUM GAME

The Hamilton-Jacobi-Isaacs (HJI) equation [45] for the
finite-horizon problem with respect to (1) and (4) yields,

H(x̄;uc, d;
∂V ⋆

∂t
,
∂V ⋆

∂x̄
) =

1

2
(x̄⊺Mx̄+ u⊺cRuc − γ2∥d∥2)

+
∂V ⋆

∂x̄

⊺

(Ax̄+Buc + Fd) +
∂V ⋆

∂t
. (9)

An optimal value function for (1) can be defined as,

V ⋆(x̄; t) =
1

2
x̄⊺P (t)x̄, ∀x̄, t ≥ 0, (10)

where P (t) ∈ Rn×n ≻ 0 is the solution to the following game
differential Riccati equation,

− 9P (t) =P (t)A+A⊺P (t) +M + γ−2P (t)FF ⊺P (t)

− P (t)BR−1B⊺P (t), t ≥ 0. (11)

Theorem 1: Suppose that there exists a positive definite
P (t), t ≥ 0 satisfying the game differential Riccati equation
(11) with a terminal condition P (T ) ≻ 0. Then, the time-
triggered state feedback optimal control takes the form of,

u⋆c (x̄; t) = −R−1B⊺P (t)x̄, ∀x̄, t, (12)

and the worst-case disturbance yields,

d⋆(x̄; t) = γ−2F ⊺P (t)x̄, ∀x̄, t, (13)

with saddle-point equilibrium value V ⋆ = x̄⊺0P (0)x̄0.

Proof. The proof follows from [46, Corollary 17.1].

Next, we consider an intermittent feedback controller which
leads to significant reduction in communication when closing
the loop. The optimal intermittent controller results in,

u⋆d(ˆ̄x; t) := −R−1B⊺P (t)ˆ̄x, ∀ˆ̄x, t. (14)

The main difference between the optimal time-triggered con-
trol u⋆c and the optimal intermittent control u⋆d is that, the
former uses x̄ while the latter uses ˆ̄x. Therefore, every time
the control loop is closed and u⋆d is updated, u⋆d ← u⋆c .

Remark 1: As x approaches the desired reference state
xr, then x̄ approaches 0n. Thus, the control laws u⋆c , u⋆d , and
the disturbance d⋆ also approach 0m per (12), (13), (14), i.e.,
u⋆c (T )→ 0m, u⋆d(T )→ 0m, and d⋆(T )→ 0q . l

Fact 1: Since the system (1) is linear and both controllers
(12), (14) are linear mappings of the state, u⋆c (x̄; t) : Rn →
Rm, u⋆d(ˆ̄x; t) : Rn → Rm, the following inequality holds,

∥u⋆c − u⋆d∥= ∥R−1B⊺P (t)(x̄− ˆ̄x)∥≤∥R−1B⊺P (t)∥∥x̄− ˆ̄x∥
≤L(t)∥e∥,

where L(t) 7→ R+ is a strictly positive-definite function [47].
l

Lemma 1: Given the intermittent Hamiltonian as,

H
´

x̄;ud, d;
∂V ⋆

∂t
,
∂V ⋆

∂x̄

¯

=
1

2
(x̄⊺Mx̄+ u⊺dRud − γ2∥d∥2)

+
∂V ⋆

∂x̄

⊺

(Ax̄+Bud + Fd) +
∂V ⋆

∂t
, (15)

the following inequality is satisfied.∥∥∥H´

x̄;u⋆d , d
⋆;
∂V ⋆

∂t
,
∂V ⋆

∂x̄

¯
∥∥∥ ≤ λ(R)

2
L(t)2∥e∥2. (16)

Proof. Substitute the time-triggered Hamiltonian (9) into the
intermittent Hamiltonian (15). Considering the optimal control
(12) and the value function (10), we obtain,

H
´

x̄;u⋆d , d
⋆;
∂V ⋆

∂t
,
∂V ⋆

∂x̄

¯

=
1

2
(u⋆c − u⋆d)⊺R(u⋆c − u⋆d). (17)

Then, using Fact 1, inequality (16) holds.



Theorem 2: Let a positive-definite radially unbounded
function V (x̄; t) = 1

2 x̄
⊺P (t)x̄ with P satisfying the game

differential Riccati equation (11). Then, the squared norm of
the error gap follows,

∥e∥2≤ (1− β2)λ(M)∥x̄∥2+λ(R)∥u⋆d∥2−γ2∥d⋆∥2

λ(R)L(t)2
,

where β ∈ [0, 1) is a user-defined bandwidth parameter,
and the equilibrium point of the closed-loop system (1) is
asymptotically stable as T →∞ with the intermittent control
(14) for all t ∈ (rj , rj+1].

Proof. See Appendix A.

Remark 2: The selection of β depends on the available
resources. By selecting β closer to 1, the condition in Theo-
rem 2 is triggered more often, and the intermittent controller
performs closer to the time-triggered controller. l

IV. ROBUST INTERMITTENT Q-LEARNING

In this section, we present a robust intermittent Q-learning
approach to solve the model-free TPZSG described in Sec-
tion III. This approach approximates the time-triggered opti-
mal control policy in real-time.

Let us define the Q-function as,

Q(x̄;ud, d; t) :=V
⋆(x̄; t) +H

´

x̄;ud, d;
∂V ⋆

∂t
,
∂V ⋆

∂x̄

¯

−H
´

x̄;u⋆c , d
⋆;
∂V ⋆

∂t
,
∂V ⋆

∂x̄

¯

, (18)

where the time-triggered Hamiltonian associated with the
optimal control and the worst-case disturbance vanishes, i.e.,
H(x̄;u⋆c , d⋆; ∂V ⋆/∂t, ∂V ⋆/∂x̄) = 0, and Q(x̄;ud, d; t) :
Rn+m+q → R+ is an action-dependent scalar value.

Lemma 2: Given the optimal value function V ⋆(x̄; t)
(4), the game-theoretic problem Q⋆(x̄;u⋆d , d

⋆; t) :=
minud maxdQ(x̄;ud, d; t) has the following optimal value,

Q⋆(x̄;u⋆d , d
⋆; t) = V ⋆(x̄; t) +

1

2
(u⋆c − u⋆d)⊺R(u⋆c − u⋆d). (19)

Proof. Substitute the intermittent Hamiltonian (17) into the Q-
function (18). Since the time-triggered Hamiltonian associated
with the optimal control and the worst-case disturbance is
H(x̄;u⋆c , d⋆; ∂V ⋆/∂t, ∂V ⋆/∂x̄) = 0, the result follows.

We express the Q-function (18) in a compact quadratic form,

Q(x̄;ud, d; t) =
1

2
U⊺

»

–

Qxx(t) Qxud(t) Qxd(t)
Qudx(t) Qudud Qudd
Qdx(t) Qdud Qdd

fi

flU

:=
1

2
U⊺Q̄(t)U =

1

2
vech(Q̄(t))⊺(U ⊗ U), (20)

where U := [x̄⊺ u⊺d d⊺]⊺ is the augmented state, Qxx(t) =
9P (t) + P (t) +M + P (t)A + A⊺P (t), Qxud(t) = Q⊺

udx(t) =
P (t)B, Qxd(t) = Q⊺

dx(t) = P (t)F , Qudud = R, Qudd =
Qdud = 0, and Qdd = −γ2. Using the submatrices of Q̄(t) and
the stationarity condition ∂Q(x̄;ud, d; t)/∂ud = 0, we obtain
a model-free formulation of the optimal intermittent control,

u⋆d(ˆ̄x; t) = arg min
ud

Q(x̄;ud, d; t) = −Q−1
udud

Qudx(t)ˆ̄x. (21)

Similarly, by solving ∂Q(x̄;ud, d; t)/∂d = 0 we formulate the
worst-case disturbance as,

d⋆(x̄; t) = arg max
d

Q(x̄;ud, d; t) = −Q−1
dd Qdx(t)x̄. (22)

A. Actor-Critic Framework

We use a critic approximator augmented with past data
to approximate the Q-function (18). Considering the compact
quadratic form of the Q-function (20), let us define ν(t)⊺Wc :=
vech(Q̄(t))/2 ∈ R(n+m+q)(n+m+q+1)/2, where ν(t) ∈
R((n+m+q)(n+m+q+1)/2)×((n+m+q)(n+m+q+1)/2) is a univer-
sal basis function that depends explicitly on time, t ≥ 0. Since
the ideal weight parameters are unknown, we leverage adaptive
control [31] for tuning the weights. Hence, the approximated
Q-function takes the form of,

Q̂(x̄;ud, d; t) = Ŵ ⊺
c ν(t)(U ⊗ U). (23)

The control actor to approximate the optimal intermittent
control (21) is defined as W ⊺

a µ(t) := −Q−1
udud

Qudx(t) =
−R−1Qudx(t) ∈ Rm×n, where µ(t) ∈ Rn×n is also a universal
basis function that depends explicitly on time, t ≥ 0. Thus,
the approximated intermittent control policy yields,

ûd(ˆ̄x; t) = Ŵ ⊺
a µ(t)ˆ̄x. (24)

Similarly, we define the disturbance actor for approximating
the worst-case disturbance (22) as W ⊺

d ξ(t) := −Q
−1
dd Qdx(t) =

γ−2Qdx(t) ∈ Rq×n, and ξ(t) ∈ Rn×n is a universal basis
function that depends explicitly on time, t ≥ 0. The approxi-
mated worst-case disturbance yields,

d̂(x̄; t) = Ŵ ⊺
d ξ(t)x̄. (25)

Remark 3: The critic and actor approximators (23), (24),
(25) have no approximation errors since ν(t), µ(t), ξ(t) are
universal spatio-temporal approximators. Therefore, since we
use the whole space instead of just a compact set, the critic
and actor approximators will converge to the optimum. l

Next, we leverage the integral reinforcement learning struc-
ture [17] to formulate the integral Bellman equation as,

V ⋆(x̄(t); t) =V ⋆(x̄(t−∆t); t−∆t)

− 1

2

∫ t

t−∆t

(x̄⊺Mx̄+ u⋆⊺c Ru⋆c − γ2∥d⋆∥2) dτ,

(26)

V ⋆(x̄(T );T ) =
1

2
x̄⊺(T )P (T )x̄(T ), (27)

where ∆t ∈ R+ is a small, fixed time resolution. Moreover,
using Lemma 2, (26), and (27) the following equations hold,

Q⋆(x̄(t);u⋆d(t), d
⋆(t); t) =

Q⋆(x̄(t−∆t);u⋆d(t−∆t), d⋆(t−∆t); t−∆t)

−1

2

∫ t

t−∆t

(x̄⊺Mx̄+u⋆⊺d Ru⋆d − γ2∥d⋆∥2) dτ,

Q⋆(x̄(T );u⋆d(T ), d
⋆(T );T ) =

1

2
x̄⊺(T )P (T )x̄(T ).



B. Learning with Past Data

The next step is to develop a learning framework to approx-
imate Q̂, ûd, d̂ in (23), (24), (25). First, we need to guarantee
that the probing signal is persistently exciting (PE).

Definition 1: A signal vector ∆(t) : R+ → Rn is PE
over the time interval [t, t + TPE], TPE ∈ R+, if there
exists a strictly positive constant ζ ∈ R+ such that ζI ≤∫ t+TPE

t
∆(τ)∆(τ)⊺dτ , where I is an identity matrix of appro-

priate dimensions. l

Corollary 1: If a signal vector ∆(t) is PE, then it is guar-
anteed that the unknown parameter vectors of Q-learning will
exponentially converge to the optimal values, i.e., Ŵ ⊺

c ν(t)→
(W ⊺

c ν)⋆, Ŵ ⊺
a µ(t)→ (W ⊺

a µ)⋆, and Ŵ ⊺
d ξ(t)→ (W ⊺

d ξ)
⋆.

Proof. The proof follows from [31, Corollary 4.3.1].

In practice, ensuring a PE probing signal is challenging.
To this end, we inherit the analysis in [39], [40] to relax
the PE condition. This approach employs past recorded data
concurrently with current data for learning adaptation. Hence,
if the recorded data is sufficiently rich, then the convergence
of parameters to the optimal values can be guaranteed without
enforcing the PE condition. In other words, initially we apply
a PE signal and concurrently we store the past data of the
probing signal in a buffer. When the buffer ensures a rich
enough signal, we terminate the PE condition and continue
the learning with the data collected in the buffer. Note that
the data recording mechanism can be aperiodic.

The unknown elements of the intermittent Hamiltonian (15)
are 9̄x and V ⋆. Given ∆t as the time resolution, we approximate
9̄x using finite differences,

9̄x ≈ (x̄(t)− x̄(t−∆t))/∆t. (28)

According to Lemma 2 and (23), we approximate the deriva-
tives of V ⋆ as,

∂V ⋆

∂x̄
≈∂Q̂
∂x̄

= Ŵ ⊺
c ν(t)∇x̄

´

U ⊗ U
¯

, (29)

∂V ⋆

∂t
≈∂Q̂
∂t

= Ŵ ⊺
c ∇t

´

ν(t)(U ⊗ U)
¯

, (30)

where ∇t(·) denotes the gradient with respect to t, and ∇x̄(·)
with respect to x̄. Therefore, with eqs. (29) and (30), the
intermittent Hamiltonian (15) is approximated as,

Ĥ(U ; Ŵc; t) =
1

2
vech

´

»

–

M 0 0
0 R 0
0 0 −γ2

fi

fl

¯⊺
(U ⊗ U) (31)

+Ŵ ⊺
c

´

∇t

´

ν(t)(U ⊗ U)
¯

+ ν(t)∇x̄

´

U ⊗ U
¯

9̄x
¯

.

Using the integral Bellman equation, let us define the critic

approximation error ec1 ∈ R as,

ec1(t) :=Q̂(x̄(t); ûd(t), d̂(t); t)

− Q̂(x̄(t−∆t); ûd(t−∆t), d̂(t−∆t); t−∆t)

+
1

2

∫ t

t−∆t

(x̄⊺Mx̄+ û⊺dRûd − γ2∥d∥2) dτ

= Ŵ ⊺
c

´

ν(t)U(t)⊗ U(t)− ν(t−∆t)U(t−∆t)⊗ U(t−∆t)
¯

+
1

2

∫ t

t−∆t

(x̄⊺Mx̄+ û⊺dRûd − γ2∥d∥2) dτ.

To drive the system to the final states—penalized by P (T )—
we define the final critic error ec2 ∈ R as,

ec2(t) :=
1

2
x̄(t)⊺P (T )x̄(t)− Ŵ ⊺

c ν(t)(U(t)⊗ U(t)).

Moreover, every time we record data, the corresponding
buffer critic error ebuff,i ∈ R is defined as, ebuff,i(ti) :=
Ĥ(U(ti); Ŵc; ti) − (ûc(ti) − ûd(ti))

⊺R(ûc(ti) − ûd(ti))/2,
which by using (31) yields,

ebuff,i(ti) :=
1

2
vech

´

»

–

M 0 0
0 R 0
0 0 −γ2

fi

fl

¯⊺
(U(ti)⊗ U(ti))

+ Ŵ ⊺
c ν(ti)∇x̄

´

U(ti)⊗ U(ti)
¯

9̄x

+ Ŵ ⊺
c ∇t

´

ν(ti)(U(ti)⊗ U(ti))
¯

− 1

2
(ûc(ti)− ûd(ti))

⊺R(ûc(ti)− ûd(ti)),

where ti is the data recording time. Next, we define the control
actor approximation error ea ∈ Rm at t = rj as,

ea(t) := Ŵ ⊺
a µ(t)x̄(rj) + Q̂−1

udud
Q̂udx(t)x̄(rj),

and the disturbance actor approximation error ed ∈ Rq as,

ed(t) := Ŵ ⊺
d ξ(t)x̄(t) + Q̂−1

dd Q̂dx(t)x̄(t).

We aim to drive the errors to zero by tuning the parameters
Ŵ ⊺

c , Ŵ ⊺
a , Ŵ ⊺

d in (23), (24), (25). Thus, we apply gradient
descent to the squared norms of the errors,

K1(Ŵc) =
1

2
∥ec1∥2+

1

2
∥ec2∥2+

1

2

Nk∑
i=1

∥ebuff,i∥2, (32)

K2(Ŵa) =
1

2
∥ea∥2, (33)

K3(Ŵd) =
1

2
∥ed∥2, (34)

where Nk ∈ N is the number of data recording at the k-th two
point zero-sum game.

Remark 4: Since K1, K2, K3 are the sum of squared norms,
the corresponding optimization problems are convex. Thus,
the gradient descent rule yields the global value. Moreover,
solving the game (4) is transformed into solving convex
optimization problems, and hence a real-time execution is
ensured for the robust intermittent Q-learning controller. l



C. Learning Framework

The learning framework is employed to drive the ap-
proximated cost, intermittent control, and disturbance to the
optimal ones, and it consists of three tuning laws. We apply
a normalized gradient descent method (similar to adaptive
control techniques [31]) to (32) that result in closed-form critic
approximation weights,

9̂
Wc = −αc

∂K1

∂Ŵc
= −αc

´ σ(t)ec1

(1 + σ(t)⊺σ(t))2

+
σf(t)ec2

(1 + σf(t)⊺σf(t))2
+

Nk∑
i=1

ω(ti)ebuff,i

(1 + ω(ti)⊺ω(ti))2

¯

, (35)

where σf(t) := ν(t)(U(t)⊗ U(t)), σ(t) :=
ν(t)(U(t)⊗ U(t)) − ν(t − ∆t)(U(t − ∆t)⊗ U(t − ∆t)),
αc ∈ R+ is the gradient descent learning rate that specifies
the convergence rate of the critic, and ω(ti) is defined as,

ω(ti) := ∇t

´

ν(ti)(U(ti)⊗ U(ti))
¯

+ ν(ti)∇x̄

´

U(ti)⊗ U(ti)
¯

9̄x,

where σ(t), σf(t), ω(ti) ∈ R(n+m+q)(n+m+q+1)/2. By follow-
ing the critic tuning law (35), the sum of squared critic errors
is regulated to zero.

For the update law of the control actor, we need to consider
its intermittent behavior. More specifically, the intermittent
controller will be updated only when the error gap (2) is large
enough to activate the triggering condition, otherwise it will
remain constant as the last updated value. That is precisely an
impulsive system, hence we inherit the approaches in [48], [49]
to describe the intermittent control actor behavior. We obtain
a closed-form tuning law for the control actor approximation
weights Ŵa by applying gradient descent to (33) as,

9̂
Wa = 0, t ∈ (rj , rj+1)

Ŵ+
a = Ŵa − αa

∂K2

∂Ŵa
= Ŵa − αa

µ(t)x̄
1+(µ(t)x̄)⊺(µ(t)x̄)

e⊺a , t = rj

(36)

where the convergence rate is determined by the gradient
descent learning rate αa ∈ R+. The control actor tuning law
(36) ensures that ea converges to zero. Next, the disturbance
actor tuning law in closed-form yields,

9̂
Wd = −αd

∂K3

∂Ŵd
= −αd

ξ(t)x̄

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
e⊺d , (37)

where αd ∈ R+ is the gradient descent learning rate. Through
the disturbance tuning law (37), the disturbance error ed also
converges to zero.

For the theoretical convergence analysis, we define the
approximation weights errors of the critic, the control ac-
tor, and the disturbance actor as W̃c := Wc − Ŵc ∈
R(n+m+q)(n+m+q+1)/2, W̃a := Wa − Ŵa ∈ Rn×m, and
W̃d := Wd − Ŵd ∈ Rn×q . Thus, using (35), (36), (37) we
express their dynamics as,

9̃Wc = −αc

´ σ(t)σ(t)⊺

(1 + σ(t)⊺σ(t))2
+ Λ

¯

W̃c,


9̃Wa = 0, t ∈ (rj , rj+1)

W̃+
a = W̃a − αa

(µ(t)x̄)(µ(t)x̄)⊺

1+(µ(t)x̄)⊺(µ(t)x̄)
W̃a

−αa
(µ(t)x̄)x̄⊺

1+(µ(t)x̄)⊺(µ(t)x̄)
Q̃xudQ

−1
udud , t = rj

9̃Wd =− αd
(ξ(t)x̄)(ξ(t)x̄)⊺

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
W̃d

− αd
(ξ(t)x̄)x̄⊺

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
Q̃xdQ

−1
dd ,

where Λ :=
∑Nk

i=1
ω(ti)ω(ti)

⊺

(1+ω(ti)⊺ω(ti))2
, Q̃xud := mat(W̃c)[1:n, n+

1:n+m], and Q̃xd := mat(W̃c)[1:n, n+m+ 1:n+m+ q].
Remark 5: After the data recording is rich enough to obtain

rank([ω(t1), ω(t2), . . . , ω(tNk
)]) ≥ n+m+ q, matrix Λ gets

a full rank and Λ ≻ 0. This is the relaxed PE condition which
indicates that the recorded data of the PE probing signal is
sufficient for convergence of Ŵc to the optimum, and thus it
is no longer needed to record new data afterwards [40]. Using
the realxed PE condition Q̂ converges to the actual optimal
cost as Ŵc, Ŵa and Ŵd converge to their optimal solutions.

D. Impulsive System

Since the controller has an intermittent behavior with dis-
crete jumps, we consider it as an impulsive system. Therefore,
the closed-loop dynamics of (1) with the intermittent controller
(24) and the worst-case disturbance (25) take the form of,

9̄x =Ax̄+Bûd + F d̂

=Ax̄+B(−R−1Qudx(t)− W̃ ⊺
a µ(t))ˆ̄x

+ F (γ−2Qdx(t)− W̃ ⊺
d ξ(t))x̄. (38)

Let us define the augmented state that captures the
flow dynamics of the system in the time interval t ∈
(rj , rj+1] as, ψ := [x̄⊺ ˆ̄x⊺ W̃ ⊺

c vec(W̃a)
⊺ vec(W̃d)

⊺]⊺ ∈
R2n+nm+nq+(n+m+q)(n+m+q+1)/2, with time derivative,

9ψ =

»

—

—

—

—

–

9̄x
0n

−αc

´

σ(t)σ(t)⊺

(1+σ(t)⊺σ(t))2
+ Λ

¯

W̃c

0nm

Ψ(W̃d)

fi

ffi

ffi

ffi

ffi

fl

. (39)

Then, the augmented state is defined as ψ+ :=
[x̄+⊺ ˆ̄x+⊺ W̃+⊺

c vec(W̃+
a )⊺ vec(W̃+

d )⊺]⊺ for the jump
dynamics at time t = rj , with the time derivative yielding,

ψ+ = ψ(t) +

»

—

—

—

–

0n

ˆ̄x(t)− x̄(t)
0(n+m+q)(n+m+q+1)/2

Ψ(W̃+
a )

0nq

fi

ffi

ffi

ffi

fl

, (40)

where Ψ(W̃d) := vec(−αd
(ξ(t)x̄)(ξ(t)x̄)⊺

1+(ξ(t)x̄)⊺(ξ(t)x̄)W̃d −
αd

(ξ(t)x̄)x̄⊺

1+(ξ(t)x̄)⊺(ξ(t)x̄) Q̃xdQ
−1
dd ), Ψ(W̃+

a ) :=

vec(−αa
(µ(t)x̄)(µ(t)x̄)⊺

1+(µ(t)x̄)⊺(µ(t)x̄)W̃a − αa
(µ(t)x̄)x̄⊺

1+(µ(t)x̄)⊺(µ(t)x̄) Q̃xudQ
−1
udud

).
By analyzing the impulsive system, the main stability the-

orem of the robust intermittent Q-learning is then presented.
Theorem 3: Consider the impulsive closed-loop system

(38), with the critic approximator (23), the actor approximator
(24), and the disturbance approximator (25), which are tuned
by the tuning laws (35), (36), and (37) respectively. Then,
given that T → ∞ the origin is a globally asymptotically
stable equilibrium of the closed-loop system with state ψ for
all initial conditions ψ(0), if the following inequality holds,

∥e∥2≤ (1− β2)λ(M)∥x̄∥2+λ(R)∥ûd∥2−γ2∥d̂∥2

4λ(R)
´

L(t)2 + L1(t)2
¯ , (41)
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Fig. 1: Structure of RRT-Q X
∞. RRT-Q X

∞ comprises four stages: i) global dynamic path planning, ii) online actor-critic framework, iii) online terminal state
evaluation, and iv) online obstacle augmentation. The framework starts from global dynamic path planning and runs clockwise.

and the following inequalities of constants hold,

0 < αd ≤ β2λ(M)− 2L1(t)
2λ(R)

ηλ
´

ξ(t)Q−1
dd

∥1+(ξ(t)x̄)⊺(ξ(t)x̄)∥2

¯

;
λ(M)

λ(R)
>

2L1(t)
2

β2
; (42)

0 < αa <
8λ(R)− 2

λ(R) + 2
; λ(R) > 0.25; αc ≫ αa. (43)

Proof. See Appendix A.

V. THE RRT-Q X
∞ FRAMEWORK

We present the RRT-Q X
∞ framework (Sections V-A and V-B)

and analyze its computational complexity (Section V-C), In
particular, RRT-Q X

∞ consists of four stages: i) global path
planning/replanning by RRTX; ii) online control with an actor-
critic framework equipped with a data buffer; iii) online
obstacle augmentation; and iv) online terminal state evaluation
(see Figure 1).

The main routine is presented in Algorithm 1. The gradient
descent gains αc, αa, αd are designed according to Theorem 3,
and the weights of approximators Ŵc, Ŵa, Ŵd are randomly
initialized (lines 1–2). In the beginning, the agent has not
started moving and computes the global path using RRTX

(line 20). Next, the agent performs safe navigation (lines 7–
18). The agent first applies the output of the proposed robust
intermittent Q-learning controller (line 7). Then, it performs
the obstacle augmentation strategy to ensure a collision-free
trajectory (lines 8–13). The augmented obstacle space X aug

obs
is calculated by means of the Minkowski sum (8) based on
the maximum kinodynamic distance Dkin

rob. Finally, the agent
evaluates if it should move on to the next BVP (lines 14–
18): if the agent is close enough to the desired state xr,k, i.e.,
D ≤ ρD0, ρ ∈ (0, 1), then xr,k will be considered as reached,
and the agent will proceed to the (k + 1)-th BVP. The larger
the admissible window ρ is, the sooner the agent can proceed
to the next BVP. RRT-Q X

∞ terminates once the goal state xgoal
is considered as reached.

Algorithm 1 RRT-Q X
∞

Input: X - state space; S - random sample sequence; Xobs -
obstacle space; ∆t - small time resolution; M , R - cost weight
matrices; γ - disturbance rejection constant; P (T ) - fixed final
Riccati matrix; L, L1 - event-trigger constants; β - bandwidth
parameter; ρ - admissible window; xstart - start state; xgoal -
goal state; x(t) - state feedback.
Output: ûd(t) - control.

1: αc, αa, αd ← stability(M,R, γ, L, L1);
2: Ŵc, Ŵa, Ŵd ← random; Dkin

rob ← 0; X aug
obs ← Xobs; k ← 1;

3: V ← {xgoal};
4: x(0)← xstart;
5: while x(t) ̸= xgoal do
6: if agent is moving then
7: ûd(t)← robustIntermittentQLearning;
8: Drob ← kinodynamicDistance(x(t));
9: if Drob > Dkin

rob then
10: Dkin

rob ← Drob;
11: Xkin ← circle(Dkin

rob);
12: X aug

obs ← Xobs ⊕Xkin;
13: end if
14: D ← ∥x(t)− xr,k∥; D0 ← ∥x0,k − xr,k∥;
15: if D ≤ ρD0 then
16: x0,k+1 ← x(t);
17: k ← k + 1;
18: end if
19: end if
20: G, π ← RRTX(X aug

obs ,S);
21: end while

A. Global Path Planning/Replanning by RRTX

RRT-Q X
∞ achieves global path planning and online replan-

ning by integrating RRTX [5]. The inputs of RRTX are the
agent’s state space X and a uniformly distributed random
sample sequence S of which the samples are from X , and



the output is a collision-free path π. The waypoints of π will
then induce a series of BVPs for the robust intermittent Q-
learning control problem.

Each iteration of RRTX (Algorithm 2) begins with updating
the neighborhood radius (line 4). Then, the algorithm updates
the change of the obstacle space and the agent’s state if any
(lines 5–10). Next, the “standard” sampling-based path planner
grows and refines the graph by obtaining new samples and
connecting them to the existing graph if possible (lines 11–
18). The rewiring operation guarantees asymptotic optimality
while maintaining a limited neighborhood size (line 20).
ϵ-consistency is performed for rewiring cascade (line 21).

B. Robust Intermittent Q-Learning

We present the robust intermittent Q-learning method (Al-
gorithm 3). For the k-th BVP, i.e., (x0,k, xr,k) in the path
π, a zero-sum game between the optimal intermittent control
and the worst-case disturbance is formulated (Section III),
and the proposed method performs waypoint navigation, i.e.,
drives the system from x0,k to xr,k, by solving the game.
Particularly, in Algorithm 3, the critic parameters Ŵc are
regulated online by (35), and the critic approximates the Q-
function Q̂ by (23) (lines 1–3). The gradient of Ŵc is also
influenced by recordData such that all weight parameters
converge to the optimal values with a relaxed PE requirement
(line 2). Given the approximated Q-function Q̂, every time the
triggering condition (41) is activated, the control actor (24)
updates the approximated optimal intermittent control ûd and
the control actor parameters Ŵa are tuned (36) (lines 4–8).
Then, the disturbance actor parameters Ŵd are tuned by (37)
to approximate the worst-case disturbance d̂ (25) (lines 9–10).
Finally, Algorithm 3 returns ûd and applies it to the system.

With the data recording operation (Algorithm 4), the robust
intermittent Q-learning method makes sure Ŵc, Ŵa, and Ŵd
converge to their optimal values without needing the PE
requirement (Corollary 1). In particular, this operation records
concurrent data in a buffer and updates the gradient of Ŵc until
rank([ω(t1), ω(t2), . . . , ω(tNk

)]) ≥ n+m+ q, where Nk is
the number of already recorded data points. This operation can
be executed either periodically or aperiodically [39], [40].

C. Computational Complexity

The computational complexity of RRT-Q X
∞ is determined

by three components: C1 for RRTX, C2 for robust intermittent
Q-learning, and C3 for obstacle augmentation. In particular, C1
for RRTX is different for static and dynamic environments. For
a static environment, C1 = Θ(|V |log|V |) is required to build
a graph G = (V,E). When the environment changes, RRTX

will first find Vobs, the set of all nodes whose trajectories cross
the variation of the obstacle space ∆Xobs. Then, the expected
running time will be C1 = O(|D(Vobs)|log|V |), where D(Vobs)
contains all descendants of all nodes in Vobs [5].

As for C2 for robust intermittent Q-learning, three operations
are constantly executed during the flow dynamics: approxi-
mation of Q-function, approximation of disturbance, and error
gap checking. For the approximation of Q-function by (23) and
(35), the complexity has a quadratic growth of O((n+m+q)2)

Algorithm 2 RRTX

1: V ← {xgoal};
2: x(0)← xstart;
3: while x(t) ̸= xgoal do
4: r ← shrinkingBallRadius(|V |);
5: if ∆Xobs ̸= ∅ then
6: updateObstacles(Xobs);
7: end if
8: if agent is moving then
9: x(t)← measureState();

10: end if
11: xnew ← randomNode(S);
12: xnearest ← nearest(xnew);
13: if d(xnew, xnearest)> δ then
14: xnew ← saturate(xnew, xnearest);
15: end if
16: if xnew /∈ Xobs then
17: extend(xnew, r);
18: end if
19: if xnew ∈ V then
20: rewireNeighbors(xnew);
21: reduceInconsistency();
22: end if
23: end while

Algorithm 3 robustIntermittentQLearning

1:
9̂
Wc ← critic(x̄, ûd, αc, Ŵc);

2:
9̂
Wc ← recordData( 9̄x, x̄, ûd, d̂, Nk);

3: Q̂ ← approximateQ(x̄, ûd, Ŵc);
4: ∥e∥2← errorGap(x̄, ˆ̄x);
5: if ∥e∥2≥ errorThreshold(β, x̄, ûd, d̂) then
6: Ŵ+

a ←controlActor(x̄, αa, Ŵa, Q̂);
7: ûd ← approximateControl(x̄, Ŵa);
8: end if
9:

9̂
Wd ← disturbanceActor(x̄, αd, Ŵd, Q̂);

10: d̂← approximateDisturbance(x̄, Ŵd);
11: return ûd;

where n+m+ q is the size of the augmented state. Similarly,
the approximation of disturbance by (25) and (37) requires
O(q2). When checking the error gap by (41), the complexity
is O(n2+m2+q2). Thus, the computational complexity during
the flow dynamics is O((n+m+q)2). For the jump dynamics,
the additional computation is required for updating Ŵa and
ûd by (36) and (24), which takes O(n2 + m2). Therefore,
C2 = O((n+m+ q)2).

The obstacle augmentation complexity C3 depends on the
Minkowski sum operation to the whole obstacle space and the
following replanning. Let us assume all obstacles are convex
polygons, the regular polygon that approximates the circular
state space Xkin has pkin vertices, and each of the Nl obstacles
in Xobs has pl vertices. According to [50, Theorem 13.11],
the Minkowski sum of two convex polygons with p1 and p2
vertices in a plane can be computed in O(p1+p2) time. Then,
the Minkowski sum takes O(Nopkin+ΣNo

l=1pl). The following



Algorithm 4 recordData

1: if rank([ω(t1), ω(t2), . . . , ω(tNk
)]) < n+m+ q then

2: ω(tNk+1) ← ∇t(ν(t)(U(t)⊗ U(t))) +
ν(t)∇x̄(U(t)⊗ U(t)) 9̄x;

3: ebuff,Nk+1 ← buffErr( 9̄x, x̄, ûd, ûc, d̂, Ŵc, ω(tNk+1));
4:

9̂
Wc ← criticRelaxedPE(αc, Ŵc, ebuff,Nk+1);

5: Nk ← Nk + 1;
6: return 9̂

Wc;
7: end if

replanning considering the enlargement of the whole obstacle
space requires O(|D(V ′

obs)|log|V |), where V ′
obs is the set of

all the nodes whose trajectories cross the enlarged obstacle
space, and D(V ′

obs) contains all descendants of all nodes in
V ′

obs. Therefore, C3 = O(Nopkin +ΣNo

l=1pl + |D(V ′
obs)|log|V |).

VI. SIMULATIONS AND RESULTS

In this section, we first evaluate the robust intermittent
Q-learning method in a single two-player zero-sum game
(TPZSG) (Section VI-A). We next evaluate RRT-Q X

∞ and show
its effectiveness and safety through 30 Monte-Carlo trials of
the navigation task in a simulated dynamic environment with
appearing/disappearing obstacles (Section VI-B). Then, we
present the dependence of the kinodynamic distance on the ori-
entation of BVP and event-trigger bandwidth (Section VI-C).
Finally, we qualitatively compare RRT-Q X

∞ with multiple other
kinodynamic motion planning works (Section VI-D).

A. Solving a Two-Player Zero-Sum Game
We present how the robust intermittent Q-learning technique

solves a single TPZSG. Consider the following linear time-
invariant system that is unknown,
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fi
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fl
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where x1, y1 denote the translations, 9x1, 9y1 the velocities, :x1,
:y1 the accelerations, u1, u2 the control inputs, and d denotes
the disturbance.

We seek to drive the system from x0 = [0, 3, 1,−1] to
xr = [5, 1, 0, 0] for T = 15 s with the event-trigger bandwidth
β = 0.1 and no disturbance, i.e., d = 0. The performance
penalizing matrices are M = 5I4, R = I2, the disturbance
rejection constant is γ = 0.1, and the final Riccati matrix is
P (T ) = 0.3I4. According to Theorem 3, we select the tuning
gains as αc = 90, αa = 0.8, αd = 3, and the Lipschitz con-
stants are L = 10 and L1 = 0.9β(λ(M)/(2λ(R)))1/2 = 0.14.

The evolution of states is shown in Figure 2(a) and the
evolution of controls in Figure 2(b). The squared norm er-
ror (2) and its threshold (41) are presented by the blue and
red lines in Figure 2(c). Every time the error (2) is close to the
calculated threshold (41), the intermittent control is activated

Fig. 2: Solving a single TPZSG. Limiting the squared norm error with a
calculated threshold, the intermittent control policy guarantees the stability of
the equilibrium point and conserves computational and communication efforts.
(a)–(d) contain the evolution of the states, of the controls, of the error gap
with the threshold, and the inter-event times of control updates for solving
the game, respectively. (e)–(g) show the convergence of the approximation
weights for the critic, control actor, and disturbance actor, respectively.

and the error is reset to zero. We set the upper bar of the
error as 95% of the threshold, and the intermittent control is
activated 61 times. The inter-event time, i.e., the time interval
of two consecutive control updates, is shown in Figure 2(d).
We find that the minimum inter-event time is 0.11 s and the
average inter-event time is 0.24 s, which means the Zeno
behavior [51] is not observed. Finally, the evolution of the
approximation weights, i.e., Ŵc, Ŵa, and Ŵd, is shown in
Figure 2(e)–(g), where the convergence of all approximation
weights is observed.

B. Motion Planning in a Dynamic Environment

In this section, we present the kinodynamic motion planning
of an autonomous rover that follows (44) in a random forest
obstacle environment. We set the finite horizon to T = 10 s,
the event-trigger bandwidth β = 0.9, the performance pe-
nalizing matrices M = 10I4, R = 0.525I2, the disturbance
rejection constant γ = 15, the final Riccati matrix P (T ) =
0.5I4, and the gradient descent gains αc = 90, αa = 0.8,
αd = 3 per Theorem 3. The Lipschitz constants are L = 10,



Fig. 3: Collision-free navigation of an autonomous rover in a forest environment using RRT-Q X
∞. The rover has the start state xstart = [−40, 40, 0, 0]

and the goal state xgoal = [0,−40, 0, 0]. It can find the obstacles omnidirectionally within a radius of 20 represented by a red dashed circle. Its traversed
path is shown by a red solid line and the RRTX path by a white line. The black solid lines represent the search-tree of RRTX. The actual obstacles (trees)
are denoted by blue polygons and the corresponding augmentation in magenta. The maximum kinodynamic distance Dkin

rob, the current kinodynamic distance
Drob, and the cost-to-go of RRTX are shown in the left, right, and bottom colorbars, respectively.

L1 = 0.9β(λ(M)/(2λ(R)))1/2 = 2.5. The initial values
of Ŵc, Ŵa, Ŵd are randomly generated separately for each
BVP. The admissible window for each game is ρ = 0.2, i.e.,
when D(x̄) ≤ 0.2D0(x̄0,k), the rover will proceed to the
next BVP. In this scenario, we set the external disturbance
as d(t) = 0.3 sin t.

Remark 6: The larger αc, αa, and αd are (as long as
Theorem 3 is satisfied), the faster the proposed robust in-
termittent Q-learning controller will converge to the optimal
controller (Section IV-C). Also, the larger the admissible
window ρ is, the sooner the robot can proceed to the next BVP
(Section V). Finally, the larger β is, the more frequently the
control is updated (Theorem 3), and the smaller the maximum
kinodynamic distance will be. l

The autonomous rover has access to state feedback and
a disturbance observer. In addition, its perception range is
limited, so only the obstacles within the perception range can
be detected. Therefore, the obstacle space keeps enlarging
while the rover navigates in the environment and perceives
the newly “appearing” obstacles. RRT-Q X

∞ measures the kino-
dynamic distance Drob and computes the augmented obstacle
space X aug

obs at every time step. Whenever the current path
intersects with X aug

obs , replanning is performed to compute a
new collision-free and optimal path.

We implemented RRT-Q X
∞ partly based on the software

package from [52]. The effectiveness of RRT-Q X
∞ is shown

in a video demonstration1 that contains four different nav-
igation scenarios with random forests of obstacles. Motion
snapshots of one trial are depicted in Figure 3. We conduct
30 Monte-Carlo trials with different random forest obstacle
configurations and different start and goal states to remove
the effect of random obstacle-free navigation. The distance
between the rover and the nearest obstacle in 30 replications
is presented in Figure 4. The results reveal that the rover can
safely navigate with no collision through the unknown random
forest environment with unpredictably appearing obstacles
in all trials. Moreover, the proposed controller is robust to
disturbances unlike [29]. Compared to [9], [25], the proposed
controller operates in open loop most of the time and closes
the loop only when the error gap threshold is achieved. Hence,
the controller as well as the actuator inputs are not constantly

1https://youtu.be/iS PzDmlpfs.

Fig. 4: Distance to the nearest obstacle. The distance between the robot
and the nearest obstacle is positive in all 30 Monte-Carlo trials with the same
navigation scenario, which shows the navigation is always collision-free.

updated. As a result, we transition from classical periodic
learning to aperiodic learning that effectively balances the
system performance over resources usage.

C. Maximum Kinodynamic Distance

The value of the maximum kinodynamic distance , Dkin
rob,

of a single BVP depends on multiple parameters, including
the initial velocity, orientation of BVP θ (i.e., the bearing
angle of xr − x0), event-trigger bandwidth β, as well as
disturbances. We investigate how θ and β are correlated
with Dkin

rob with zero initial velocity and no disturbances. We
implement 2, 880 simulations of the rover (44) traversing from
[0, 0] to [10 cos θ, 10 sin θ]. The orientation of θ ranges from
00 to 3550 with 72 values, and the event-trigger bandwidth β
spans from 0 to 0.975 with 40 values. The other parameters are
identical to the setting in Section VI-B. The colormap of Dkin

rob
is presented in Figure 5. We observe that: i) Dkin

rob changes
periodically with respect to θ; and ii) Dkin

rob decreases for β
close to 1. Particularly, as β increases, the control loop is more
frequently closed, which indicates more frequent regulation to
the agent’s motion and subsequently smaller Dkin

rob.

https://youtu.be/iS_PzDmlpfs


TABLE I: Kinodynamic Motion Planning Comparison

SST & SST⋆ [10] Funnel Libraries [21] Allen, Pavone [20] RL-RRT [14] RRT-Q⋆ [9] RRT-Q X
∞

Optimality - Energy Appr. Time No Appr. Energy Appr. Energy
Scalability - Yes (offline computation) Yes (training) Yes (training) Yes Yes
Feedback - Closed-loop Open-loop Open-loop Closed-loop Intermittent
Dynamics Model-based Model-based (uncertain) Model-based Model-based Model-free Model-free

Disturbance - Bounded No No No Bounded
Environment Static Dynamic Dynamic Static Static Dynamic

PE - - - - Strong Relaxed

D. Qualitative Comparison
In Table I, we present a qualitative comparison of the

proposed framework RRT-Q X
∞ with several other works on

kinodynamic motion planning. We consider seven aspects:
i) optimality in terms of control; ii) scalability in terms
of real-time execution; iii) feedback loop of the controller;
iv) requirement for system dynamics knowledge; v) type of
bearable disturbance, vi) type of environment; and vii) probing
signal requirement for PE.

Although SST and SST⋆ [10] are near-optimal and optimal
kinodynamic motion planners, the control-related specifica-
tions are not applicable due to lacking control synthesis.
While the energy optimality of RRT-Q⋆ [9] and RRT-Q X

∞ is
approximate due to the learning process with unknown system
dynamics, the time optimality of Allen and Pavone [20] arises
from the prediction error of the support vector machine. Real-
time computation of the control input can be achieved by all
methods except of SST and SST⋆ [10]. Funnel libraries [21],
Allen and Pavone [20], and RL-RRT [14] require extensive
offline computations for training, but RRT-Q⋆ and RRT-Q X

∞
require no training a priori. While RRT-Q⋆ can be used only in
environments with static obstacles, RRT-Q X

∞ can be applied in
environments with appearing/disappearing obstacles. A strong
PE of the probing signal is required in RRT-Q⋆ for parameters
to converge to the ideal values while a relaxed PE condition
is needed for RRT-Q X

∞.

VII. CONCLUSION

We propose RRT-Q X
∞, an online kinodynamic motion plan-

ning framework for unpredictable dynamic environments with
unknown robot dynamics. RRT-Q X

∞ reduces computation and
communication resources by intermittently updating the con-
troller instead of continuously and is a fully online framework
with no offline computation. In particular, we propose a
robust intermittent Q-learning method for low-level model-
free control. The results of kinodynamic motion planning
in simulated random forest environments indicate that the
proposed framework enables robust collision-free navigation
for completely unknown systems in unknown dynamic envi-
ronments with external disturbances.

Ongoing work is focusing on: i) adaptive obstacle augmen-
tation strategies, ii) kinodynamic motion planning in human-
crowded environments, and iii) reduced-order model-free con-
trol for large-scale unknown systems.
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APPENDIX

Proof of Theorem 2. The proof follows from [53, Theorem 1].
We adopt the positive definite function V := V ⋆ as a Lyapunov
candidate that satisfies the time-triggered HJI equation (9) with
V(0; ·) = 0. Then, the orbital derivative along the solution of
(1) with the intermittent controller for t ∈ [rj , rj+1) yields,

9V =
∂V ⋆

∂x̄

⊺

9̄x+
∂V ⋆

∂t
=
∂V ⋆

∂x̄

⊺

(Ax̄+Bu⋆
d + Fd⋆) +

∂V ⋆

∂t
. (45)

After writing the time-triggered HJI equation (9) as,

−1

2
(x̄⊺Mx̄+u⋆⊺

c Ru⋆
c −γ2∥d⋆∥2) ≡ ∂V ⋆

∂x̄

⊺

(Ax̄+Bu⋆
c +Fd

⋆)+
∂V ⋆

∂t
,

we rewrite the orbital derivative (45) as,

9V = −1

2
x̄⊺Mx̄− 1

2
u⋆⊺

c Ru⋆
c +

1

2
γ2∥d⋆∥2+∂V

⋆

∂x̄

⊺

B(u⋆
d − u⋆

c )

=− 1

2
x̄⊺Mx̄+

1

2
(u⋆

c − u⋆
d )

⊺R(u⋆
c − u⋆

d )−
1

2
u⋆⊺

d Ru⋆
d +

1

2
γ2∥d⋆∥2.
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Per Fact 1, we have (u⋆c −u⋆d)⊺R(u⋆c −u⋆d) ≤ λ(R)L(t)2∥e∥2.
Thus, the orbital derivative (45) is upper-bounded by,

9V ≤ −1

2

´

β2λ(M) + (1− β2)λ(M)
¯

∥x̄∥2 (46)

+
1

2
λ(R)L(t)2∥e∥2−1

2
λ(R)∥u⋆

d∥2+
1

2
γ2∥d⋆∥2.

Hence, if the following inequality is satisfied ∀t ∈ [rj , rj+1),

∥e∥2≤ (1− β2)λ(M)∥x̄∥2+λ(R)∥u⋆
d∥2−γ2∥d⋆∥2

λ(R)L(t)2
, (47)

then the right-hand side of (46) will be less than or equal to 0,
so 9V ≤ 0, and the equilibrium point of the closed-loop system
will be asymptotically stable as T →∞.

Proof of Theorem 3. We start by considering the flow dynam-
ics (39). We take the Lyapunov candidate as,

L(ψ; t) :=V ⋆(x̄; t) + V ⋆(ˆ̄x; t) +
1

2
∥W̃c∥2

+
1

2
tr{W̃ ⊺

a W̃a}+
1

2
tr{W̃ ⊺

d W̃d} > 0, ∀t ≥ 0, (48)

where ψ is the augmented state as defined in Section IV-D.
The time derivative of (48) is partitioned to 9L = T1 + T2 +
T3 + T4 + T5 with,

T1 =
1

2
x̄⊺ 9P (t)x̄+ x̄⊺P (t)(Ax̄+Bûd + F d̂), (49)

T3 = W̃ ⊺
c

9̃Wc = −αcW̃
⊺
c

´ σσ⊺

(1 + σ⊺σ)2
+ Λ

¯

W̃c, (50)

T5 = tr{W̃ ⊺
d

9̃Wd} = −αdtr{W̃ ⊺
d

(ξ(t)x̄)(ξ(t)x̄)⊺

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
W̃d

+ W̃ ⊺
d

(ξ(t)x̄)x̄⊺

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
Q̃xdQ

−1
dd }, (51)

and T2 = 0, T4 = 0. The terms T2 and T4 vanish because
they are updated only at jumps and remain constant in the
remaining time. We define Ξ := σσ⊺

(1+σ⊺σ)2 +Λ to upper bound
T3 (50), i.e., T3 ≤ −αcλ(Ξ)∥W̃c∥2. Since σσ⊺

(1+σ⊺σ)2 ⪰ 0 and
Λ ≻ 0, we know λ(Ξ) > 0. Thus, with αc ∈ R+, the following
inequality holds,

T3 ≤ −αcλ(Ξ)∥W̃c∥2≤ 0. (52)

Next, the first term T1 (49) yields,

T1 ≤ −1

2
λ(M)∥x̄∥2+1

2
λ(R)∥W̃ ⊺

a µ(t)x̄− Ŵ ⊺
a µ(t)e∥2

− 1

2
λ(R)∥ûd∥2−

1

2
γ2∥W̃ ⊺

d ξ(t)x̄∥
2+

1

2
γ2∥d̂∥2, (53)

where x̄⊺P (t)B = −u⋆⊺c R, and x̄⊺P (t)F = γ2d⋆⊺. Con-
sidering the actor weights remain constant during the flow
dynamics, we have L1(t) 7→ R+ a strictly positive-definite
function [47] such that ∥W̃ ⊺

a µ(t)∥≤ L1(t). Thus, by adding
and subtracting 1

2β
2λ(M)∥x̄∥2 to the right-hand side, and by

using Fact 1, the Young’s inequality, and (53), we obtain,

T1 ≤− 1

2

´

(1− β2)λ(M)− 2λ(R)L1(t)
2
¯

∥x̄∥2

− 1

2
β2λ(M)∥x̄∥2+2λ(R)

´

L(t)2 + L1(t)
2
¯

∥e∥2

− 1

2
λ(R)∥ûd∥2−

1

2
γ2∥W̃ ⊺

d ξ(t)x̄∥
2+

1

2
γ2∥d̂∥2. (54)

Provided that in the time interval t ∈ [rj , rj+1), the upper

bound inequality (47) holds, then (54) yields,

T1 ≤− 1

2

´

β2λ(M)− 2λ(R)L1(t)
2
¯

∥x̄∥2

− 1

2
γ2∥W̃ ⊺

d ξ(t)x̄∥
2. (55)

Now consider the last term T5 (51). It yields,

T5 ≤− αd

2

∥x̄⊺ξ(t)⊺W̃d∥2

1 + (ξ(t)x̄)⊺(ξ(t)x̄)

+
αd

2
ηλ

´ ξ(t)Q−1
dd

1 + (ξ(t)x̄)⊺(ξ(t)x̄)

¯

∥x̄∥2, (56)

where η is a constant of unity order. Given the upper
bounds (52), (55) and (56), we have,

9L(ψ; t) ≤− 1

2

´

β2λ(M)− 2λ(R)L1(t)
2

−αdηλ
´ ξ(t)Q−1

dd

1 + (ξ(t)x̄)⊺(ξ(t)x̄)

¯¯

∥x̄∥2−1

2
γ2∥W̃ ⊺

d ξ(t)x̄∥
2

− αd

2

∥W̃ ⊺
d ξ(t)x̄∥

2

1 + (ξ(t)x̄)⊺(ξ(t)x̄)
− αcλ(Ξ)∥W̃c∥2.

Thus, if the following inequalities are satisfied,

0 < αd ≤ β2λ(M)− 2λ(R)L1(t)
2

ηλ
´

ξ(t)Q−1
dd

1+(ξ(t)x̄)⊺(ξ(t)x̄)

¯

,
λ(M)

λ(R)
>

2L1(t)
2

β2
,

then 9L(ψ; t) is non-positive for all ψ and t ≥ t0. By defining
W1(ψ; t) =W2(ψ; t) := V ⋆(x̄; t) + 1

2∥W̃c∥2+ 1
2 tr{W̃ ⊺

d W̃d} >
0, W1(ψ; t) ≤ L(ψ; t) ≤ W2(ψ; t) is satisfied. Hence, the
origin ψe = 0 is uniformly stable per the Lyapunov stability
theorem. Also, given that L(ψ; t) is lower-bounded, non-
increasing, and that its time derivative 9L(ψ; t) = T1+T3+T5
is also bounded, the Lyapunov function in (48) is uniformly
continuous, which satisfies the Barbalat’s lemma, L(ψ; t)→ 0
as t→∞. Since 9L(ψ; t) < 0, asymptotic stability holds from
the Lyapunov stability theorem. Moreover, W1(ψ; t) is radially
unbounded with respect to ∥x̄∥, ∥W̃c∥, ∥W̃ ⊺

d ξ(t)x̄∥2, and thus
globally properties hold. Therefore, the equilibrium point of
the flow dynamics at the origin ψe = 0 is globally uniformly
asymptotically stable as T →∞ [54].

We continue with the jump dynamics (40) comprising the
sampled states and the control actor weight updates. Let us
define the Lyapunov function at t = rj as,

∆L(ψ; t) := ∆V1(x̄
+, x̄(rj); t) +

´

V ⋆(ˆ̄x+; t)− V ⋆(ˆ̄x(rj); t)
¯

l jh n

∆V2

+∆V3(W̃
+
c , W̃c(rj)) + ∆V5(W̃

+
d , W̃d(rj))

+
1

2αa

´

tr{W̃+⊺
a W̃+

a } − tr{W̃a(rj)
⊺W̃a(rj)}

¯

l jh n

∆V4

, (57)

where ∆L(ψ; t) > 0. Note that x̄, W̃c, W̃d are continuous even
at the triggering events, hence they all vanish during the jump
dynamics, i.e., ∆V1(x̄+, x̄(rj); t) = 0, ∆V3(W̃+

c , W̃c(rj)) =
0, and ∆V5(W̃

+
d , W̃d(rj)) = 0. With ˆ̄x+ = x̄(rj) and ˆ̄x(rj) =

x̄(rj−1) at the jump, the second term of (57) yields,

∆V2 = V ⋆(ˆ̄x+)− V ⋆(ˆ̄x(rj)) = V ⋆(x̄(rj))− V ⋆(x̄(rj−1)) ≤ 0,

because of the convergence of x̄. Hence, as T → ∞, the
sampled state asymptotically converges to the origin, i.e.,



∥ˆ̄x(rj)∥→ 0.
Using Qudud = R and Young’s inequality, taking entry-wise

norms for the fourth term of (57) results in,

∆V4 ≤− ∥W̃ ⊺
a µ(t)x̄(rj)∥2

´

1− 1 + αa

4λ(R)
− αa

8

¯

+
1 + αa

4λ(R)
∥Q̃xud∥

2+
αa

2λ(R)2
∥Q̃xud∥

2. (58)

Therefore, the inequality ∆V4 < 0 is satisfied if we
guarantee in (58) that W̃a remains outside the compact

set Ω =

{
W̃a ∈ Rn×m | ∥W̃a∥≤

d

1+αa
4λ(R)

∥Q̃xud∥
2+

αa
2λ(R)2

∥Q̃xud∥
2

1− 1+αa
4λ(R)

−αa
8

}
.

The last two constraints arise from the denominator,

0 < αa <
8λ(R)− 2

λ(R) + 2
, λ(R) > 0.25.

Since the elements in Ω are asymptotically stable for T →∞,
the set becomes a single point, thus ∥W̃a∥→ 0.
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