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ABSTRACT
Gaussian Processes (GPs) are a powerful tool for probabilistic mod-

eling, but their performance is often constrained in complex, large-

scale real-world domains due to the limited expressivity of classi-

cal kernels. Quantum computing offers the potential to overcome

this limitation by embedding data into exponentially large Hilbert

spaces, capturing complex correlations that remain inaccessible

to classical computing approaches. In this paper, we propose a

Distributed Quantum Gaussian Process (DQGP) method in a multi-

agent setting to enhance modeling capabilities and scalability. To

address the challenging non-Euclidean optimization problem, we

develop a Distributed consensus Riemannian Alternating Direction

Method of Multipliers (DR-ADMM) algorithm that aggregates local

agent models into a global model. We evaluate the efficacy of our

method through numerical experiments conducted on a quantum

simulator in classical hardware. We use real-world, non-stationary

elevation datasets of NASA’s Shuttle Radar Topography Mission

and synthetic datasets generated by Quantum Gaussian Processes.

Beyond modeling advantages, our framework highlights poten-

tial computational speedups that quantum hardware may provide,

particularly in Gaussian processes and distributed optimization.
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1 INTRODUCTION
Decision-making in autonomous systems relies on reliable uncer-

tainty quantification. Gaussian processes (GPs), as an inherently

probabilistic modeling technique, satisfy the need through accurate

predictions and principled uncertainty estimation. To learn a GP

model that characterizes the intrinsic dynamics of an unknown

environment, an agent typically samples informative data points

from the environment. However, training a GP model on 𝑁 sam-

ples involves O(𝑁 3) computations and O(𝑁 2) memory. When a

single agent is responsible for exploration and computation, the
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process becomes not only computationally demanding but also

time-sensitive, as the agent must physically traverse all locations

to gather samples. This limitation restricts the applicability of GPs

to large-scale datasets and environments—conditions commonly

encountered in autonomous systems—especially for single-agent

systems. To this end, GP approximations have been introduced that

can be broadly categorized into two main classes: exact aggregation

methods and inducing point-based approximationmethods [35].We

focus on the former class which serve as distributed GP (DGP) ap-

proaches [11, 23, 26]. These methods enable GP training on dataset

sizes that would otherwise be infeasible for a single agent. In partic-

ular, they deploy multiple agents in local regions of the input space,

allowing each to learn a local GP model that captures regional

characteristics. The local GP models are then aggregated through

multi-agent coordination to form a global GP model. FACT-GP [11]

and its generalized version g-FACT-GP [34] enforce partitioning of

sampled data, and the resulting local posteriors are subsequently

aggregated. In addition, apx-GP [54] and gapx-GP [24] reach global

consensus by using the multi-agent Alternating Direction Method

of Multipliers (ADMM) [6]. By distributing both data storage and

computational effort among agents, DGP methods effectively over-

come the scalability limitations of standard GPs.

Gaussian Processes employ kernel functions [22] to model the

correlations among the data points by projecting them into a high-

dimensional feature space. This mapping enables GPs to capture

complex relationships. However, the classical kernels possess lim-

ited expressivity due to the underlying mathematical formulation

that is tractable on classical hardware. This shortcoming can be

addressed through the emerging field of quantum computing. Our

goal in this work is to leverage quantum computing to develop pow-

erful and scalable GPs. Specifically, we aim to design a distributed

framework for Quantum Gaussian Processes that exploits the ex-

pressive capability of quantum kernels while efficiently distributing

the computational and memory load across multiple agents.

The current generation of quantum hardware, termed as the

NISQ (Noisy Intermediate-Scale Quantum) era [43], lacks fault tol-

erance, making it challenging to realize a clear quantum advantage.

This limitation has motivated the development of several hybrid

quantum-classical techniques, termed as variational quantum al-

gorithms (VQAs) [5]. VQAs employ parameterized quantum cir-

cuits [3], where each circuit parameter serves as an optimization

variable adjusted to minimize a cost function. The system dynamics

are modeled within the quantum domain, enabling faster gradi-

ent evaluation [50], while parameter updates are performed using

classical optimizers. A notable example of VQA is the Quantum

Approximate Optimization Algorithm (QAOA) [18], widely applied

to combinatorial optimization problems. However, VQAs face sev-

eral challenges, including the optimization landscape that often

contains large, flat regions which cause gradients to vanish. This
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phenomenon is called barren plateaus [30] and remains an active

research topic [10, 38, 41, 42, 45]. Moreover, with the advancement

of quantum hardware, exemplified by the milestone achievement

of quantum supremacy [2], it becomes crucial to devise quantum al-

gorithms that can be implemented in a parallelized and distributed

fashion [39], where quantum circuit evaluations can be allocated to

multiple quantum processors to enhance scalability and robustness.

A major advancement in quantum computing in recent years

has been the introduction of quantum kernel functions [20], which

have led to the development of QuantumGaussian Processes (QGPs)

[44]. Quantum kernels incorporate parameterized quantum circuits,

called Quantum Encoding Circuits [21], to embed classical data

into the quantum domain. Considerable research work has been

conducted to designing kernels with the goal of achieving optimal

alignment between quantum feature space and classical data labels.

Beyond QGPs, these quantum kernels have proven beneficial in

other domains of machine learning [1, 49]. In particular, [7, 40]

employ quantum kernels with reinforcement learning in multi-

agent settings. In addition to QGP training, significant efforts have

been directed to leveraging quantum algorithms for GP inference.

Numerous methods [8, 12, 14, 29, 56] have been formulated based

on the Harrow-Hassidim-Lloyd (HHL) algorithm [36] to accelerate

the computation of inverse kernel matrices required for prediction.

Contribution. The contribution of this paper is twofold. First, we in-

troduce the distributed consensus Riemannian ADMM (DR-ADMM)

optimization that can efficiently train parameterized quantum cir-

cuits across multiple agents. Next, we formulate the distributed

quantum gaussian process (DQGP), which successfully scales the

expressive power of quantum kernels utilizing quantum aspects

of entanglement, superposition and measurements to handle com-

plex, multi-agent scenarios (Fig. 1). Numerical experiments on non-

stationary fields demonstrate the enhanced performance of the

proposed method compared to other classical approaches.

2 PROBLEM FORMULATION
In this section, we discuss classical GPs, the function-space view of

GPs that connects classical to quantum computing, quantum GP

regression, distributed classical GP training, and state the problem.

2.1 Classical Gaussian Processes (GPs)
GP regression is a non-parametric Bayesianmodeling approach [15]

that provides a probability distribution over an infinite-dimensional

space of functions. The system observations are modeled as 𝑦 (x) =
𝑓 (x) +𝜖 , where x ∈ R𝐷 is the input of a D dimensional space,𝑦 ∈ R
is the corresponding label, 𝑓 (x) ∼ GP(0, 𝑘 (x, x′)) is a zero-mean

GP with covariance function 𝑘 : R𝐷 × R𝐷 → R, and 𝜖 ∼ N(0, 𝜎2

𝜖 )
the i.i.d. zero mean Gaussian measurement noise with variance

𝜎2

𝜖 > 0. The objective of GP regression then is to estimate the latent

function 𝑓 given dataset D = {X, y} with inputs X = {x𝑛}𝑁𝑛=1,
outputs y = {𝑦𝑛}𝑁𝑛=1, where 𝑁 is the number of observations.

We determine the hyperparameters 𝜽 of the covariance function

by using maximum likelihood estimation. The negative marginal

log-likelihood function takes the form of,

L = log𝑝 (y | X) = 1

2

(
y⊺C−1𝜽 y + log |C𝜽 | + 𝑁 log(2𝜋)

)
, (1)

whereC𝜃 = K + 𝜎2

𝜖 I𝑁 is the positive definite covariance matrix and

K = 𝑘 (X ,X ) ⪰ 0 ∈ R𝑁×𝑁 is the positive semi-definite correlation

matrix between inputs of X. The GP training problem yields,

ˆ𝜽 = argmin

𝜽
y⊺C−1𝜽 y + log |C𝜽 |, (2)

which can be solved using gradient-based optimization methods

with partial derivative of the objective,

𝜕L(𝜽 )
𝜕𝜽

=
1

2

Tr

{(
C−1𝜽 − C

−1
𝜽 yy⊺C−1𝜽

) 𝜕C𝜽

𝜕𝜽

}
. (3)

2.2 Function-Space View of Gaussian Processes
The preceding discussion of GPs focuses on a formulation in a

finite-dimensional space associated with a discrete dataset {X, y}.
We can generalize to an infinite-dimensional function-space view,

where a GP is defined as 𝑓 (x) ∼ GP(𝑚(x ), 𝑘 (x, x′)) with𝑚(x )
the mean function and 𝑘 (x, x′) the covariance function [48]. In this

way, a GP can be interpreted as a collection of random variables,

any finite subset of which follows a joint Gaussian distribution.

This allows the GP to assign probabilities over the space of possible

functions, governed by the prior induced by the covariance. The

function-space view provides a critical link to the kernel function 𝜅

through the associated feature map 𝜙 , expressed as,

𝜅 (x, x′) = 𝜙 (x)⊺𝜙 (x′) . (4)

In classical computing settings, the kernel function measures the

correlation between two data points in a high-dimensional fea-

ture space without explicitly mapping the data into that space. In

the quantum domain, the classical data are encoded into quantum

states within a quantum Hilbert space using Quantum Encoding
Circuits [46]. The Hilbert space is exponentially large, and thus a

classical computer would struggle even to represent the quantum

states, let alone compute their inner product (4). Quantum kernel
functions [47] enable the estimation of correlations between these

encoded quantum states, capturing complex and highly non-linear

relationships in the original classical data.

2.3 Quantum Gaussian Processes (QGPs)
The first step in constructing a Quantum Gaussian process (QGP) is

to encode classical data into quantum states. This is achieved using

Quantum encoding circuits which implement amapping from a clas-

sical data vector x ∈ R𝐷 to a quantum state |𝜓x⟩ in quantum Hilbert

space H , given by Φ : x → |𝜓x⟩ = 𝑈 (x, 𝜽 ) |0⟩⊗𝑞 , where Φ is the

encoding map, 𝑈 (x, 𝜽 ) a unitary operator representing the entire

quantum encoding circuit with 𝜽 the trainable hyperparameters,

and |0⟩⊗𝑞 the initial quantum state of a system comprising 𝑞 qubits.

The circuit𝑈 (x, 𝜽 ) is composed of quantum unitary logic gates [53],

primarily rotational gates RX (𝝈X, 𝜃𝑥 ),RY (𝝈Y, 𝜃𝑦),RZ (𝝈Z, 𝜃𝑧) with
2 × 2 Pauli matrices (𝝈X,𝝈Y,𝝈Z) and their controlled versions. Ad-
ditional gates include the Hadamard H, Phase P, CNOT, and the

SWAP gate. Moreover, 𝑈 (x, 𝜽 ) can be 𝜄-layered with an identical

gate structure in each layer, i.e.,𝑈 (x, 𝜽 ) =𝑈final𝑈𝜄 (x, 𝜽 𝜄) . . .𝑈1 (x, 𝜽1).
After encoding the classical data vectors x and x′ into the quan-

tum states |𝜓x⟩ and |𝜓x′ ⟩ respectively, the quantum kernel func-

tion 𝜅 computes the correlation between the states which can then

be used to populate the GP covariance matrix C𝜽 (x, x′). A repre-

sentative quantum kernel is the fidelity kernel 𝜅F [55] derived from



Figure 1: Distributed Quantum Gaussian Process (DQGP): A hybrid classical-quantum framework for multi-agent systems.

the fidelity measure F ,
𝜅F : H ×H → [0, 1] = | ⟨𝜓x |𝜓x′ ⟩ |2, (5)

where 𝜅F = 1 shows complete overlap between two quantum states

and 𝜅F = 0 indicates that the quantum states are orthogonal. There

exists mathematical relevance between (4), (5), and the quantum

kernels serving as covariance functions in QGP training.

2.4 Distributed Gaussian Processes (DGPs)
In classical GP training (2), each optimization round entails time

complexity of O(𝑁 3), due to the computation of covariance matrix

inverse C−1𝜽 . Additionally, storing C−1𝜽 and 𝑁 dataset size requires

O(𝑁 2 + 𝐷𝑁 ) space complexity. The high computational and mem-

ory demands make classical GPs impractical for large-scale, real-

world applications. DGP [11] addresses the scalability bottleneck by

distributing both computation and storage across multiple agents,

under the assumption of local dataset independence.

Assumption 1. All local datasets represent distinct areas with
local models being statistically independent.

Instead of computing the large covariance inverse C−1𝜽 , a DGP

approximation yields, C−1𝜽 ≈ diag(C−1𝜽 ,1, . . . ,C
−1
𝜽 ,𝑀 ), where C−1𝜽 ∈

R𝑁×𝑁 and C−1𝜽 ,𝑚 ∈ R𝑁𝑚×𝑁𝑚
for all agents𝑚 ∈ [1, 𝑀]. Hence, by

virtue of Assumption 1, DGPs can decompose the optimization

problem over dataset D into a distributed optimization problem

over local datasets D𝑚 . DGP training methods are also formulated

using the multi-agent alternating direction method of multipliers

(ADMM) [4, 6]. The analytical proximal GP (apx-GP) [54] training

employs a first-order approximation on the local log-likelihood

function L𝑚 under the assumption of Lipschitz continuity,

Assumption 2. The function L𝑚 : RN → R is Lipschitz continu-
ous with a positive parameter 𝐿 > 0 if,

∥∇L𝑚 (x) − ∇L𝑚 (y)∥2 ≤ 𝐿∥x − y∥
2
, ∀x, y ∈ RN .

The main idea behind apx-GP and other ADMM-based GP train-

ing algorithms [25] is that every agent 𝑚 is allowed to have an

opinion on its hyperparameter vector 𝜽𝑚 ; however, once the op-
timization is complete, they should agree on a global consensus

vector z. The optimization scheme of apx-GP yields,

z(𝑠+1) =
1

𝑀

𝑀∑︁
𝑚=1

(
𝜽 (𝑠 )𝑚 +

1

𝜌
𝝍 (𝑠 )𝑚

)
(6a)

𝜽 (𝑠+1)𝑚 = z(𝑠+1) − 1

𝜌 + 𝐿𝑚

(
∇𝜽L(z(𝑠+1) ) + 𝝍 (𝑠 )𝑚

)
(6b)

𝝍 (𝑠+1)𝑚 = 𝝍 (𝑠 )𝑚 + 𝜌
(
𝜽 (𝑠+1)𝑚 − z(𝑠+1)

)
(6c)

where 𝜌 > 0 is the parameter promoting the consensus between

all 𝜽𝑚 and z, 𝐿𝑚 is a positive Lipschitz constant for each agent𝑚,

∇𝜽L(z(𝑠+1) ) is the gradient of marginal log-likelihood function

with respect to z(𝑠+1) , and 𝝍𝑚 is the dual variable vector for each

agent 𝑚. The reduced time and space complexity of apx-GP is

O(𝑁𝑚) = O(𝑁 3/𝑀3) and O(𝑁 2/𝑀2 + 𝐷 (𝑁 /𝑀)) respectively.

2.5 Problem Statement
While DGPs effectively alleviate the scalability limitations of stan-

dard GPs, their predictive performance remains constrained by the

limited expressivity of classical kernels. Quantum kernels, on the

contrary, can capture subtle correlations that are inaccessible to

classical kernels by leveraging the exponentially large Hilbert space

for data mapping. Motivated by this, our work focuses on scaling

QGPs to enable learning in multi-agent systems.

Problem 1. Develop a Distributed consensus Riemannian
ADMM (DR-ADMM) approach for optimizing quantum kernel hy-
perparameters across multiple agents.

Problem 2. Formulate a Distributed QuantumGaussian Pro-
cess (DQGP) algorithm that simultaneously overcomes the expressiv-
ity limitations of DGPs and the scalability challenges of QGPs.

3 PROPOSED METHODOLOGY
In this section, we present the proposed methodologies Distributed

consensus Riemannian ADMM (DR-ADMM) and Distributed Quan-

tum Gaussian Process (DQGP).



Figure 2: The structure of the proposed DQGP with 4 agents. The consensus algorithm is the proposed DR-ADMM optimization.

3.1 Distributed consensus Riemannian ADMM
The ADMM-based consensus problem (6) accounts for GP training

with classical kernel hyperparameters that operate in a Euclidean

parameter space. For quantum kernels, the hyperparameters are

mostly rotational and thus lie in a more complex parameter space,

a Riemannian manifold [31]. To address this, we first define the

manifold in which the quantum hyperparameters exist and then

describe the distributed consensus Riemannian ADMM algorithm.

In [32], a Riemannian ADMM algorithm for solving nonconvex

problems in centralized topologies is introduced.

3.1.1 Manifold Definition and Operations. The torus manifold for

quantum circuit parameters is expressed as T 𝑃 = S1×S1×· · ·×S1
,

whereS1
is the circle manifold for rotational parameters 𝜃𝑝 ∈ [0, 𝜋]

for all 𝑝 = 1, 2, . . . , 𝑃 . A combination of rotational quantum gates

with parameters in [0, 𝜋] ensures full-coverage of Bloch sphere [17].
Our choice of [0, 𝜋] narrows the search space without sacrificing

the expressiveness associated with the standard [0, 2𝜋] range. Sub-
sequent operations can be constructed over the torus manifold,

Manifold Projection : ΠT (𝜃 ) = 𝜃 mod 𝜋,

Riemannian Distance : 𝑑T (𝜃𝑝 , 𝜃𝑟 ) = ∥W(𝜃𝑝 − 𝜃𝑟 )∥2,
Retraction : R𝜃𝑝 (𝜃𝑟 ) = ΠT (𝜃𝑝 + 𝜃𝑟 ),

Logarithmic Map : Log𝜃𝑝
(𝜃𝑟 ) = ΠT (𝜃𝑟 − 𝜃𝑝 ),

Vector Transport : Γ𝜃𝑝→𝜃𝑟 (v) = v,
Inner Product : ⟨𝜽𝒑, 𝜽𝒓 ⟩T = ⟨W(𝜽𝒑),W(𝜽𝒓 )⟩,

whereW(𝜃 ) = [(𝜃 + 𝜋/2) mod 𝜋] − 𝜋/2. Vector transport oper-
ation transports the tangent vector v from point 𝜃𝑝 to 𝜃𝑟 , which

is an identity on a torus manifold. As the torus manifold is locally

flat, Riemannian gradient is identical to the Euclidean gradient on

a torus, i.e., gradT 𝑓 (𝜃 ) = ∇𝑓 (𝜃 ). Moreover, we assume,

Assumption 3. All operations and gradients corresponding to the
torus manifold are uniformly bounded.

3.1.2 Quantum Gaussian Process Loss Function. Let us recast the
negative marginal log-likelihood function (1) for QGPs as,

LQ (𝜽 ) =
1

2

(
y⊺𝜿−1

Q
(X,X|𝜽 )y + log |𝜿Q (X,X|𝜽 ) | + 𝑁 log(2𝜋)

)
,

where 𝜿Q (X,X|𝜽 ) is the quantum kernel matrix with intrinsic mea-

surement noise. The derivatives of the quantum kernel with respect

to the individual hyperparameter are computed using the parameter
shift rule [50], as the quantum gates are mostly rotational,

𝜕[𝜿𝑄 ]𝑖 𝑗
𝜕𝜃𝑝

=
[𝜿𝑄 ]𝑖 𝑗 (𝜽 + 𝛿e𝑝 ) − [𝜿𝑄 ]𝑖 𝑗 (𝜽 − 𝛿e𝑝 )

2𝛿
,

where 𝛿 is the shift value and e𝑝 is the 𝑝-th unit vector. Then,

from (3) the Quantum NLL loss gradient is described as,

∇𝜽LQ (𝜽 ) =
1

2

𝑃∑︁
𝑝=1

Tr

{(
𝜿−1
Q
− 𝜿−1

Q
yy𝑇𝜿−1

Q

) 𝜕𝜿Q

𝜕𝜃𝑝

}
.

3.1.3 Distributed consensus Riemannian ADMM (DR-ADMM). The
distributed optimization problem can be formulated as minimizing

the sum of local QGP loss function across all agents, while enforcing

a consensus constraint and assuming 𝐿𝑝 -smooth cost functions,

min{𝜽𝑚 }
∑𝑀
𝑚=1 LQ,𝑚 (𝜽𝑚) subject to 𝜽𝑚 = z, ∀𝑚.

Assumption 4. L𝑄,𝑚 is𝐿𝑝 -smooth, i.e.,L𝑄,𝑚 (𝒛 (𝑠+1) )−L𝑄,𝑚 (𝒛 (𝑠 ) )
≤ ⟨∇L𝑄,𝑚 (𝒛 (𝑠 ) ), 𝒛 (𝑠+1) − 𝒛 (𝑠 ) ⟩T +

𝐿𝑝

2
d
2

T (𝒛
(𝑠+1) , 𝒛 (𝑠 ) ), ∀𝑚 ∈ [1, 𝑀].

To solve the distributed optimization problem, we construct an

augmented Lagrangian function defined on a Riemannian manifold,

L𝜌 (𝜽𝑚, z, 𝝍𝑚) =
𝑀∑︁
𝑚=1

(
LQ,𝑚 (𝜽𝑚) + 𝝍⊺

𝑚Logz (𝜽𝑚) +
𝜌

2

∥Logz (𝜽𝑚)∥2
)
.

Subsequently, the optimization scheme of the DR-ADMM yields,

z(𝑠+1) = argmin

𝑤∈T𝑃

𝑀∑︁
𝑚=1

𝑑2T

(
𝑤, 𝜽 (𝑠 )𝑚 +

𝝍 (𝑠 )𝑚
𝜌

)
(7a)

𝜽 (𝑠+1)𝑚 = Rz(𝑠+1)
©­­«−
∇𝜽LQ,𝑚

(
z(𝑠+1)

)
+ 𝝍 (𝑠 )𝑚

𝜌 + 𝐿𝑚
ª®®¬ (7b)

𝝍 (𝑠+1)𝑚 = 𝝍 (𝑠 )𝑚 + 𝜌Logz(𝑠+1)
(
𝜽 (𝑠+1)𝑚

)
, (7c)

where z(𝑠+1) is the global consensus parameter, 𝝍 (𝑠+1)𝑚 the dual

variable, ∇𝜽LQ,𝑚 (z(𝑠+1) ) the Riemannian gradient of local loss at

z(𝑠+1) , 𝐿𝑚 the Lipschitz constant for agent𝑚, and Rz(𝑠+1) the retrac-

tion operator from global parameter z(𝑠+1) . (7a) uses the simplified



Algorithm 1 DR-ADMM

Input: [{X𝑚, y𝑚}, 𝜽
(𝑠 )
𝑚 , 𝝍 (𝑠 )𝑚 ]𝑀𝑚=1, 𝜅𝑄 , 𝛿 , 𝜌 , L

Output: z(𝑠+1) , [𝜽 (𝑠+1)𝑚 ]𝑀𝑚=1, [𝝍
(𝑠+1)
𝑚 ]𝑀𝑚=1, ∥r

(𝑠 )
pri
∥2, ∥r(𝑠 )

dual
∥2

1: [𝝋 (𝑠 )𝑚 ]𝑀𝑚=1 = [𝜽
(𝑠 )
𝑚 ]𝑀𝑚=1 +

[𝝍 (𝑠 )𝑚 ]𝑀𝑚=1

𝜌

2: z(𝑠+1) = 1

2
ΠT

{
atan2

[
𝑀∑
𝑚=1

sin

(
2𝝋 (𝑠 )𝑚

)
,
𝑀∑
𝑚=1

cos

(
2𝝋 (𝑠 )𝑚

)]}
3: for𝑚 = 1, . . . , 𝑀 in PARALLEL do
4: Compute quantum kernel matrix: [𝜿𝑄 ]𝑚 (X𝑚,X𝑚 |z(𝑠+1) )
5: for 𝑝 = 1, 2, . . . , 𝑃 in PARALLEL do
6: Perform kernel evaluations [𝜿𝑄 ]𝑚 (𝜽 (𝑠 )𝑚 ± 𝛿e𝑝 |z(𝑠+1) )
7: end for
8: Compute derivatives via parameter shift:

𝜕[𝜿𝑄 ]𝑚
𝜕𝜽

9: Compute local gradient: ∇𝜽LQ,𝑚 (z(𝑠+1) )

10: Update: 𝜽 (𝑠+1)𝑚 = Rz(𝑠+1)

(
− ∇𝜽 LQ,𝑚 (z

(𝑠+1) )+𝝍 (𝑠 )𝑚

𝜌+𝐿𝑚

)
11: Update: 𝝍 (𝑠+1)𝑚 = 𝝍 (𝑠 )𝑚 + 𝜌Logz(𝑠+1) (𝜽

(𝑠+1)
𝑚 )

12: end for
13: Compute residuals: ∥r(𝑠 )

pri
∥2, ∥r(𝑠 )

dual
∥2

Karcher mean [33] to compute z(𝑠+1) in non-Euclidean fashion. The

optimization of DR-ADMM (7) iterates until both the primal and

the dual residuals fall below the predefined tolerance thresholds

∥r(𝑠 )
pri
∥2 ≤ 𝜖pri and ∥r(𝑠 )

dual
∥2 ≤ 𝜖dual, respectively. The primal and dual

residuals are computed as r(𝑠 )
pri

= [𝑑T (𝜽 (𝑠 )
1

, z(𝑠 ) ) . . . 𝑑T (𝜽 (𝑠 )𝑀 , z(𝑠 ) )]⊺

and r(𝑠 )
dual

= 𝜌𝑑T (z(𝑠 ) , z(𝑠−1) ), respectively. The implementation de-

tails of DR-ADMM are presented in Algorithm 1. In T 𝑃 , the Karcher
mean for z(𝑠+1) can be reduced to the circular mean (Alg. 1-line 2).

Theorem 1 (Convergence of DR-ADMM). Let the negative
marginal log-likelihood functions L𝑄,𝑚 : T 𝑝 → R be 𝐿𝑝 -smooth
∀𝑚 ∈ [1, 𝑀] on the torus manifold T 𝑝 with bounded projections
ΠT (·), and assume the existence of a uniform bound𝐶 < ∞ such that
∥∇L𝑄,𝑚 (·)∥T ≤ 𝐶 . Then, for a sufficiently large penalty parameter
𝜌 > 0, the sequence {𝜽 (𝑠 )𝑚 , 𝝍 (𝑠 )𝑚 , z(𝑠 ) } generated by 𝑠 iterations of the
Distributed Riemannian ADMM algorithm converges to a stationary
point (𝜽 ∗𝑚, 𝝍∗𝑚, 𝒛∗) that satisfies the KKT conditions for the consensus
problem, characterized by:

• Primal Feasibility: The primal residuals vanish,
lim𝑠→∞ dT (𝜽 (𝑠 )𝑚 , z(𝑠 ) ) = 0, yielding 𝜽 ∗𝑚 = z∗ ∀𝑚.
• Dual Feasibility and Stationarity: The dual residuals van-
ish, lim𝑠→∞ 𝜌 ∥z(𝑠 ) − z(𝑠−1) ∥T = 0, and the gradient of the
negative marginal log-likelihood functions with respect to the
consensus variable is zero, i.e.,

∑𝑀
𝑚=1 ∇L𝑄,𝑚 (z∗) = 0.

• Convergence Rate: The algorithm achieves a sublinear con-
vergence rate of O(1/𝑆), where 𝑆 is the total number of itera-
tions. To achieve 𝜉-accuracy in consensus residual, the required

number of iterations is 𝑆 = O
(
(𝜌+𝐿𝑚𝑎𝑥 ) (𝑉 (0) −𝑉 ∗ )

𝜉

)
, where

𝐿𝑚𝑎𝑥 =max𝑚 𝐿𝑚 , and 𝑉 ∗ = inf𝑠 𝑉
(𝑠 ) is the optimal value.

Algorithm 2 DQGP

Input:D = {X, y},𝑀 , 𝛿 , 𝜅𝑄 (Φ(𝑞, 𝜄)), 𝜌 , L, 𝐹 , 𝑠𝑚𝑎𝑥 ,𝑇 , 𝜖pri, 𝜖dual
Output: z∗, NLPDtest, NRMSEtest

1: Initialize: 𝜽 (0)𝑚 , z(0) , 𝝍 (0)𝑚 , 𝜅𝑄 (z(0) ), 𝑁𝐿𝑃𝐷∗
𝐶𝑉

=∞, 𝑡 = 0, 𝑠 = 0

2: Dtrain,Dtest ← TrainTestSplit(D)
3: [D𝑚]𝑀𝑚=1← Regionalk-dTreeSplit (Dtrain, 𝑀)
4: while 𝑠 < 𝑠𝑚𝑎𝑥 and 𝑡 < 𝑇 do
5: z(𝑠+1) , [𝜽 (𝑠+1)𝑚 ]𝑀𝑚=1, [𝝍

(𝑠+1)
𝑚 ]𝑀𝑚=1, ∥r

(𝑠 )
pri
∥2, ∥r(𝑠 )

dual
∥2

← DR-ADMM( [D𝑚, 𝜽 (𝑠 )𝑚 , 𝝍 (𝑠 )𝑚 ]𝑀𝑚=1, 𝜅𝑄 , 𝛿, 𝜌, L)
6: 𝑁𝐿𝑃𝐷𝐶𝑉 ← F-fold_Cross-Validation(z(𝑠+1) ,⋃𝑚 D𝑚)
7: if NLPDCV < NLPD

∗
CV

then
8: NLPD

∗
CV

= NLPDCV, z∗ = z(𝑠+1) , 𝑡 = 0

9: else 𝑡 = 𝑡 + 1
10: end if
11: if ∥r(𝑠 )

pri
∥2 ≤ 𝜖pri and ∥r(𝑠 )

dual
∥2 ≤ 𝜖dual then break

12: 𝑠 = 𝑠 + 1
13: end while
14: NLPDtest, NRMSEtest← QGP-prediction(Dtrain,Dtest, 𝒛∗)

Proof: (Sketch) Under assumptions 3 and 4, define a Lyapunov

function𝑉 for the 𝑠𝑡ℎ iteration with dual variable regularization as,

𝑉 (𝑠 ) =
𝑀∑︁
𝑚=1

[
L𝑄,𝑚 (z(𝑠 ) ) + ⟨𝝍 (𝑠 )𝑚 , logz(𝑠 ) (𝜽

(𝑠 )
𝑚 )⟩T +

𝜌

2

d
2

T (z
(𝑠 ) , 𝜽 (𝑠 )𝑚 )

]
+ 1

2𝜌

𝑀∑︁
𝑚=1

∥𝝍 (𝑠 )𝑚 ∥2T .

Then prove that it is non-increasing,

𝑉 (𝑠+1)−𝑉 (𝑠 ) ≤ −|Λ(𝜌, 𝐿𝑚) |

×
𝑀∑︁
𝑚=1

[
∥∇L𝑄,𝑚 (z(𝑠 ) ) + 𝝍 (𝑠 )𝑚 ∥2T + d

2

T (𝜽
(𝑠 )
𝑚 , z(𝑠 ) )

]
. (8)

From (8), show that the optimization variables 𝜽𝑚 , 𝝍𝑚 , z, the
primal residual (

∑∞
𝑠=0

∑𝑀
𝑚=1 d

2

T (𝜽
(𝑠 )
𝑚 , z(𝑠 ) )) and the dual residual

(

∑∞
𝑠=1 𝜌

2∥z(𝑠 ) − z(𝑠−1) ∥2T ) series remain uniformly bounded dur-

ing DR-ADMM iterations. Ultimately, in the limit, these residuals

vanish, and the optimization variables converge to 𝜽 ∗𝑚, 𝝍
∗
𝑚, 𝒛

∗
. Ap-

plying (6b) at these limit points leads to

∑𝑀
𝑚=1 ∇L𝑄,𝑚 (z∗) = 0. The

stated sublinear convergence rate can be proven using (8).

3.2 Distributed Quantum Gaussian Process
3.2.1 Quantum Encoding Circuits. We primarily employ two types

of quantum encoding circuits. The first is the Chebyshev param-

eterized quantum circuit [27, 51] which consists of 𝑅𝑌 , 𝑅𝑋 , and

conditional-𝑅𝑍 quantum rotational gates. The conditional quan-

tum gates play a crucial role by inducing entanglement among

the qubits, which is an essential property for representing com-

plex quantum systems. The second is the Hubregtsen encoding

circuit [21], which contains the Hadamard gate 𝐻 , rotation gates

𝑅𝑍 , 𝑅𝑌 , and conditional-𝑅𝑍 as shown in Fig. 2. The Hadamard gate

introduces superposition among qubits. The overall configuration

of these circuits depends on the number of qubits 𝑞, the number of

layers 𝜄, and the dimensionality 𝐷 of the input space. Accordingly,

the encoding circuits have 𝑃 parameters {𝜃1, 𝜃2, . . . , 𝜃𝑃 } ∈ [0, 𝜋]𝑃 .



Table 1: NLPDtest and NRMSEtest for 𝑁 = 500. Set 1 = {0.58, 2.45, 1.88, 1.40, 0.31, 1.44} and Set 2 = {1.18, 2.99, 2.30, 1.88, 0.49, 0.49}.

Single Agent Method Distributed Methods

Dataset Subset Full-GP [52] 𝑀 DQGP-DR-ADMM FACT-GP [11] apxGP [54]

𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓

SRTM

N17E073 0.34 ± 0.09 0.10 ± 0.009
4 0.75 ± 0.42 0.10 ± 0.01 1.01 ± 0.04 0.18 ± 0.01 0.84 ± 0.15 0.21 ± 0.04
8 0.64 ± 0.38 0.03 ± 0.006 1.10 ± 0.03 0.20 ± 0.01 0.97 ± 0.13 0.22 ± 0.03
27 0.50 ± 0.27 0.09 ± 0.02 1.15 ± 0.03 0.21 ± 0.01 2.08 ± 1.96 0.27 ± 0.03

N43W080 0.19 ± 0.09 0.06 ± 0.006
4 0.21 ± 0.24 0.07 ± 0.02 1.06 ± 0.03 0.16 ± 0.01 12.82 ± 3.40 0.29 ± 0.02
8 0.36 ± 0.56 0.07 ± 0.02 1.14 ± 0.03 0.18 ± 0.01 30.82 ± 14.43 0.31 ± 0.02
27 0.34 ± 0.38 0.07 ± 0.02 1.21 ± 0.03 0.19 ± 0.01 115.47 ± 62.43 0.31 ± 0.02

N45W123 0.47 ± 0.10 0.10 ± 0.01
4 0.79 ± 0.56 0.16 ± 0.03 1.05 ± 0.03 0.17 ± 0.01 1.22 ± 0.06 0.23 ± 0.02
8 0.63 ± 0.31 0.12 ± 0.02 1.1 ± 0.03 0.18 ± 0.01 1.42 ± 0.09 0.27 ± 0.04
27 0.78 ± 0.42 0.12 ± 0.02 1.15 ± 0.04 0.19 ± 0.01 1.53 ± 0.18 0.29 ± 0.05

N47W124 0.68 ± 0.12 0.13 ± 0.02
4 1.24 ± 0.39 0.15 ± 0.02 1.26 ± 0.05 0.23 ± 0.02 50.50 ± 18.56 0.38 ± 0.04
8 1.41 ± 0.78 0.15 ± 0.02 1.35 ± 0.04 0.26 ± 0.02 40.90 ± 16.37 0.39 ± 0.04
27 1.97 ± 0.66 0.16 ± 0.01 1.39 ± 0.05 0.27 ± 0.02 35.36 ± 30.90 0.38 ± 0.04

2D

QGP

prior

Set 1 −0.86 ± 0.05 0.03 ± 0.007
4 -0.27 ± 0.21 0.04 ± 0.006 0.58 ± 0.26 0.14 ± 0.03 1.49 ± 2.00 0.23 ± 0.08
8 -0.24 ± 0.25 0.03 ± 0.006 0.78 ± 0.27 0.17 ± 0.03 2.73 ± 3.19 0.26 ± 0.07
27 -0.22 ± 0.15 0.04 ± 0.006 0.93 ± 0.24 0.20 ± 0.04 4.08 ± 5.75 0.28 ± 0.07

Set 2 −0.82 ± 0.07 0.03 ± 0.008
4 -0.29 ± 0.19 0.03 ± 0.006 0.54 ± 0.25 0.14 ± 0.02 0.94 ± 0.77 0.23 ± 0.06
8 -0.31 ± 0.15 0.03 ± 0.006 0.72 ± 0.27 0.16 ± 0.02 2.04 ± 1.91 0.29 ± 0.08
27 -0.26 ± 0.18 0.03 ± 0.01 0.88 ± 0.25 0.20 ± 0.02 3.34 ± 5.68 0.30 ± 0.09

3.2.2 Quantum Kernels. A standard choice for a quantum kernel

based on the quantum fidelity measure F (5) is, 𝜅F (x, x′ |𝜽 ) =

|⟨Φ(x, 𝜽 ) |Φ(x′, 𝜽 )⟩|2 =
��⟨0⊗𝑞 |𝑈 † (x, 𝜽 )𝑈 (x′, 𝜽 ) |0⊗𝑞⟩��2 , where𝑈 de-

notes the quantum encoding circuit with 𝑞 qubits and 𝜽 the hy-

perparameters. Since 𝜅F lacks observable-dependent operations,

its expressivity and modularity are limited. To manage this lim-

itation, we employ the Projected Quantum Kernel (PQK) [16]. By
incorporating measurements [19] based on observables, PQK maps

the quantum states into a classical feature vector space and then

applies the classical outer kernel on that projected space,

𝜅𝑃𝑄𝐾 (x, x′ |𝜽 ) = 𝜅outer (⟨𝑂⟩𝜓 (x) , ⟨𝑂⟩𝜓 (x′ ) ) (9)

where ⟨𝑂⟩𝜓 (x) = ⟨0⊗𝑞 |𝑈 † (x, 𝜽 )𝑂𝑈 (x, 𝜽 ) |0⊗𝑞⟩. The most common

choices for the observable operator 𝑂 include: (i) Pauli-Z measure-

ment 𝑂𝑍 =
⊗𝑞

𝑖=1
(𝝈Z)𝑖 , which captures global correlation among

𝑞 qubits; (ii) Local Pauli measurement 𝑂local = {(𝝈Z)1, . . . , (𝝈Z)𝑞},
whichmeasure individual qubits; and (iii) Mixed Pauli measurement

𝑂mixed = {(𝝈Z)1 (𝝈Z)2, (𝝈X)1 (𝝈Y)2, . . .}, which measure pairwise

qubit correlations. Any classical kernel can be used for the outer

kernel 𝜅outer [37]. With PQK, the computational cost is significantly

reduced as it only requires evaluating O(card(𝑂)) expectations,
while the fidelity kernel involves computation of O(2𝑞) state over-
lap. In addition, the observable operator measurements provide a

physical interpretability with respect to the feature vector space

and a way to implement them on quantum hardware. The imple-

mentation details of the proposed Distributed Quantum Gaussian
Process are presented in Algorithm 2.

In Fig. 1, we depict the conceptual architecture of DQGP, where

each agent is a computational node assigned to a local subset of

the spatial dataset and trains a local QGP model. After each local

step, agents push a learned 𝜽𝒎 to a central server, which aggregates

them into a consensus model z. Next, each agent pulls z from the

central server to form a consensus on their local models with the

globally aggregated model. This push-pull mechanism produces

model-level consensus. In Algorithm 2, we use the negative log

predictive density (NLPD) for validation,

NLPDtest =
1

card(Dtest)
∑︁

𝑗∈Dtest

[
1

2

log(2𝜋𝜎2

∗ ( 𝑗)) +
(𝑦 𝑗 − 𝜇∗ ( 𝑗))2

2𝜎2

∗ ( 𝑗)

]
.

(10)

To evaluate the global parameter z across training iterations, we per-
form F-fold_Cross-Validation using combined datasets

⋃
𝑚 D𝑚 .

For each fold 𝑓 = 1, 2, . . . , 𝐹 , the combined dataset is randomly

shuffled and partitioned into training D 𝑓

train
and validation D 𝑓

val

sets to compute NLPD
𝑓

CV
. The mean of all these folds, NLPDCV,

is monitored over iterations to obtain the optimal global z∗. The
QGP-prediction equations are mathematically analogous to those

of classical GPs, with the only difference being the substitution of

the classical kernel 𝜅 by the quantum kernel 𝜅𝑄 ,

𝜇∗ (x∗) = 𝜿𝑄 (x∗,X) [𝜿𝑄 (X,X) + 𝜎2

𝜖 I𝑁 ]−1y,
𝜎2

∗ (x∗) = 𝜿𝑄 (x∗, x∗) − 𝜿𝑄 (x∗,X) [𝜿𝑄 (X,X) + 𝜎2

𝜖 I𝑁 ]−1𝜿𝑄 (X, x∗),

where x∗ is the unknown input. Finally, we employ the normalized

root mean squared error (NRMSE) to assess the prediction,

NRMSEtest =

√︃
1

card(Dtest )
∑
𝑗∈Dtest

(𝑦 𝑗 − 𝜇∗ ( 𝑗))2

|𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 |
. (11)



Table 2: NLPDtest and NRMSEtest for 𝑁 = 5, 000. Set 1 = {0.58, 2.45, 1.88, 1.40, 0.31, 1.44} and Set 2 = {1.18, 2.99, 2.30, 1.88, 0.49, 0.49}.

Single Agent Method Distributed Methods

Dataset Subset Full-GP [52] 𝑀 DQGP-DR-ADMM FACT-GP [11] apxGP-pxADMM [54]

𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓ 𝑁𝐿𝑃𝐷test ↓ 𝑁𝑅𝑀𝑆𝐸test ↓

SRTM

N17E073 −0.01 ± 0.02 0.06 ± 0.001
4 1.56 ± 0.79 0.06 ± 0.005 1.11 ± 0.005 0.19 ± 0.004 1.28 ± 0.04 0.24 ± 0.006
8 1.62 ± 0.65 0.06 ± 0.004 1.20 ± 0.009 0.21 ± 0.005 1.38 ± 0.06 0.25 ± 0.006
27 1.59 ± 0.56 0.06 ± 0.004 1.23 ± 0.01 0.22 ± 0.005 2.13 ± 0.25 0.27 ± 0.01

N43W080 −0.66 ± 0.05 0.03 ± 0.001
4 -0.36 ± 0.23 0.03 ± 0.004 1.09 ± 0.009 0.16 ± 0.003 17.56 ± 1.50 0.27 ± 0.005
8 -0.34 ± 0.26 0.02 ± 0.004 1.17 ± 0.01 0.17 ± 0.003 34.08 ± 2.65 0.28 ± 0.005
27 -0.19 ± 0.37 0.02 ± 0.003 1.21 ± 0.01 0.18 ± 0.003 37.91 ± 10.16 0.28 ± 0.005

N45W123 −0.06 ± 0.03 0.05 ± 0.002
4 0.75 ± 0.49 0.05 ± 0.006 1.09 ± 0.008 0.17 ± 0.006 1.19 ± 0.02 0.19 ± 0.008
8 0.51 ± 0.51 0.05 ± 0.005 1.18 ± 0.01 0.18 ± 0.006 1.36 ± 0.02 0.23 ± 0.01
27 1.03 ± 0.67 0.05 ± 0.003 1.24 ± 0.02 0.19 ± 0.007 1.58 ± 0.05 0.27 ± 0.02

N47W124 0.29 ± 0.01 0.08 ± 0.003
4 5.21 ± 0.86 0.07 ± 0.004 1.29 ± 0.009 0.22 ± 0.009 60.95 ± 3.95 0.33 ± 0.01
8 4.52 ± 1.31 0.07 ± 0.006 1.34 ± 0.009 0.23 ± 0.01 38.22 ± 3.31 0.33 ± 0.01
27 4.38 ± 0.89 0.07 ± 0.006 1.37 ± 0.01 0.24 ± 0.01 13.65 ± 1.71 0.33 ± 0.01

2D

QGP

prior

Set 1 −0.88 ± 0.01 0.02 ± 0.003
4 0.96 ± 0.19 0.03 ± 0.004 0.42 ± 0.33 0.11 ± 0.02 2.05 ± 3.12 0.23 ± 0.08
8 1.03 ± 0.19 0.03 ± 0.003 0.61 ± 0.34 0.13 ± 0.03 3.12 ± 3.75 0.25 ± 0.09
27 1.35 ± 0.19 0.03 ± 0.004 0.77 ± 0.34 0.15 ± 0.03 3.62 ± 3.36 0.28 ± 0.09

Set 2 −0.86 ± 0.03 0.03 ± 0.008
4 0.99 ± 0.24 0.03 ± 0.004 0.49 ± 0.21 0.11 ± 0.03 2.81 ± 2.91 0.24 ± 0.06
8 0.96 ± 0.16 0.03 ± 0.003 0.71 ± 0.20 0.14 ± 0.03 4.11 ± 4.33 0.27 ± 0.07
27 0.99 ± 0.19 0.03 ± 0.004 0.88 ± 0.22 0.16 ± 0.03 5.33 ± 5.67 0.28 ± 0.07

4 NUMERICAL EXPERIMENTS & RESULTS
We evaluate the predictive capabilities of our approach through

experiments on both real-world and synthetic datasets. For the

real-world datasets, we incorporate four tiles, N17E073, N43W080,

N45W123, and N47W124 from NASA’s Shuttle Radar Topography

Mission (SRTM) [13]. The datasets have two-dimensional inputs

representing latitude and longitude, with elevation as the output.

As reported in [9], these datasets exhibit non-stationarity, i.e., dif-

ferent regions have varying degrees of variability. This is important

for assessing whether the learned model can fully adapt to the lo-

cal features, thus demonstrating its suitability for solving complex

problems. For the synthetic dataset, we generate a quantum Gauss-

ian process (QGP) prior using quantum kernels, sample points from

it to act as a training dataset, and learn the original QGP.

We use two metrics, the NLPD (10) and NRMSE (11), which test

complementary aspects of performance. Lower values for both met-

rics indicate better model performance. Since GPs are probabilistic,

NLPD evaluates the quality of the predictive distribution, while

NRMSE measures the accuracy of the mean predictions. All numeri-

cal experiments are conducted using classical quantum state vector

simulators in Qiskit and PennyLane, employing quantum encoding

circuits and kernels in sQUlearn [28]. The computational com-

plexity analysis on a quantum simulator run on classical hardware

does not represent the true complexity on current NISQ quantum

hardware, hence this work does not involve complexity analysis.

Across the four environments from the SRTM real-world dataset,

we use 𝑁 = {500, 5, 000} samples, of which 10% is reserved for

testing and the rest 90% is distributed among the agents as their

respective training datasets. The features and target are z-score nor-

malized to [−3, 3] as the quantum parameters—mostly rotational—

are naturally bounded. For quantum encoding, we employ a Cheby-

shev parameterized quantum circuit [27] with 𝑞 = 4 qubits and

𝜄 = 3 variational layers, resulting in 𝑃 = 24 quantum hyperpa-

rameters. We utilize the projected quantum kernel 𝜅PQK (9) with

the Pauli 𝝈X𝝈Y𝝈Z measurement operator and the Matérn outer

kernel, whose parameters are set to ℓ = 1.0, 𝜈 = 1.5. Quantum

hyperparameters are optimized using DR-ADMM (Algorithm 1)

with shift value 𝛿 = (𝜋/8) and ADMM parameters: penalty 𝜌 = 100

and Lipschitz constant L = {100}𝑀𝑚=1. For the synthetic dataset, we

use 𝑁 = {500, 5, 000} samples. The quantum encoding circuit is the

Hubregtsen Encoding Circuit (Fig. 2), with 𝑞 = 3 qubits and 𝜄 = 1

layer resulting in 𝑃 = 6 quantum hyperparameters. The quantum

kernel is the projected 𝜅PQK (9) with the Pauli 𝝈X𝝈Y𝝈Z measure-

ment operator. The outer kernel is Gaussian with parameter 𝛾 = 1.0.

ADMM parameters remain identical to those of the SRTM dataset.

In Table 1, 2, we present the performance of our method across

datasets of size 𝑁 = 500 and 𝑁 = 5, 000, respectively. We report the

mean and standard deviation of NLPDtest and NRMSEtest evaluated

over 20 replications to reduce the effect of randomly assigned data.

We compare our method with other single- and multi-agent GP

methods: Full-GP [52], FACT-GP [11], and apxGP [54]. In addition to

NLPD andNRMSE, the comparison allows for scalability assessment

of network sizes in Table 1, 2. In Fig. 3, 4, we present the performance

in the SRTM and 2D QGP datasets, respectively.

Aggregating improvements across the four SRTM environments

for 𝑁 = 500 and 𝑁 = 5, 000 datasets, DQGP achieves 51.1% ±
17.8% lower NRMSEtest than FACT-GP, and 65.2% ± 16.1% lower



Figure 3: Performance of DQGP (green) with the SRTM dataset, compared to Full-GP [52], FACT-GP [11], and apx-GP [54]. For
N43W080 and N47W124, we have excluded visualizing the apxGP results (worst performance) in NLPD for better readability.

Figure 4: Performance of DQGP (green) on 2D QGP prior dataset, compared to Full-GP [52], FACT-GP [11], and apx-GP [54].

NRMSEtest than apxGP. Moreover, our approach exhibits a compet-

itive performance compared to the single-agent Full-GP method,

showing a slight improvement of 1.4% on average for NRMSEtest.

This trend suggests that DQGP scales effectively with network size

for prediction accuracy. A trade-off is observed for NLPDtest as the

network size increases. In particular, DQGP achieves 8.9% ± 120.4%
improvement in NLPDtest relative to FACT-GP, and 91.7% ± 11.2%

improvement in NLPDtest relative to apxGP.

For the synthetic dataset, DQGP achieves on average 73.6% ±
10.2% lowerNRMSEtest than FACT-GP, and 87.0%± 4.0% NRMSEtest

improvement over apxGP. Compared to the single-agent Full-GP,

DQGP shows a 16.7% improvement in aggregated NRMSEtest. These

results indicate that our method scales effectively as the network

size increases. For uncertainty quantificationwith synthetic datasets,

DQGP achieves 37.2% ± 108.6% improvement in NLPDtest relative

to FACT-GP, and 67.8% ± 17.9% improvement over apxGP.

Overall, the proposed DQGP demonstrates a substantial advan-

tage in prediction over classical distributed counterparts, as is evi-

dent from the lower NRMSEtest values for both 𝑁 = {500, 5, 000}.

It also successfully quantifies the uncertainty for 𝑁 = 500, as re-

flected by lower NLPDtest values. However, for some datasets with

𝑁 = 5, 000, FACT-GP yields lower NLPDtest due to its block-diagonal

posterior covariance approximation, which produces less conser-

vative and more stable uncertainty estimates. In contrast, DQGP

with DR-ADMM prioritizes on aligning the global objective across

the agents, resulting in more accurate mean predictions and only

occasionally resulting in conservative uncertainty estimates.

5 CONCLUSION
This paper introduces a distributed quantum gaussian process

(DQGP) method that scales the expressive power of quantum ker-

nels to real-world, non-stationary datasets. To address the non-

Euclidean quantum hyperparameter optimization, we propose a

Distributed consensus Riemannian ADMM (DR-ADMM) approach.

Experiments on real-world and synthetic datasets demonstrate en-

hanced performance compared to classical distributedmethods. The

results highlight the potential of DQGP for scalable probabilistic

modeling on hybrid classical-quantum systems.
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