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ABSTRACT

Gaussian Processes (GPs) are a powerful tool for probabilistic mod-
eling, but their performance is often constrained in complex, large-
scale real-world domains due to the limited expressivity of classi-
cal kernels. Quantum computing offers the potential to overcome
this limitation by embedding data into exponentially large Hilbert
spaces, capturing complex correlations that remain inaccessible
to classical computing approaches. In this paper, we propose a
Distributed Quantum Gaussian Process (DQGP) method in a multi-
agent setting to enhance modeling capabilities and scalability. To
address the challenging non-Euclidean optimization problem, we
develop a Distributed consensus Riemannian Alternating Direction
Method of Multipliers (DR-ADMM) algorithm that aggregates local
agent models into a global model. We evaluate the efficacy of our
method through numerical experiments conducted on a quantum
simulator in classical hardware. We use real-world, non-stationary
elevation datasets of NASA’s Shuttle Radar Topography Mission
and synthetic datasets generated by Quantum Gaussian Processes.
Beyond modeling advantages, our framework highlights poten-
tial computational speedups that quantum hardware may provide,
particularly in Gaussian processes and distributed optimization.
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1 INTRODUCTION

Decision-making in autonomous systems relies on reliable uncer-
tainty quantification. Gaussian processes (GPs), as an inherently
probabilistic modeling technique, satisfy the need through accurate
predictions and principled uncertainty estimation. To learn a GP
model that characterizes the intrinsic dynamics of an unknown
environment, an agent typically samples informative data points
from the environment. However, training a GP model on N sam-
ples involves O(N?*) computations and O(N?) memory. When a
single agent is responsible for exploration and computation, the
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process becomes not only computationally demanding but also
time-sensitive, as the agent must physically traverse all locations
to gather samples. This limitation restricts the applicability of GPs
to large-scale datasets and environments—conditions commonly
encountered in autonomous systems—especially for single-agent
systems. To this end, GP approximations have been introduced that
can be broadly categorized into two main classes: exact aggregation
methods and inducing point-based approximation methods [35]. We
focus on the former class which serve as distributed GP (DGP) ap-
proaches [11, 23, 26]. These methods enable GP training on dataset
sizes that would otherwise be infeasible for a single agent. In partic-
ular, they deploy multiple agents in local regions of the input space,
allowing each to learn a local GP model that captures regional
characteristics. The local GP models are then aggregated through
multi-agent coordination to form a global GP model. FACT-GP [11]
and its generalized version g-FACT-GP [34] enforce partitioning of
sampled data, and the resulting local posteriors are subsequently
aggregated. In addition, apx-GP [54] and gapx-GP [24] reach global
consensus by using the multi-agent Alternating Direction Method
of Multipliers (ADMM) [6]. By distributing both data storage and
computational effort among agents, DGP methods effectively over-
come the scalability limitations of standard GPs.

Gaussian Processes employ kernel functions [22] to model the
correlations among the data points by projecting them into a high-
dimensional feature space. This mapping enables GPs to capture
complex relationships. However, the classical kernels possess lim-
ited expressivity due to the underlying mathematical formulation
that is tractable on classical hardware. This shortcoming can be
addressed through the emerging field of quantum computing. Our
goal in this work is to leverage quantum computing to develop pow-
erful and scalable GPs. Specifically, we aim to design a distributed
framework for Quantum Gaussian Processes that exploits the ex-
pressive capability of quantum kernels while efficiently distributing
the computational and memory load across multiple agents.

The current generation of quantum hardware, termed as the
NISQ (Noisy Intermediate-Scale Quantum) era [43], lacks fault tol-
erance, making it challenging to realize a clear quantum advantage.
This limitation has motivated the development of several hybrid
quantum-classical techniques, termed as variational quantum al-
gorithms (VQAs) [5]. VQAs employ parameterized quantum cir-
cuits [3], where each circuit parameter serves as an optimization
variable adjusted to minimize a cost function. The system dynamics
are modeled within the quantum domain, enabling faster gradi-
ent evaluation [50], while parameter updates are performed using
classical optimizers. A notable example of VQA is the Quantum
Approximate Optimization Algorithm (QAOA) [18], widely applied
to combinatorial optimization problems. However, VQAs face sev-
eral challenges, including the optimization landscape that often
contains large, flat regions which cause gradients to vanish. This
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phenomenon is called barren plateaus [30] and remains an active
research topic [10, 38, 41, 42, 45]. Moreover, with the advancement
of quantum hardware, exemplified by the milestone achievement
of quantum supremacy [2], it becomes crucial to devise quantum al-
gorithms that can be implemented in a parallelized and distributed
fashion [39], where quantum circuit evaluations can be allocated to
multiple quantum processors to enhance scalability and robustness.

A major advancement in quantum computing in recent years
has been the introduction of quantum kernel functions [20], which
have led to the development of Quantum Gaussian Processes (QGPs)
[44]. Quantum kernels incorporate parameterized quantum circuits,
called Quantum Encoding Circuits [21], to embed classical data
into the quantum domain. Considerable research work has been
conducted to designing kernels with the goal of achieving optimal
alignment between quantum feature space and classical data labels.
Beyond QGPs, these quantum kernels have proven beneficial in
other domains of machine learning [1, 49]. In particular, [7, 40]
employ quantum kernels with reinforcement learning in multi-
agent settings. In addition to QGP training, significant efforts have
been directed to leveraging quantum algorithms for GP inference.
Numerous methods [8, 12, 14, 29, 56] have been formulated based
on the Harrow-Hassidim-Lloyd (HHL) algorithm [36] to accelerate
the computation of inverse kernel matrices required for prediction.

Contribution. The contribution of this paper is twofold. First, we in-
troduce the distributed consensus Riemannian ADMM (DR-ADMM)
optimization that can efficiently train parameterized quantum cir-
cuits across multiple agents. Next, we formulate the distributed
quantum gaussian process (DQGP), which successfully scales the
expressive power of quantum kernels utilizing quantum aspects
of entanglement, superposition and measurements to handle com-
plex, multi-agent scenarios (Fig. 1). Numerical experiments on non-
stationary fields demonstrate the enhanced performance of the
proposed method compared to other classical approaches.

2 PROBLEM FORMULATION

In this section, we discuss classical GPs, the function-space view of
GPs that connects classical to quantum computing, quantum GP
regression, distributed classical GP training, and state the problem.

2.1 Classical Gaussian Processes (GPs)

GP regression is a non-parametric Bayesian modeling approach [15]
that provides a probability distribution over an infinite-dimensional
space of functions. The system observations are modeled as y(x) =
f(x)+e, where x € RP is the input of a D dimensional space, y € R
is the corresponding label, f(x) ~ GP (0, k(x, x")) is a zero-mean
GP with covariance function k : R® x R — R, and € ~ N(0, 6%)
the ii.d. zero mean Gaussian measurement noise with variance
o2 > 0. The objective of GP regression then is to estimate the latent
function f given dataset O = {X, y} with inputs X = {x,}_,,
outputs y = {y, }fl":l, where N is the number of observations.

We determine the hyperparameters € of the covariance function
by using maximum likelihood estimation. The negative marginal
log-likelihood function takes the form of,

1
L=logp(y|X) = 5 (¥ C;'y+log|Col + Nlog(2m)). (1)

where Cy = K + o2 Iy is the positive definite covariance matrix and
K=k(X,X) = 0 € RN*N is the positive semi-definite correlation
matrix between inputs of X. The GP training problem yields,

0 = arg min y* C§1y+log|Co|, (2)
]

which can be solved using gradient-based optimization methods
with partial derivative of the objective,

90L(6) 1 -1 _ -1 -1y 9Co
EY:) - zTr{(CG CO nyCG ) 90 |- (3)

2.2 Function-Space View of Gaussian Processes

The preceding discussion of GPs focuses on a formulation in a
finite-dimensional space associated with a discrete dataset {X, y}.
We can generalize to an infinite-dimensional function-space view,
where a GP is defined as f(x) ~ GP(m(x), k(x, x")) with m(x)
the mean function and k(x, x”) the covariance function [48]. In this
way, a GP can be interpreted as a collection of random variables,
any finite subset of which follows a joint Gaussian distribution.
This allows the GP to assign probabilities over the space of possible
functions, governed by the prior induced by the covariance. The
function-space view provides a critical link to the kernel function x
through the associated feature map ¢, expressed as,

K(xx) = g(0)TP(x). 4)
In classical computing settings, the kernel function measures the
correlation between two data points in a high-dimensional fea-
ture space without explicitly mapping the data into that space. In
the quantum domain, the classical data are encoded into quantum
states within a quantum Hilbert space using Quantum Encoding
Circuits [46]. The Hilbert space is exponentially large, and thus a
classical computer would struggle even to represent the quantum
states, let alone compute their inner product (4). Quantum kernel
functions [47] enable the estimation of correlations between these
encoded quantum states, capturing complex and highly non-linear
relationships in the original classical data.

2.3 Quantum Gaussian Processes (QGPs)

The first step in constructing a Quantum Gaussian process (QGP) is
to encode classical data into quantum states. This is achieved using
Quantum encoding circuits which implement a mapping from a clas-
sical data vector x € RP to a quantum state |1/,) in quantum Hilbert
space H, given by ® : x — |¢,) = U(x, 0) [0)®?, where ® is the
encoding map, U(x, 0) a unitary operator representing the entire
quantum encoding circuit with 6 the trainable hyperparameters,
and |0)®7 the initial quantum state of a system comprising g qubits.
The circuit U (x, 6) is composed of quantum unitary logic gates [53],
primarily rotational gates Rx(ox, 0x), Ry(oy, 0,), Rz(0z, 0;) with
2 X 2 Pauli matrices (o, oy, 07) and their controlled versions. Ad-
ditional gates include the Hadamard H, Phase P, CNOT, and the
SWAP gate. Moreover, U(x, 0) can be i-layered with an identical
gate structure in each layer, i.e., U(x, 0) = UsnaU,(x, 0,) ... Ui (x, 61).
After encoding the classical data vectors x and x’ into the quan-
tum states |(/x) and |y ) respectively, the quantum kernel func-
tion x computes the correlation between the states which can then
be used to populate the GP covariance matrix Cg(x, x). A repre-
sentative quantum kernel is the fidelity kernel x# [55] derived from
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Figure 1: Distributed Quantum Gaussian Process (DQGP): A hybrid classical-quantum framework for multi-agent systems.

the fidelity measure F,
kg HXH = [0,1] = | (Yulthe) ®)

where k& = 1 shows complete overlap between two quantum states
and k¢ = 0 indicates that the quantum states are orthogonal. There
exists mathematical relevance between (4), (5), and the quantum
kernels serving as covariance functions in QGP training.

2.4 Distributed Gaussian Processes (DGPs)

In classical GP training (2), each optimization round entails time
complexity of O(N?), due to the computation of covariance matrix
inverse C;l. Additionally, storing C;l and N dataset size requires
O(N? + DN) space complexity. The high computational and mem-
ory demands make classical GPs impractical for large-scale, real-
world applications. DGP [11] addresses the scalability bottleneck by
distributing both computation and storage across multiple agents,
under the assumption of local dataset independence.

AssumPTION 1. All local datasets represent distinct areas with
local models being statistically independent.

Instead of computing the large covariance inverse C,?, a DGP
approximation yields, C;l ~ diag(Cg’ll, o, C;)IM), where C;l €
RN*N and C;}lm € RNmXNm for all agents m € [1, M]. Hence, by
virtue of Assumption 1, DGPs can decompose the optimization
problem over dataset 9 into a distributed optimization problem
over local datasets D,,. DGP training methods are also formulated
using the multi-agent alternating direction method of multipliers
(ADMM) [4, 6]. The analytical proximal GP (apx-GP) [54] training
employs a first-order approximation on the local log-likelihood
function £, under the assumption of Lipschitz continuity,

AssumPTION 2. The function L, : RN — R is Lipschitz continu-
ous with a positive parameter L > 0 if,

IVLin(x) = VLn(Wl; < LlIx =yl vxy e R".

The main idea behind apx-GP and other ADMM-based GP train-
ing algorithms [25] is that every agent m is allowed to have an
opinion on its hyperparameter vector 6,,; however, once the op-
timization is complete, they should agree on a global consensus

vector z. The optimization scheme of apx-GP yields,

1 < 1
RS (05,3) + ;cpfi)) (62)
m=1
1
9$+1) = s+ _ (VBL(Z(S+1)) " ‘1’52)) (6b)
p+Ln
it =y +p (05T - 20) (6c)

where p > 0 is the parameter promoting the consensus between
all 0., and z, L, is a positive Lipschitz constant for each agent m,
VoL (z5*D) is the gradient of marginal log-likelihood function
with respect to z(*1), and @, is the dual variable vector for each
agent m. The reduced time and space complexity of apx-GP is
O(N,,) = O(N?*/M?) and O(N?/M? + D(N/M)) respectively.

2.5 Problem Statement

While DGPs effectively alleviate the scalability limitations of stan-
dard GPs, their predictive performance remains constrained by the
limited expressivity of classical kernels. Quantum kernels, on the
contrary, can capture subtle correlations that are inaccessible to
classical kernels by leveraging the exponentially large Hilbert space
for data mapping. Motivated by this, our work focuses on scaling
QGPs to enable learning in multi-agent systems.

ProBLEM 1. Develop a Distributed consensus Riemannian
ADMM (DR-ADMM) approach for optimizing quantum kernel hy-
perparameters across multiple agents.

PrROBLEM 2. Formulate a Distributed Quantum Gaussian Pro-
cess (DQGP) algorithm that simultaneously overcomes the expressiv-
ity limitations of DGPs and the scalability challenges of QGPs.

3 PROPOSED METHODOLOGY

In this section, we present the proposed methodologies Distributed
consensus Riemannian ADMM (DR-ADMM) and Distributed Quan-
tum Gaussian Process (DQGP).
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Figure 2: The structure of the proposed DQGP with 4 agents. The consensus algorithm is the proposed DR-ADMM optimization.

3.1 Distributed consensus Riemannian ADMM

The ADMM-based consensus problem (6) accounts for GP training
with classical kernel hyperparameters that operate in a Euclidean
parameter space. For quantum kernels, the hyperparameters are
mostly rotational and thus lie in a more complex parameter space,
a Riemannian manifold [31]. To address this, we first define the
manifold in which the quantum hyperparameters exist and then
describe the distributed consensus Riemannian ADMM algorithm.
In [32], a Riemannian ADMM algorithm for solving nonconvex
problems in centralized topologies is introduced.

3.1.1  Manifold Definition and Operations. The torus manifold for
quantum circuit parameters is expressed as 77 = S xS x- - -x S},
where S is the circle manifold for rotational parameters 6, € [0, 7]
forall p =1,2,..., P. A combination of rotational quantum gates
with parameters in [0, 7] ensures full-coverage of Bloch sphere [17].
Our choice of [0, ] narrows the search space without sacrificing
the expressiveness associated with the standard [0, 2;7] range. Sub-
sequent operations can be constructed over the torus manifold,

Manifold Projection : T1(6) = 6 mod ,
Riemannian Distance : d7(0),6,) = [|W (6, = 6,)ll2,
Retraction : Ry, (6r) =T17(6, + 6,),
Logarithmic Map : Logep (6r) =T17(6- — 0),
Vector Transport : ngﬁgr(v) =,

Inner Product : (8, 0,)7 = (W(6,), W(6,)),
where W(0) = [(0 + 7/2) mod n] — /2. Vector transport oper-
ation transports the tangent vector v from point 6, to 8,, which
is an identity on a torus manifold. As the torus manifold is locally

flat, Riemannian gradient is identical to the Euclidean gradient on
a torus, i.e., gradf(0) = Vf(0). Moreover, we assume,

AssumPTION 3. All operations and gradients corresponding to the
torus manifold are uniformly bounded.

3.1.2 Quantum Gaussian Process Loss Function. Let us recast the
negative marginal log-likelihood function (1) for QGPs as,

1
L£0(0) = 5 (y7%5' (X.X10)y+ log k(X X]6) | + N log(2)).

where kg (X, X|0) is the quantum kernel matrix with intrinsic mea-
surement noise. The derivatives of the quantum kernel with respect
to the individual hyperparameter are computed using the parameter
shift rule [50], as the quantum gates are mostly rotational,

dlxolij _ [xolij(6 + Sep) — [x0]ij (6 — dep)

96, 26

where § is the shift value and e, is the p-th unit vector. Then,
from (3) the Quantum NLL loss gradient is described as,

P
1 _ _ 1\ 9x0

Vo Ly(0) = 3 E Tr {(ich - lenyle) ﬁ}
p:l P

3.1.3 Distributed consensus Riemannian ADMM (DR-ADMM). The
distributed optimization problem can be formulated as minimizing
the sum of local QGP loss function across all agents, while enforcing
a consensus constraint and assuming Lp—smooth cost functions,
mingg,,} an/lzl Lo m(0r) subject to 0, = z, Vm.

ASSUMPTION 4. L is Ly-smooth, i.e., Lo m(z25)) = Lo m(2*)

<(VLom(23)), 26D — 2y 4 LT”d,zr(z(s“),z(s)), Vm € [1, M].

To solve the distributed optimization problem, we construct an

augmented Lagrangian function defined on a Riemannian manifold,
M

Lp(Omz ) = ) (LQ,m(om> +lLog.(0) + §||Logz<em>||2).

m=1

Subsequently, the optimization scheme of the DR-ADMM yields,

M (s)
(s+1) _ . 2 s) , ¥m
z = arg min E de-|w, 0, + — (7a)

weT? o

VoLom (Z(SH)) + l[};;:)

05 =R (o) | - 7b
m 2(s+D) oL, (7b)
P =)+ pLog (s+1) (OSH)), (7c)

where z(*1 is the global consensus parameter, IIJS:H) the dual
variable, Vo Lo (2*1) the Riemannian gradient of local loss at
26+t [ the Lipschitz constant for agent m, and R (s+1) the retrac-
tion operator from global parameter z5*1), (7a) uses the simplified



Algorithm 1 DR-ADMM

Algorithm 2 DQGP

Input: [{Xm, ), 05, 95 1Y k0, 8, p, L
(s+1)1M

Output: zG+1, [G(SH)]m v [¥m I s 1)

]m 1’| pri dual||2
Loh 100

1l I, = [0R)1h, + et

>, sin (2(/)(5)) Z cos (th(s))]}

m=1

2. 20D = My {atanz

3: form=1,...,Min PARALLEL do

4 Compute quantum kernel matrix: [K0]m (X, X, 205tD)
5 for p=1,2,...,Pin PARALLEL do
6: Perform kernel evaluations [x¢] m(Gﬁ,f) + Seplz(”l))
7

8

9

end for
O[KQ]m

Compute derivatives via parameter shift:

Compute local gradient: Vo Lg , (25+V)
Vo Lom(z54))+ gy
10: Update: Gi,fﬂ) =R, (s+1) —%

(s+1) _ . (s)

1t: Update: ¢, * =9, +pL0gZ(s+1)(9,(;+1))
12: end for

(s) (s)
13: Compute residuals: ||rPrl ll2, 171l

Karcher mean [33] to compute z(*) in non-Euclidean fashion. The
optimization of DR-ADMM (7) iterates until both the primal and
the dual residuals fall below the predefined tolerance thresholds

(ST

ori 12 < €pri and ||r dual||2 < €dua1, respectively. The primal and dual

residuals are computed as r = [ds (0(5) 200y . d7—(9j(vs[), 2T

and r(s> = pdr (2", 2= 1>), respectively. The implementation de-

tails of DR—ADMM are presented in Algorithm 1. In 7, the Karcher
mean for z°*1) can be reduced to the circular mean (Alg. 1-line 2).

THEOREM 1 (CONVERGENCE OF DR-ADMM). Let the negative
marginal log-likelihood functions Lom : TP — R be L,-smooth
Vm € [1,M] on the torus manifold TP with bounded projections
I1(-), and assume the existence of a uniform bound C < oo such that
IVLom(-)ll7 < C. Then, for a sufficiently large penalty parameter
p > 0, the sequence (6%, ¢,(,f), z%)} generated by s iterations of the
Distributed Riemannian ADMM algorithm converges to a stationary
point (0;,, 5, z°) that satisfies the KKT conditions for the consensus
problem, characterized by:

o Primal Feasibility: The primal residuals vanish,
limy oo d7(0%,29)) = 0, yielding 67, = z* Vm.

e Dual Feasibility and Stationarity: The dual residuals van-
ish, lims_,o p||z®) — 28~ D||4 = 0, and the gradient of the
negative marginal log-likelihood functions with respect to the
consensus variable is zero, ie., Z%:l VLom(z") =0.

e Convergence Rate: The algorithm achieves a sublinear con-
vergence rate of O(1/S), where S is the total number of itera-
tions. To achieve £-accuracy in consensus residual, the required

(p+Lmax) (VO —=v*) )
z

number of iterations is S = O ( , where

Linax = MaXy, Ly, and V* = infs V) is the optimal value.

InPUt: D= {X y}, M, 5) KQ(q)(qa l)), P> L F, smax, T, €pri> €dual
Output: z*, NLPDyegt, NRMSE ¢

1: Initialize: 9,(1(3), 20, ng,?), KQ(Z(O)), NLPDéV =00,t=0,5s=0
2 Dirain, Drest — TrainTestSplit(D)
3: [Dm]M_, «— Regionalk-dTreeSplit (Dirain, M)
4: while s < s andt < T do
1

O (S R Py R PR PR TP

— DR-ADMM([D,,, 0, 1M k0,6, p, L)
6: NLPDcy « F-fold_Cross-Validation(z*D,J,, D)
7 if NLPDcy < NLPDY,, then
8: NLPD,, = NLPDcy, z* = 2*), t = 0
9: elset=t+1
10: end if
1 if ”r;(m) ll2 < €pri and ||r£|flll||2 < €jual then break
12: s=s+1

13: end while
14: NLPDyegt, NRMSE et «— QGP-prediction(Dirain, Drest> 2°)

Proof: (Sketch) Under assumptions 3 and 4, define a Lyapunov
function V for the s” iteration with dual variable regularization as,

v =

m=

[LQ (29) + @ Jogo (08 )7 + 2.2 (2, 012)
1

Z g 1%

Then prove that it is non-increasing,

VE_y ) < _|A(p, L)

xZ[WLQm(z“hw“)nz +d(00).29)]. ®

From (8), show that the optimization variables 6,,, ,,, z, the
primal residual (352, ZM d? (0(8), 2))) and the dual residual
ey p 2||2(8) — 2= ||7_) series remain uniformly bounded dur-
ing DR-ADMM iterations. Ultimately, in the limit, these residuals
vanish, and the optimization variables converge to 0}, 5, z*. Ap-
plying (6b) at these limit points leads to Z 1 VLo m(Z") =0.The
stated sublinear convergence rate can be proven using (8).

3.2 Distributed Quantum Gaussian Process

3.2.1  Quantum Encoding Circuits. We primarily employ two types
of quantum encoding circuits. The first is the Chebyshev param-
eterized quantum circuit [27, 51] which consists of Ry, Rx, and
conditional-Rz quantum rotational gates. The conditional quan-
tum gates play a crucial role by inducing entanglement among
the qubits, which is an essential property for representing com-
plex quantum systems. The second is the Hubregtsen encoding
circuit [21], which contains the Hadamard gate H, rotation gates
Rz, Ry, and conditional-Rz as shown in Fig. 2. The Hadamard gate
introduces superposition among qubits. The overall configuration
of these circuits depends on the number of qubits g, the number of
layers 1, and the dimensionality D of the input space. Accordingly,
the encoding circuits have P parameters {61, 0,,...,0p} € [0, JT]P.



Table 1: NLPD,.;; and NRMSE,. for N = 500. Set 1 = {0.58, 2.45, 1.88,1.40,0.31, 1.44} and Set 2 = {1.18, 2.99, 2.30, 1.88, 0.49, 0.49}.

Single Agent Method Distributed Methods
Dataset Subset Full-GP [52] M DQGP-DR-ADMM FACT-GP [11] apxGP [54]
NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l
4 0.75%0.42 0.10 = 0.01 1.01 +0.04 0.18 +0.01 0.84 +0.15 0.21 +0.04
N17E073 0.34 +0.09 0.10 + 0.009 8 064+0.38 0.03+0.006 1.10+0.03 0.20 +0.01 0.97 £0.13 0.22 +0.03
27 0.50 £0.27 0.09 + 0.02 1.15+0.03 0.21 £ 0.01 2.08 £1.96 0.27 £0.03
4 021%0.24 0.07 + 0.02 1.06 +0.03 0.16 +0.01 12.82 +3.40 0.29 +0.02
N43W080  0.19 +0.09 0.06 £ 0.006 8 0.36+0.56 0.07 + 0.02 1.14 £ 0.03 0.18 £ 0.01 30.82 + 14.43 0.31 +0.02
SRTM 27 0.34%0.38 0.07 + 0.02 1.21+0.03 0.19 £ 0.01 115.47 + 62.43 0.31 +0.02
4 0.79 +0.56 0.16 + 0.03 1.05 +0.03 0.17 £ 0.01 1.22 £ 0.06 0.23 +0.02
N45W123 0.47 £ 0.10 0.10 £ 0.01 8 0.63 +0.31 0.12 + 0.02 1.1 £0.03 0.18 £ 0.01 1.42 £ 0.09 0.27 £ 0.04
27 0.78 £0.42 0.12 + 0.02 1.15+0.04 0.19 £ 0.01 1.53+0.18 0.29 £ 0.05
4 1.24 + 0.39 0.15 + 0.02 1.26 £ 0.05 0.23 +0.02 50.50 + 18.56 0.38 + 0.04
N47W124  0.68 +0.12 0.13 £ 0.02 8 1.41+0.78 0.15 + 0.02 1.35 £ 0.04 0.26 + 0.02 40.90 + 16.37 0.39 +0.04
27 1.97 £ 0.66 0.16 = 0.01 1.39 £ 0.05 0.27 £ 0.02 35.36 +£30.90 0.38 £ 0.04
4 -0.27%0.21 0.04+0.006 0.58+0.26 0.14 + 0.03 1.49 + 2.00 0.23 £ 0.08
2D Set 1 —0.86 +£0.05  0.03 +0.007 8 -0.24+0.25 0.03+0.006 0.78+0.27 0.17 £ 0.03 2.73+£3.19 0.26 £ 0.07
oGP 27 -0.22%0.15 0.04 £0.006 0.93+0.24 0.20 + 0.04 4.08 £5.75 0.28 +£0.07
prior 4 -0.29+0.19 0.03 +0.006 0.54 £0.25 0.14 £ 0.02 0.94 £0.77 0.23 +0.06
Set 2 —0.82+0.07  0.03 +£0.008 8§ -0.31+0.15 0.03+0.006 0.72+0.27 0.16 + 0.02 2.04+1.91 0.29 +0.08
27 -0.26 £0.18 0.03 +0.01 0.88 + 0.25 0.20 + 0.02 3.34 +5.68 0.30 = 0.09

3.2.2 Quantum Kernels. A standard choice for a quantum kernel
based on the quantum fidelity measure F (5) is, k#(x, x'|0) =
(D(x, 0)|D(x, 0))]> = |(0®‘1|UT(x, U (¥, t9)|0®‘1)|2 , where U de-
notes the quantum encoding circuit with g qubits and 6 the hy-
perparameters. Since k¢ lacks observable-dependent operations,
its expressivity and modularity are limited. To manage this lim-
itation, we employ the Projected Quantum Kernel (PQK) [16]. By
incorporating measurements [19] based on observables, PQK maps
the quantum states into a classical feature vector space and then
applies the classical outer kernel on that projected space,

kpok (% X'10) = Kouter ({O)y (x)> (O)y(x)) O]

where (O)y(x) = (0%2|UT (x, 0)OU (x, 0)|0®9). The most common
choices for the observable operator O include: (i) Pauli-Z measure-
ment Oz = ®?:1 (0z)i, which captures global correlation among
q qubits; (ii) Local Pauli measurement Ojocal = {(672)1,-- -, (02)q},
which measure individual qubits; and (iii) Mixed Pauli measurement
Omixed = {(02)1(07)2, (0%)1(0Y)32, . . .}, which measure pairwise
qubit correlations. Any classical kernel can be used for the outer
kernel Kouter [37]. With PQK, the computational cost is significantly
reduced as it only requires evaluating O(card(O)) expectations,
while the fidelity kernel involves computation of O(27) state over-
lap. In addition, the observable operator measurements provide a
physical interpretability with respect to the feature vector space
and a way to implement them on quantum hardware. The imple-
mentation details of the proposed Distributed Quantum Gaussian
Process are presented in Algorithm 2.

In Fig. 1, we depict the conceptual architecture of DQGP, where
each agent is a computational node assigned to a local subset of
the spatial dataset and trains a local QGP model. After each local

step, agents push a learned 6, to a central server, which aggregates
them into a consensus model z. Next, each agent pulls z from the
central server to form a consensus on their local models with the
globally aggregated model. This push-pull mechanism produces
model-level consensus. In Algorithm 2, we use the negative log
predictive density (NLPD) for validation,

(yj — Hx (]))2

NLPDtest = 20_2 (])

1 1 2, .
P TET) > [5 log(2702(j)) +

J€Drest
(10)

To evaluate the global parameter z across training iterations, we per-
form F-fold_Cross-Validation using combined datasets |J,,, Dp.

For each fold f = 1,2,...,F, the combined dataset is randomly
f

train
sets to compute NLPDéV. The mean of all these folds, NLPDcy,
is monitored over iterations to obtain the optimal global z*. The
QGP-prediction equations are mathematically analogous to those
of classical GPs, with the only difference being the substitution of
the classical kernel k by the quantum kernel kg,

shuffled and partitioned into training O; . and validation Z){: al

,U*(x*) = ICQ(x*,X)[ICQ(,X,X) + O—g IN]ily,
02(x.) = K (3., x.) — Ko (%o X) [KQ (X, X) + 02 I] K0 (X, x.),

where x;, is the unknown input. Finally, we employ the normalized
root mean squared error (NRMSE) to assess the prediction,

\/card(ll)test) ZJ‘EiDtest (y] — M (J))z
NRMSEteSt =

(11)

|ymax - ymin|



Table 2: NLPD,.;; and NRMSE, for N = 5,000. Set 1 = {0.58, 2.45, 1.88, 1.40, 0.31, 1.44} and Set 2 = {1.18, 2.99, 2.30, 1.88, 0.49, 0.49}.

Single Agent Method Distributed Methods
Dataset Subset Full-GP [52] M DQGP-DR-ADMM FACT-GP [11] apxGP-pxADMM [54]
NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l NLPDtest l NRMSEtest l
4 1.56 £0.79  0.06 £0.005 1.11+0.005 0.19+0.004 1.28 £0.04 0.24 £ 0.006
N17E073  —0.01+£0.02  0.06 + 0.001 8 1.62+0.65  0.06+0.004 1.20+0.009 0.21 +0.005 1.38 +£0.06 0.25 £ 0.006
27 1.59+0.56  0.06 £0.004 1.23 +0.01 0.22 + 0.005 2.13+0.25 0.27 £ 0.01
4 -036+0.23 0.03+0.004 1.09+0.009  0.16 £ 0.003 17.56 + 1.50 0.27 £ 0.005
N43W080 —0.66 +£0.05  0.03 +0.001 8 -0.34+0.26 0.02 £ 0.004 1.17 £ 0.01 0.17 £ 0.003 34.08 + 2.65 0.28 £ 0.005
SRTM 27 -0.19+£0.37 0.02 % 0.003 1.21 +£0.01 0.18 £0.003  37.91+10.16  0.28 +0.005
4 075%049 0.05+0.006 1.09+0.008  0.17 £ 0.006 1.19 £ 0.02 0.19 £ 0.008
N45W123 —0.06 +0.03 0.05 £ 0.002 8 0.51+0.51 0.05 + 0.005 1.18 £ 0.01 0.18 + 0.006 1.36 £0.02 0.23 +£0.01
27 1.03%0.67 0.05=*0.003 1.24 £0.02 0.19 £ 0.007 1.58 +£0.05 0.27 £0.02
4 5.21+0.86 0.07 £ 0.004 1.29 +0.009 0.22 + 0.009 60.95 + 3.95 0.33 +£0.01
N47W124  0.29 +0.01 0.08 £ 0.003 8 4.52 +1.31 0.07 £0.006 1.34 £ 0.009 0.23 +£0.01 38.22 +3.31 0.33+£0.01
27 4.38 +0.89 0.07 + 0.006 1.37 £ 0.01 0.24 +0.01 13.65 + 1.71 0.33 +0.01
4 0.96+£0.19  0.03+0.004 0.42*0.33 0.11 +0.02 2.05+3.12 0.23 £0.08
2D Set 1 —0.88 +£0.01  0.02 +0.003 8 1.03+0.19  0.03+0.003 0.61+0.34 0.13 +0.03 3.12+3.75 0.25+0.09
oGP 27  1.35+0.19  0.03+0.004 0.77 £0.34 0.15 + 0.03 3.62 £ 3.36 0.28 £0.09
prior 4 0.99 +0.24 0.03 + 0.004 0.49 £ 0.21 0.11+0.03 2.81+2.91 0.24 + 0.06
Set 2 —0.86 +0.03  0.03 +£0.008 8 0.96+£0.16  0.03+0.003 0.71+0.20 0.14 + 0.03 4.11+4.33 0.27 £0.07
27 0.99 +0.19 0.03 + 0.004 0.88 + 0.22 0.16 + 0.03 5.33+£5.67 0.28 £ 0.07

4 NUMERICAL EXPERIMENTS & RESULTS

We evaluate the predictive capabilities of our approach through
experiments on both real-world and synthetic datasets. For the
real-world datasets, we incorporate four tiles, N17E073, N43W080,
N45W123, and N47W124 from NASA’s Shuttle Radar Topography
Mission (SRTM) [13]. The datasets have two-dimensional inputs
representing latitude and longitude, with elevation as the output.
As reported in [9], these datasets exhibit non-stationarity, i.e., dif-
ferent regions have varying degrees of variability. This is important
for assessing whether the learned model can fully adapt to the lo-
cal features, thus demonstrating its suitability for solving complex
problems. For the synthetic dataset, we generate a quantum Gauss-
ian process (QGP) prior using quantum kernels, sample points from
it to act as a training dataset, and learn the original QGP.

We use two metrics, the NLPD (10) and NRMSE (11), which test
complementary aspects of performance. Lower values for both met-
rics indicate better model performance. Since GPs are probabilistic,
NLPD evaluates the quality of the predictive distribution, while
NRMSE measures the accuracy of the mean predictions. All numeri-
cal experiments are conducted using classical quantum state vector
simulators in Qiskit and PennyLane, employing quantum encoding
circuits and kernels in SQULEARN [28]. The computational com-
plexity analysis on a quantum simulator run on classical hardware
does not represent the true complexity on current NISQ quantum
hardware, hence this work does not involve complexity analysis.

Across the four environments from the SRTM real-world dataset,
we use N = {500,5,000} samples, of which 10% is reserved for
testing and the rest 90% is distributed among the agents as their

respective training datasets. The features and target are z-score nor-
malized to [—3, 3] as the quantum parameters—mostly rotational—
are naturally bounded. For quantum encoding, we employ a Cheby-
shev parameterized quantum circuit [27] with ¢ = 4 qubits and
1 = 3 variational layers, resulting in P = 24 quantum hyperpa-
rameters. We utilize the projected quantum kernel kpgk (9) with
the Pauli oxoyoz measurement operator and the Matérn outer
kernel, whose parameters are set to £ = 1.0, v = 1.5. Quantum
hyperparameters are optimized using DR-ADMM (Algorithm 1)
with shift value § = (7/8) and ADMM parameters: penalty p = 100
and Lipschitz constant L = {100}*_, . For the synthetic dataset, we
use N = {500, 5,000} samples. The quantum encoding circuit is the
Hubregtsen Encoding Circuit (Fig. 2), with ¢ = 3 qubits and ¢t = 1
layer resulting in P = 6 quantum hyperparameters. The quantum
kernel is the projected xpgk (9) with the Pauli oxoyoz measure-
ment operator. The outer kernel is Gaussian with parameter y = 1.0.
ADMM parameters remain identical to those of the SRTM dataset.

In Table 1, 2, we present the performance of our method across
datasets of size N = 500 and N = 5, 000, respectively. We report the
mean and standard deviation of NLPD;.s; and NRMSE: evaluated
over 20 replications to reduce the effect of randomly assigned data.
We compare our method with other single- and multi-agent GP
methods: Full-GP [52], FACT-GP [11], and apxGP [54]. In addition to
NLPD and NRMSE, the comparison allows for scalability assessment
of network sizes in Table 1, 2. In Fig. 3, 4, we present the performance
in the SRTM and 2D QGP datasets, respectively.

Aggregating improvements across the four SRTM environments
for N = 500 and N = 5,000 datasets, DQGP achieves 51.1% +
17.8% lower NRMSE;.st than FACT-GP, and 65.2% + 16.1% lower
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Figure 3: Performance of DQGP (green) with the SRTM dataset, compared to Full-GP [52], FACT-GP [11], and apx-GP [54]. For
N43W080 and N47W 124, we have excluded visualizing the apxGP results (worst performance) in NLPD for better readability.
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Figure 4: Performance of DQGP (green) on 2D QGP prior dataset, compared to Full-GP [52], FACT-GP [11], and apx-GP [54].

NRMSE;.st than apxGP. Moreover, our approach exhibits a compet-
itive performance compared to the single-agent Full-GP method,
showing a slight improvement of 1.4% on average for NRMSEegt.
This trend suggests that DQGP scales effectively with network size
for prediction accuracy. A trade-off is observed for NLPDyg; as the
network size increases. In particular, DQGP achieves 8.9% + 120.4%
improvement in NLPD,. relative to FACT-GP, and 91.7% + 11.2%
improvement in NLPDy.; relative to apxGP.

For the synthetic dataset, DQGP achieves on average 73.6% =+
10.2% lower NRMSE; g than FACT-GP, and 87.0% + 4.0% NRMSE st
improvement over apxGP. Compared to the single-agent Full-GP,
DQGP shows a 16.7% improvement in aggregated NRMSE;. These
results indicate that our method scales effectively as the network
size increases. For uncertainty quantification with synthetic datasets,
DQGP achieves 37.2% =+ 108.6% improvement in NLPDi. relative
to FACT-GP, and 67.8% + 17.9% improvement over apxGP.

Overall, the proposed DQGP demonstrates a substantial advan-
tage in prediction over classical distributed counterparts, as is evi-
dent from the lower NRMSE,.s; values for both N = {500, 5,000}.

It also successfully quantifies the uncertainty for N = 500, as re-
flected by lower NLPDy.s values. However, for some datasets with
N = 5,000, FACT-GP yields lower NLPDy.s; due to its block-diagonal
posterior covariance approximation, which produces less conser-
vative and more stable uncertainty estimates. In contrast, DQGP
with DR-ADMM prioritizes on aligning the global objective across
the agents, resulting in more accurate mean predictions and only
occasionally resulting in conservative uncertainty estimates.

5 CONCLUSION

This paper introduces a distributed quantum gaussian process
(DQGP) method that scales the expressive power of quantum ker-
nels to real-world, non-stationary datasets. To address the non-
Euclidean quantum hyperparameter optimization, we propose a
Distributed consensus Riemannian ADMM (DR-ADMM) approach.
Experiments on real-world and synthetic datasets demonstrate en-
hanced performance compared to classical distributed methods. The
results highlight the potential of DQGP for scalable probabilistic
modeling on hybrid classical-quantum systems.
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