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ABSTRACT

Multi-robot systems require scalable and federated methods to
model complex environments under computational and communica-
tion constraints. Gaussian Processes (GPs) offer robust probabilistic
modeling, but suffer from cubic computational complexity, limit-
ing their applicability in large-scale deployments. To address this
challenge, we introduce the pxpGP, a novel distributed GP frame-
work tailored for both centralized and decentralized large-scale
multi-robot networks. Our approach leverages sparse variational
inference to generate a local compact pseudo-representation. We
introduce a sparse variational optimization scheme that bounds lo-
cal pseudo-datasets and formulate a global scaled proximal-inexact
consensus alternating direction method of multipliers (ADMM)
with adaptive parameter updates and warm-start initialization. Ex-
periments on synthetic and real-world datasets demonstrate that
pxpGP and its decentralized variant, dec-pxpGP, outperform ex-
isting distributed GP methods in hyperparameter estimation and
prediction accuracy, particularly in large-scale networks.
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1 INTRODUCTION

Multi-robot systems are increasingly used in executing complex,
cooperative tasks such as environmental monitoring [5], search-
and-rescue [27], autonomous exploration [4], and surveillance [33].
These applications require accurate modeling and prediction of
environment or task-specific phenomena under uncertainty. Gauss-
ian Processes (GPs) are well suited to these challenges, combining
accurate function approximation with explicit uncertainty quantifi-
cation [11, 28]. They have been successfully applied to distributed
mapping [9, 29] and collaborative exploration tasks [16, 19, 34] due
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to their ability to provide uncertainty estimates that guide their
decision-making process [15, 22].

However, using GPs in multi-robot teams is constrained by prac-
tical challenges such as limited onboard computation, privacy re-
quirements, and communication bandwidth [10]. At the same time,
GP training entails cubic complexity, which poses a major bar-
rier with large datasets [17]. GP surrogate models are governed
by a set of hyperparameters 0, learned using maximum likelihood
estimation (MLE) methods over a given dataset D. Accurate hyper-
parameter estimation is essential to ensure reliable predictions [28].
Our objective in this work is to develop distributed GP learning
methods that can accurately estimate GP hyperparameters in large-
scale multi-robot systems without sharing local raw datasets.

GP approximation techniques can be broadly classified into
global aggregation methods and local inducing point-based meth-
ods [20]. Global approximation methods such as ¢cGP [37], apxGP
[36], and gapxGP [18] perform GP training across agents with Al-
ternating Direction Method of Multipliers (ADMM) algorithms [2].
These approaches reduce computational and communication costs
but require direct data sharing which can compromise data privacy
and the quality of representation. Moreover, their performance de-
grades in networks larger than approximately 40 agents due to the
independent assumption of distributed optimization [18, 19].

Local sparse variational methods reduce the cubic computational
complexity of exact GPs by introducing a compact set of inducing
variables that approximate the full covariance [35]. This method is
infeasible in multi-robot systems, where data are inherently parti-
tioned. To address this, [26] proposed a decentralized SGP frame-
work, where each agent maintains a local variational posterior
and fuses with neighboring models through maximum-consensus.
While effective for small-scale deployments, this fusion mechanism
is heuristic and lacks theoretical convergence guarantees, limiting
scalability and robustness in large-scale networks.

Recent efforts have explored adaptive sampling in multi-agent
systems. In [3], authors proposed a waypoint selection strategy
where heterogeneous robots collaboratively estimate a stationary
GP under dynamic constraints, and sensor noise. In [24], the authors
presented a centralized GP method using variational inference. Sim-
ilarly, [21, 38] develop decentralized GP approaches using random-
feature GPs (RF-GPs), where agents share compact random-feature
statistics with neighbors. However, random features can introduce
systematic kernel approximation bias and yield poor covariance
estimates, with accuracy strongly dependent on the number and
quality of random features, in contrast to optimized pseudo-datasets.
Other works, such as COOL-GP [13] and mixture-of-experts-based
adaptive sampling [23], enable distributed GP learning and scalable
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Figure 1: Overview of the proposed pxpGP framework in centralized and decentralized multi-robot networks. Each agent M;
generates a compact pseudo-dataset D; and forms a pseudo-augmented dataset D} ,. Centralized networks aggregate pseudo-
datasets via a central node, while decentralized networks exchange data through neighbors via flooding.

modeling of non-stationary fields. While these methods advance dis-
tributed inference and adaptive data collection, they do not address
the challenge of privacy-preserving hyperparameter optimization
in GP training.

In this work, we propose the Proximal Inexact Pseudo Gauss-
ian Process (pxpGP), a distributed GP training framework de-
signed for large-scale centralized and decentralized multi-robot
networks. The method lies at the intersection of global aggregation
and local sparse approaches to achieve scalability and data pri-
vacy by exchanging only optimized pseudo-datasets among agents,
rather than raw or random observations. An overview of the pro-
posed methods for both centralized and decentralized settings is
illustrated in Fig. 1.

Contribution. The contribution of this work is twofold. First, we
extend sparse variational inference techniques [12, 25, 32] to gen-
erate compact pseudo-datasets confined to each agent’s region, im-
proving informativeness and scalability to large-scale networks.
Federated learning is promoted by sharing only compact pseudo-
representations and optimization iterates instead of raw data. Sec-
ond, we formulated pxpGP as a scaled proximal-inexact consensus
ADMM algorithm initialized with warm-start hyperparameters and
adaptive residual balancing that accelerates convergence and re-
duces communication rounds.

2 GAUSSIAN PROCESS TRAINING

Gaussian Processes (GPs) are non-parametric Bayesian models that
define distributions over functions with a Gaussian prior. A GP
over a latent function f(x) is defined as,

f(x) ~ GP(m(x), k(x,x)),

where m(x) is the mean function and k(x, x") is the covariance
function (i.e., kernel), parameterized by a set of hyperparameters 6,

that govern the smoothness, variability, and predictive accuracy of
the GP model.

We model observations as y(x) = f(x) + €, where x € RP is
the input with dimension D, y(x) € R is the scalar output, and € ~
N (0, 62) is zero-mean Gaussian measurement noise with variance
o%. We employ the Separable Squared Exponential (SSE) kernel,

2
k(x,x") = ajzc exp —% i —(Xd ;zx’i) ,
d=1 d

with signal variance oy > 0 and length-scale [; > 0. The GP

hyperparameters 6 = [ll, by, lg, op, O'e]T € RD+2

maximizing the log-likelihood function,

are trained by

L(X,y;0) = —% (yTC51y+log|Cg| +Nlog27r),

where Cy = K + o2l is the positive definite covariance matrix and
K = k(X, X) is the kernel matrix, with X = {x, x5, - - - ,x,,}fj:l c
RN*D the input locations, y = {yy, 42, - - - ,yn}ﬁ]=1 C RN the corre-
sponding scalar outputs, and N the dataset size. Thus, the negative
log-likelihood (NLL) optimization problem yields,

6 =argmein yTC;1y+log|C9| (1)
st. 0> 0pyo.

The positivity constraint keeps Cy well-conditioned and positive
definite. The optimization (1) requires computing C;l at each itera-
tion, with O(N?) computations and O(N? + DN) storage.

2.1 Centralized Factorized GP Training
(fact-GP)

To reduce the complexity of GP training, factorized GP (fact-GP)
[6] partitions the global dataset D = {X, y} across multiple agents
M disjoint subsets, D = {D;}M | where i = {1,2,---,M} and

=1
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Figure 2: Effect of pxpGP regularization. (a) Pseudo-points drift beyond local bounds without boundary penalty (highlighted
red circles). (b) Without the repulsive penalty, points cluster densely in a local region (highlighted red circles). (c) Combined
boundary (£;) and repulsive (£,) penalties yield a well-distributed local pseudo-representations.

D; = {X is yi}. The global objective is approximated by the sum of
local objectives with independent local datasets, £ ~ 3,2, £;. Each
agent i trains local hyperparameters 6; and enforces global consen-
sus through a shared parameter z,

M
é: i ,'0,' 2
argnbm;l:( ) @)
st. 0=z, Vi=12---,M,

where £;(0;) = y] ngyi + log |Cy;| is the local NLL and Cy;; is
the local covariance matrix. To formulate the proposed distributed
training algorithms, we introduce two specific assumptions about
data distribution and communication structure among agents.

AssuMPTION 1. Each agent i trains a local sub-model on a statis-
tically independent dataset that corresponds to a distinct region of the
input space.

AssumPTION 2. Communication between agents is restricted to
parameter or summary exchange and does not involve sharing raw
datasets to preserve data privacy.

The approximate proximal GP (apx-GP) [36] uses proximal in-
exact consensus ADMM to solve (2), reducing local complexity to
O((N/M)?) with convergence guarantees for the non-convex opti-
mization. It enables GP models to scale over large datasets, but as
the number of agents M increases, Assumption 1 weakens, degrad-
ing hyperparameter estimates. On the other hand, gapx-GP [18]
addresses this challenge by augmenting each local dataset D.;
with randomly sampled data from other agents. However, the latter
violates Assumption 2 about privacy and does not scale beyond
networks of approximately 40 agents.

2.2 Decentralized GP Training

In practical scenarios, a central coordinator is infeasible due to com-
munication constraints, which motivates decentralized GP training
where each agent collaborates only with its immediate neighbors N;.
We model the decentralized network of M agents as a connected
undirected graph G = (V, &), with V = {v1,0,- - - ,up} as a set

of agents i.e nodes in the network, and & € V X V the commu-
nication links i.e edges between them. For each agent i, the set of
neighbors is defined as N; = {Uj eYV| (U,», vj) € 8}.

Prior work [18] introduced dec-cGP, dec-apxGP, and dec-gapxGP,
to decentralized networks using edge-based ADMM [31] to solve,

M
0 =argm9in;£i(0i) 3)

s.t. 9[ = Zij, Vi e (V,] € /Vl
OjZZij, ViE(V,jEM,

where each agent optimizes its local hyperparameters 6; while
maintaining consensus with neighbors via shared auxiliary vari-
ables z;;. The per-agent complexity remains O ((N/M)?). Similar
to the gapxGP, dec-gapxGP also shares raw data with neighboring
agents, violating Assumption 2.

ProBLEM 1. Consider a large network of M robots that collabo-
ratively model an unknown latent function using GPs. Each agent i
holds a local dataset D; and communicates with its one-hop neighbors.
Under Assumption 1 (Independence) and 2 (Federated Constraints),
the goal is to estimate the global GP hyperparameters 6 by solving
the centralized optimization problem (2) and its decentralized coun-
terpart (3), while minimizing communication rounds by ensuring fast
convergence.

3 PSEUDO INEXACT PROXIMAL GP (PXP-GP)
TRAINING

In this section, we present the formulation of the Proximal Inexact
Pseudo GP (pxpGP) training method for centralized and decen-
tralized networks. Existing distributed GP training methods, such
as gapxGP and dec-gapxGP [18], reduce approximation error of fac-
torized GP methods by augmenting each agent’s dataset D.; with
randomly sampled data from other agents. While these approaches
are effective for small networks, they i) yield poorly representa-
tive augmented datasets in large-scale networks and ii) require



raw-data exchange that violates the federated constraint (Assump-
tion 2). pxpGP addresses these issues by letting each agent build a
local pseudo-augmented dataset D7, from a local sparse GP model
trained over its local dataset D;, rather than from random samples.
Sparse GP approximations use a compact set of P inducing points
X, = {xpl,xpz, e ,xpi}i1 C RPXP where typically P << (N/M).
Thus, the training and prediction complexity reduces to O(NP?)
and O(P?), respectively [32, 35]. The inducing points X, varia-
tional parameters pp, and A, are optimized by minimizing the
negative Evidence Lower Bound (ELBO) Lg1p0 that yields,

q(fp) = min —Lgpo

q(fp).Xp
= q(g&}j— (Eqqp) og p(ylHI =KL (q(fp) I p(fp))), ()

where q(fp) = N (pp. Ap) is a Gaussian distribution with p, vari-
ational mean and Ap variational covariance matrix, and KL (q || p)
is the Kullback-Leibler (KL) divergence between the variational
distribution q and GP prior p over the inducing variables fp. The
first term of Lo encourages accurate data fitting, and the second
term regularizes the variational approximation by penalizing diver-
gence from the true posterior. The optimization starts with K-means
initialization of the inducing points Xp, followed by variational
inference to minimize the negative ELBO (4).

Once each agent i generates a local pseudo-dataset D; by solv-
ing (4), then all agents transmit D} to create a shared commu-
nication dataset D} = Uﬁli)i* . Next, each agent constructs its
local pseudo-augmented dataset D7, = D; U D by merging the
original local dataset with the shared communication dataset, pro-
viding a richer global representation for GP training. The quality of
the pseudo-dataset largely depends on the placement of inducing
points. Without constraints, inducing points may drift beyond local
data boundaries or cluster in dense regions as shown in Fig. 2a, 2b,
respectively, leading to poor generalization, ill-conditioned covari-
ance matrices, and occasionally Cholesky decomposition failures.
To mitigate this, we introduce two regularization terms in the vari-
ational ELBO: 1) a boundary penalty (£;) to confine points within
data bounds; and 2) a repulsive penalty (£r) to ensure well-spread
inducing points.

3.0.1 Boundary Penalty (8p). This penalty constrains inducing
points to remain within the bounds of the local dataset,

P
L, = Z ReLU (%pmin — x}k)z +ReLU (x} — xmax)z , (5)

i=1
where x7 represents the i-th inducing pseudo-input point among P
points, Xmyin and xyax denote the minimum and maximum bound-
aries of the local dataset, respectively. The Rectified Linear Unit
(ReLU) function ensures zero penalty inside the valid region, but
applies a quadratic cost when points stray beyond the boundaries.

3.0.2  Repulsive Penalty (£,). The variational sparse GP objective (4)
[35] inherently discourages redundant overlapping inducing points
through its complexity and trace terms. However, this implicit
repulsive and non-overlapping effect is soft and data-dependent.
Thus, the variational sparse GP objective (4) does not explicitly
prevent local clustering, especially in distributed, data-partitioned,
or non-stationary multi-agent setups where data exhibit spatial

bias. As a result, the standard ELBO may yield clustered or poorly
spaced inducing points, as seen in Fig. 2b. To address this limitation,
the proposed repulsive penalty £, introduces an explicit geomet-
ric prior to enforce a minimum separation distance dpin between
pseudo-inputs and improve spatial coverage,

P P
L, = Z ReLU (d,min - ||x:“ - xj
i=1 j=1

). ©

where ||-|| denotes the Euclidean norm between two inducing points.
The ReLU function ensures zero penalty when points are sufficiently
separated, but applies a quadratic cost distance between points that
fall below the threshold dp,.

Together, these penalties produce a compact, well-distributed,
and privacy-preserving local pseudo-augmented dataset D7, that
enhances global GP approximation and improves numerical con-
ditioning of covariance matrices. The final objective function for
Sparse GP combines ELBO (4) with the boundary (5) and repulsive
penalties (6) as,

Xp =argmin —Lgpo + Lp + L1 7)
q(fp).Xp

3.1 Centralized pxpGP training

In the proposed centralized pxpGP framework, each agent i op-
timizes the hyperparameters 6; of its local GP model using the
local pseudo-augmented dataset D7;. This is formulated as a scaled
proximal-inexact consensus ADMM (pxADMM) problem, with an-
alytical synchronous iterates [14] coordinated by a central node,
with a fixed set of participating agents. By introducing a scaled dual
variable uf = 1/1;‘ , we simplify the update rules, improve numeri-
cal stability, and enable adaptive penalty updates and warm-start
initialization.

Consistent with existing distributed GP training methods such
as cGP [37], apxGP [36], and gapxGP [18], pxpGP also enables
each local agent to train independently while maintaining global
consensus (2). The pxADMM linearizes the augmented Lagrangian
around a stationary point v; = z + u; that yields,

M
L (02,0 = ) Lilz) + V] Li(v) (0 = v))
i=1
L: + p;
+ L0, - ol ®)
where L; > 0 is a positive Lipschitz parameter and p; a regulariza-
tion penalty parameter. The iterative updates for the pxpGP are

provided by,

1
9554—1) = Ui(s) - WVQLI' (Ul(s>) (93)
L +p;
LM

(s+1) _ ~ (s+1) (s)
z —M;(Gi +ul) (9b)

(s+1) _  (s) (s+1) 1
w' =+ 07 - PASAR (9¢c)

While optimizing the global hyperparameters 6, the proposed
pxpGP framework leverages the locally learned variational hyper-
parameters 6} from each sparse GP model to initialize subsequent



Algorithm 1 pxpGP

Algorithm 2 dec-pxpGP

InPUt: Z)l = (Xi: yi), k(’ ')s Pis Li’ €abss €rel
Output: 0, D,

1: fori=1toMdo > Sparse Modeling
2 Dy, 0] « SparseModel(D;) (7)

3 Communicate D] to central node.

4. end for

5. Aggregate D) = UM D7 at central node.

6: Broadcast D} to all agents i € M from central node.

7: fori =1to M do

8: Dy, =D VD, > Local Augmented Dataset
9: Initialize 051) =0; > Warm Start
10: end for

11: repeat > ADMM optimization
12: Communicate 955) to central node.

13: 20+ primal—Z(GES),ugs)) (9b)

14: Broadcast z*1 to all agents from central node.

15: fori=1toMdo

16: 0;5“) « primal-1 (z(“l),ufs),Z)j:l.) (9a)

17: ui(s“) — dual(ugs), Gi(s“),z(”l)) (9c)

18: Update p**" (11), L (12)

19: end for

20: until HrESH) < €primal (10a), |sl.(s+1) < €qual (10b)

21: return 6

global training rounds. This warm-start mechanism preserves pos-
terior information from local models and accelerates convergence
by providing informed initial estimates for 051) =6;.

We monitor the convergence of each agent using primal rEHl) =

Gi(”l) — z0*D and the dual residual sfS“) = pi [26+) — 2.

These residuals must satisfy the conditions, rESH) < €primal and
|si(s+1) ‘ < €4ual With tolerances,
€primal = V/Mp€abs + €rel Max { OES-H) s ‘ Z(s+1) } (103-)

(s+1)

€dual = VNd€abs T €rel |[Pild; > (IOb)

where nj, and nq are the dimensions of the primal  and dual u
variables, and €., €] are absolute and relative tolerances.

The penalty parameter p; balances the consensus constraint and
the local objective in the augmented Lagrangian (8). Unlike prior
works that fix p; to a heuristic value, we adopt a residual-balancing
strategy [2] that adjusts p; based on primal and dual residuals,

Tir(lc;pi(s)’ if [|r)] > Bls@||
Pt 1 if [|s©] > 8[| (11)

! Tdecr

p (), otherwise,

where f, Ticer, Tdeer > 1. In addition, we also adjust the local Lipschitz

variable LESH) using a backtracking line search based on the Armijo
condition [1]. In addition, at each iteration, we ensure that the local

Input: D; = (Xi,y,), k(). pi, Lis Ni s
Output: é Dii

1: fori=1toMdo > Sparse Modeling
2 D}, 0 «— SparseModel(D;) (7)

3 D; « Flooding(D;, Ni)

4 D;, =DiUD; > Local Augmented Dataset
5 Initialize Olm =6 > Warm Start
6: end for

7: for s =1 to sgggpxpcp do > dec-ADMM optimization
8: for eachi € V do

9: Communicate OES) with N;

10: ai”l) — dual(alfs), 0;5), 9](.5)) (13b)

11 0§s+1) — primal(aEHD, 955), OES)DL) (13a)

12: Update pl.(”l) (11), Li(SH) (12)

13: end for

14: end for
15: return 6

objective satisfies the condition,

cllVoLi(w)|*
Lf5+1) + p(s+1) ’

1 1

L£:(0F™) < Li(o)) - (12)

where ¢ € (0, 1). If the condition fails, Li(SH) is reduced by a factor
Tiip € (0,1) until satisfied or a retry limit is reached.

The details of pxpGP implementation are presented in Algo-
rithm 1. First, each agent computes locally a compact sparse GP
model by solving (7) and communicates the local compact pseudo-
dataset D; to the central node. Next, the central node aggregates
and broadcasts the communication dataset D] to all agents. Then,
each agent forms the local pseudo-augmented dataset D7, and ini-
tializes the local hyperparameter vector based on the local compact
sparse GP model 6} to warm-start the optimization. The ADMM
optimization begins by communicating Ogs) to the central node to
update the primal variable z**! (9b) and broadcast the computed
value to all agents. Algorithm 1 requires coordination with a cen-
tral node; asynchronous federated GP formulations that rely on
different update rules and convergence assumptions are studied
in [30]. Then, each agent computes the primal variable 05”1) (9a),
the dual variable uESH) (9¢), while updating the penalty parameter
pf”l) (11) and Lipschitz parameter L;S“) (12). The optimization
iterates until the primal (10a) and dual residual (10b) converge.

3.2 Decentralized pxpGP training

We extend the pxpGP framework to decentralized network topolo-
gies by addressing the optimization problem (3). In decentralized
pxpGP (dec-pxpGP), each agent i independently optimizes its local
GP hyperparameters 6; using its local pseudo-augmented dataset
Dy;, while communicating only with its immediate neighbors N;
over a static, connected undirected graph G. To distribute the
pseudo-datasets across the network, we adopt a flooding mech-

anism that ensures all agents receive the shared communication
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Figure 3: Visualization of the datasets used for experimentation. Figures (3a), (3b), and (3c) depict synthetic generative GP
datasets used for hyperparameter accuracy evaluation experiments, while Figure (3d) and (3e) show real-world NASA SRTM

terrain datasets [7] used for assessing prediction performance.

dataset D). Similarly to the centralized pxpGP, dec-pxpGP lever-
ages locally learned variational hyperparameters 6} for warm-start
initialization of the local hyperparameters 0;1) = 0] in the global
training stage. Each agent optimizes §; while maintaining consen-
sus on shared variables z;; with its neighbors. Through synchronous
iterative updates, all agents progressively converge to a consistent
global hyperparameter estimate by following [18] that yields,

1
00 = —————(p Y 01 - VoL (0f)
! L 42p NI\ jEZ)\:/i ’ A
a4 (p 1Nl + 1) 6 (13a)
a§$+l) _ ags) +pi(s) |/Vz| 9§s+1) _ Z 9;s+1) i (13b)
JEN;

where |N;| denotes the number of neighbors of agent i (cardinality)
and «; represents the dual variable. This formulation enables par-
allel, neighbor-only communication updates, resulting in a scalable
and robust approach across varying network topologies.

The dec-pxpGP employs the adaptive residual-balancing strategy
for p; (11) and tunes the Lipschitz parameter L; (12) using the
Armijo condition (Algorithm 2).

4 NUMERICAL EXPERIMENTS AND RESULTS

To illustrate the efficacy of the proposed pxpGP and dec-pxpGP
training method, we conduct numerical experiments with both
synthetic and real-world datasets, and compare against existing
distributed GP methods [36], [18]. For our experiments, we gen-
erate 2D synthetic datasets using generative GP functions with
known hyperparameters 8 = (I}, I, o7,0¢)T = (0.7,0.5,1.8,0.1)7
for controlled benchmarking of GP hyperparameters, and used the
NASA Shuttle Radar Topography Mission (SRTM) terrain elevation
dataset [7] to evaluate the prediction performance.

We perform synthetic dataset experiments with two different
dataset sizes, N = 16,900 and N = 34, 900. For the real-world
SRTM dataset, we use 3 tiles (N39W106, N37W 120, N43W080),
each with N = 30,000 training samples divided among agents
and assign Niest = 300 test samples to each agent. Each training
dataset is spatially and sequentially partitioned into equal-sized
local datasets, satisfying Assumption 1, across varying fleet sizes

M € {16,49,64,100}. For real-world dataset experiments, we use
a single consistent global test dataset Nisx among all agents to
evaluate prediction performance. In all experiments, the number of
inducing points per agent is chosen as P = max{(N;/M), 4}, where
N; is the dataset size of agent i. All experiments are implemented in
Python using PyTorch and GPyTorch [8], running on a workstation
with an Intel Core i7-14700 CPU, 62 GB RAM, and an NVIDIA
GeForce RTX 4080 GPU with 16 GB VRAM.

The proposed pxpGP and dec-pxpGP frameworks are evaluated
by benchmarking their hyperparameter estimation accuracy against
several baseline methods, including the global full GP, centralized
variants (apxGP [36] and gapxGP [18]), and their decentralized
counterparts (dec-apxGP [18] and dec-gapxGP [18]). The predic-
tive performance of proposed pxpGP and dec-pxpGP is compared
against gapxGP and dec-gapxGP. The apxGP method is excluded
from this comparison, since the gapxGP formulation provides a
superior and more scalable alternative. For the centralized methods,
the penalty and Lipschitz parameters are fixed at p = 5, L; = 10
respectively, with convergence tolerances set to €, = 107> and a
maximum of 1,000 ADMM iterations. In contrast, pxpGP uses adap-
tive updates of p and L;, initialized with p™) = 1.0 and Ll.(l) =5.0,
with the outer ADMM iterations are capped at s = 500. For the
decentralized experiments, we adopt a minimal connected graph
topology in which each agent has a maximum neighborhood de-
gree of |[N| = 2, yielding a 1-connected network that satisfies the
standard connectivity assumption for consensus while providing
a lower-bound scenario on communication redundancy and mix-
ing speed. This graph topology and data distribution represent the
worst-case connectivity and worst-case data allocation conditions.
As network connectivity increases or local regions begin to overlap,
all methods demonstrate improved performance.

The evaluation focuses on three aspects: i) hyperparameter es-
timation accuracy relative to the ground-truth using the synthetic
dataset; ii) prediction performance relative to the ground-truth
on the real-world SRTM dataset; and iii) computational and com-
munication complexity compared to baseline methods.

4.1 Hyperparameter Accuracy Estimate

The accuracy of the hyperparameter estimation is a key indicator
of model consistency and scalability across agents. For the smaller
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Figure 4: Hyperparameter estimation accuracy of baseline GP methods and proposed pxpGP (highlighted with green background)
for centralized (black) and decentralized (blue) setups across fleet sizes M = {16,49, 64,100} on a dataset with N = 16,900. Red
dashed lines indicate ground-truth hyperparameters.
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Figure 5: Hyperparameter estimation accuracy of baseline GP methods and proposed pxpGP (highlighted with green background)
for centralized (black) and decentralized (blue) setups across fleet sizes M = {16,49, 64,100} on a dataset with N = 32,400. Red

dashed lines indicate ground-truth hyperparameters.

synthetic dataset (N = 16, 900), Fig. 4, pxpGP and dec-pxpGP remain
close to the ground-truth hyperparameters for all fleet sizes M,
while the accuracy of baseline methods degrades noticeably as the
number of agents M increases. For the larger synthetic dataset (N =
34, 900), Fig. 5, all methods benefit from the increased data volume,
but the pxpGP and dec-pxpGP still provide the most accurate and
stable estimates across all fleet sizes, particularly in larger networks.

4.2 Prediction Performance

Reliable prediction and uncertainty estimation are key to evalu-
ating model performance in distributed multi-robot learning. To
evaluate these parameters, we assess the predictive performance of
the proposed pxpGP and dec-pxpGP frameworks on three tiles of
the real-world SRTM terrain dataset, comparing them with base-
line gapxGP and dec-gapxGP methods. As summarized in Table 1,

both pxpGP and dec-pxpGP achieve comparable or nearly identical
Normalized Root Mean Square Error (NRMSE) values relative to
their respective baselines.

More importantly, the proposed methods consistently yield sub-
stantially lower Negative Log Predictive Density (NLPD) values,
which measure predictive uncertainty. Lower NLPD corresponds
to more accurate and confident predictions, particularly for larger
fleet sizes and non-stationary datasets such as tiles N37W120 and
N43W080. Thus, the reduced NLPD values demonstrate that the
proposed methods provide superior uncertainty quantification and
higher model confidence compared to baseline approaches. Overall,
both pxpGP and dec-pxpGP maintain stable prediction accuracy and
well-calibrated uncertainty across diverse datasets and large-scale
networks.



Table 1: Prediction accuracy of the proposed pxpGP and dec-pxpGP frameworks across fleet size M = 16, 49, 64, 100, using a
training dataset of size N = 30,000 equally distributed among agents and a test dataset size N;.;; = 300 per agent, compared with
the baseline models (gapxGP and dec-gapxGP [18]) on the SRTM dataset [7].

Centralized GPs Decentralized GPs
Dataset M pxpGP gapxGP [18] dec-pxpGP dec-gapxGP [18]
NRMSE | NLPD | NRMSE | NLPD | NRMSE | NLPD | NRMSE | NLPD |
16  0.058 £ 0.012 0.265 + 0.057  0.071 £ 0.001 0.437 £0.009  0.067 + 0.001  0.305 + 0.009 0.072 £ 0.007 0.311 £ 0.093
49 0.080 £0.002 0.414 £0.033 0.076 +0.002 0.487 +£0.014 0.061 + 0.002 0.153 + 0.038 0.062 £ 0.003 0.213 £ 0.076
N39W106 64 0.081 +£0.003  0.422 + 0.037 0.076 + 0.002  0.492 +£0.018 0.062 + 0.002 0.170 + 0.029 0.062 + 0.003 0.204 £ 0.056
100  0.086 + 0.003 0.562 £0.021 0.081 +£0.003 0.521 +0.019 0.067 + 0.008 0.219 + 0.084 0.068 £ 0.006 0.272 £0.139
16 0.067 £0.012 0.387 +0.130 0.069 £0.002  0.381 + 0.057 0.067 £ 0.005 0.202 + 0.029 0.071 £ 0.001 0.235 £ 0.070
49 0.076 £0.004  0.281 + 0.135 0.074 +£ 0.003  0.421 + 0.067 0.062 £ 0.002 0.061 + 0.101 0.061 + 0.003 0.151+0.114
N37W120 64 0.077 £0.004  0.292 + 0.133 0.075 £ 0.003  0.432 + 0.062 0.064 £+ 0.004 0.084 + 0.094 0.063 +£0.003 0.133 + 0.093
100  0.083 +0.004 0.392 + 0.040 0.078 +£0.003 0.457 £0.066 0.066 +£ 0.005 0.106 + 0.129 0.068 £ 0.006 0.204 £0.123
16 0.057 £0.016 0.327 +0.139 0.065 £ 0.005 0.314 + 0.105  0.065 £ 0.008 0.123 £ 0.055 0.062 + 0.005 0.161 + 0.091
49  0.071+£0.005 0.193+0.169 0.071 £ 0.008 0.371 £0.095 0.054 + 0.008 -0.086 + 0.178  0.061 + 0.004 0.091 £ 0.131
N43W080 64 0.072 £ 0.004 0.206 +0.165 0.072 + 0.009 0.397 £ 0.077 0.060 £ 0.006 0.005 + 0.130  0.057 £ 0.007  0.067 + 0.124
100 0.082 +£0.004 0.343 +£0.035 0.075+0.005 0.432+0.065 0.060 +0.008 0.005 + 0.182 0.067 £+ 0.006 0.178 £0.128

Table 2: Computational and Communication Complexity Comparison of Distributed GP Methods

apxGP [36] gapxGP [18] pxpGP (Ours) dec-gapxGP [18] dec-pxpGP (Ours)
Time O(j:’Ti) 0(811:’7?) 0(8%)+O(BP2+P3) 0(8%) 0(8%)+0(BP2+P3)
Space 0.9 0(2§+ ZMlj) 0(2§+ Ny +p2) 0(2§+ ZMij) 0(2§+ e +P2)

Comms O (sM(D +2)) O (s*™¥M(D + 2))

O (sM(D +2))

O (sM(D +2)) O (sM(D +2))

4.3

We compare the computational efficiency and scalability of all dis-
tributed GP training methods in Table 2, which summarizes their
time, space, and communication complexity, where & = N?/M? +
D(N/M). While pxpGP and dec-pxpGP add a one-time compu-
tational overhead from local sparse GP training (O (BP? + P?)) to
generate the local compact pseudo-dataset D, where B is the batch
size. This overhead is offset by: i) improved initialization, which re-
quires fewer ADMM iterations to converge; and ii) adaptive tuning
of p;, and L;, which minimizes manual adjustments and accelerates
convergence.

Unlike gapxGP and dec-gapxGP [18], which rely on random
sampling from local datasets, the proposed pxpGP and dec-pxpGP
share compact pseudo-representations that enhance data privacy,
and reduce communication overhead. Moreover, the dataset het-
erogeneity in gapxGP often leads to ill-conditioned covariance
matrices, resulting in numerical instability during inversion, es-
pecially for large-scale networks. In contrast, pxpGP maintains
numerical robustness through the use of optimized sparse datasets,
warm-start initialization, and adaptive parameter selection, all of
which contribute to faster convergence. Additionally, the proposed
pxpGP employs warm-start initialization with near-optimal hyper-
parameters, reducing the need for strict convergence tolerances and

Computational Analysis

requiring fewer ADMM iterations. The latter leads to improved hy-
perparameter estimation accuracy for large-scale networks, while
lowering computational and communication costs.

5 CONCLUSION

In this work, we introduced pxpGP and dec-pxpGP, scalable and
federated GP methods for large-scale multi-robot learning. By com-
bining sparse variational inference with boundary and repulsive
penalty terms, pxpGP constructs informative and well-distributed
shared pseudo-datasets that enhance global data representation.
The proposed centralized and decentralized variants demonstrate
efficient and accurate hyperparameter estimation, and superior pre-
dictive performance in numerical experiments, spanning fleet sizes
from 16 to 100 agents, while preserving data privacy.

These results underscore the scalability, efficiency, and robust-
ness of the proposed method, positioning pxpGP as a strong candi-
date for real-world federated learning applications in large-scale
multi-robot systems. Beyond scalable model learning, the proposed
framework establishes a foundation for model-based control and
decision-making, maintaining consistent uncertainty estimates un-
der limited communication. This makes it particularly suited for
cooperative exploration, where reliable modeling directly influences
control and coordination strategies.
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