
Federated Gaussian Process Learning via
Pseudo-Representations for Large-Scale Multi-Robot Systems

Sanket A. Salunkhe

Colorado School of Mines

Golden, CO, USA

sanket_salunkhe@mines.edu

George P. Kontoudis

Colorado School of Mines

Golden, CO, USA

george.kontoudis@mines.edu

ABSTRACT
Multi-robot systems require scalable and federated methods to

model complex environments under computational and communica-

tion constraints. Gaussian Processes (GPs) offer robust probabilistic

modeling, but suffer from cubic computational complexity, limit-

ing their applicability in large-scale deployments. To address this

challenge, we introduce the pxpGP, a novel distributed GP frame-

work tailored for both centralized and decentralized large-scale

multi-robot networks. Our approach leverages sparse variational

inference to generate a local compact pseudo-representation. We

introduce a sparse variational optimization scheme that bounds lo-

cal pseudo-datasets and formulate a global scaled proximal-inexact

consensus alternating direction method of multipliers (ADMM)

with adaptive parameter updates and warm-start initialization. Ex-

periments on synthetic and real-world datasets demonstrate that

pxpGP and its decentralized variant, dec-pxpGP, outperform ex-

isting distributed GP methods in hyperparameter estimation and

prediction accuracy, particularly in large-scale networks.

KEYWORDS
Gaussian Processes,Multi-Robot Systems, DistributedOptimization,

Sparse Methods, Federated Learning, Large-Scale Networks

ACM Reference Format:
Sanket A. Salunkhe and George P. Kontoudis. 2026. Federated Gaussian

Process Learning via Pseudo-Representations for Large-Scale Multi-Robot

Systems . In Proc. of the 25th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2026), Paphos, Cyprus, May 25 – 29, 2026,
IFAAMAS, 9 pages. https://doi.org/10.65109/YQEA8075

Code: github.com/mpala-lab/distributed-gaussian-processes

1 INTRODUCTION
Multi-robot systems are increasingly used in executing complex,

cooperative tasks such as environmental monitoring [5], search-

and-rescue [27], autonomous exploration [4], and surveillance [33].

These applications require accurate modeling and prediction of

environment or task-specific phenomena under uncertainty. Gauss-

ian Processes (GPs) are well suited to these challenges, combining

accurate function approximation with explicit uncertainty quantifi-

cation [11, 28]. They have been successfully applied to distributed

mapping [9, 29] and collaborative exploration tasks [16, 19, 34] due

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 25th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2026), C. Amato, L. Dennis, V. Mascardi, J. Thangarajah (eds.), May 25 – 29,
2026, Paphos, Cyprus. © 2026 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). https://doi.org/10.65109/YQEA8075

to their ability to provide uncertainty estimates that guide their

decision-making process [15, 22].

However, using GPs in multi-robot teams is constrained by prac-

tical challenges such as limited onboard computation, privacy re-

quirements, and communication bandwidth [10]. At the same time,

GP training entails cubic complexity, which poses a major bar-

rier with large datasets [17]. GP surrogate models are governed

by a set of hyperparameters 𝜽 , learned using maximum likelihood

estimation (MLE) methods over a given dataset D. Accurate hyper-

parameter estimation is essential to ensure reliable predictions [28].

Our objective in this work is to develop distributed GP learning

methods that can accurately estimate GP hyperparameters in large-

scale multi-robot systems without sharing local raw datasets.

GP approximation techniques can be broadly classified into

global aggregation methods and local inducing point-based meth-

ods [20]. Global approximation methods such as cGP [37], apxGP

[36], and gapxGP [18] perform GP training across agents with Al-

ternating Direction Method of Multipliers (ADMM) algorithms [2].

These approaches reduce computational and communication costs

but require direct data sharing which can compromise data privacy

and the quality of representation. Moreover, their performance de-

grades in networks larger than approximately 40 agents due to the

independent assumption of distributed optimization [18, 19].

Local sparse variational methods reduce the cubic computational

complexity of exact GPs by introducing a compact set of inducing

variables that approximate the full covariance [35]. This method is

infeasible in multi-robot systems, where data are inherently parti-

tioned. To address this, [26] proposed a decentralized SGP frame-

work, where each agent maintains a local variational posterior

and fuses with neighboring models through maximum-consensus.

While effective for small-scale deployments, this fusion mechanism

is heuristic and lacks theoretical convergence guarantees, limiting

scalability and robustness in large-scale networks.

Recent efforts have explored adaptive sampling in multi-agent

systems. In [3], authors proposed a waypoint selection strategy

where heterogeneous robots collaboratively estimate a stationary

GP under dynamic constraints, and sensor noise. In [24], the authors

presented a centralized GP method using variational inference. Sim-

ilarly, [21, 38] develop decentralized GP approaches using random-

feature GPs (RF-GPs), where agents share compact random-feature

statistics with neighbors. However, random features can introduce

systematic kernel approximation bias and yield poor covariance

estimates, with accuracy strongly dependent on the number and

quality of random features, in contrast to optimized pseudo-datasets.

Other works, such as COOL-GP [13] and mixture-of-experts-based

adaptive sampling [23], enable distributed GP learning and scalable

https://doi.org/10.65109/YQEA8075
https://github.com/mpala-lab/distributed-gaussian-processes
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.65109/YQEA8075

Figure 1: Overview of the proposed pxpGP framework in centralized and decentralized multi-robot networks. Each agent𝑀𝑖

generates a compact pseudo-dataset D∗𝑖 and forms a pseudo-augmented dataset D∗+𝑖 . Centralized networks aggregate pseudo-
datasets via a central node, while decentralized networks exchange data through neighbors via flooding.

modeling of non-stationary fields.While thesemethods advance dis-

tributed inference and adaptive data collection, they do not address

the challenge of privacy-preserving hyperparameter optimization

in GP training.

In this work, we propose the Proximal Inexact Pseudo Gauss-
ian Process (pxpGP), a distributed GP training framework de-

signed for large-scale centralized and decentralized multi-robot

networks. The method lies at the intersection of global aggregation

and local sparse approaches to achieve scalability and data pri-

vacy by exchanging only optimized pseudo-datasets among agents,

rather than raw or random observations. An overview of the pro-

posed methods for both centralized and decentralized settings is

illustrated in Fig. 1.

Contribution. The contribution of this work is twofold. First, we

extend sparse variational inference techniques [12, 25, 32] to gen-

erate compact pseudo-datasets confined to each agent’s region, im-

proving informativeness and scalability to large-scale networks.

Federated learning is promoted by sharing only compact pseudo-

representations and optimization iterates instead of raw data. Sec-

ond, we formulated pxpGP as a scaled proximal-inexact consensus
ADMM algorithm initialized with warm-start hyperparameters and

adaptive residual balancing that accelerates convergence and re-

duces communication rounds.

2 GAUSSIAN PROCESS TRAINING
Gaussian Processes (GPs) are non-parametric Bayesian models that

define distributions over functions with a Gaussian prior. A GP

over a latent function 𝑓 (𝒙) is defined as,

𝑓 (𝒙) ∼ 𝐺𝑃 (𝑚(𝒙), 𝑘 (𝒙, 𝒙′)),

where 𝑚(𝒙) is the mean function and 𝑘 (𝒙, 𝒙′) is the covariance

function (i.e., kernel), parameterized by a set of hyperparameters 𝜽 ,

that govern the smoothness, variability, and predictive accuracy of

the GP model.

We model observations as 𝑦 (𝒙) = 𝑓 (𝒙) + 𝜖 , where 𝒙 ∈ R𝐷
is

the input with dimension 𝐷 , 𝑦 (𝒙) ∈ R is the scalar output, and 𝜖 ∼
N(0, 𝜎2

𝜖) is zero-mean Gaussian measurement noise with variance

𝜎2

𝜖 . We employ the Separable Squared Exponential (SSE) kernel,

𝑘 (𝒙, 𝒙′) = 𝜎2

𝑓
exp

−
1

2

𝐷∑︁
𝑑=1

(
𝑥𝑑 − 𝑥 ′𝑑

)
2

𝑙2
𝑑

 ,
with signal variance 𝜎𝑓 > 0 and length-scale 𝑙𝑑 > 0. The GP

hyperparameters 𝜽 =
[
𝑙1, 𝑙2, · · · , 𝑙𝑑 , 𝜎𝑓 , 𝜎𝜖

]𝑇 ∈ R𝐷+2
are trained by

maximizing the log-likelihood function,

L(𝑿 ,𝒚;𝜽) = −1
2

(
𝒚⊺𝑪−1

𝜃
𝒚 + log |𝑪𝜃 | + 𝑁 log 2𝜋

)
,

where 𝑪𝜃 = 𝑲 +𝜎2

𝜖 𝐼𝑁 is the positive definite covariance matrix and

𝑲 = 𝑘 (𝑿 ,𝑿) is the kernel matrix, with 𝑿 = {𝒙1, 𝒙2, · · · , 𝒙𝑛}𝑁𝑛=1 ⊂
R𝑁×𝐷

the input locations, 𝒚 = {𝑦1, 𝑦2, · · · , 𝑦𝑛}𝑁𝑛=1 ⊂ R𝑁
the corre-

sponding scalar outputs, and 𝑁 the dataset size. Thus, the negative

log-likelihood (NLL) optimization problem yields,

ˆ𝜽 = argmin

𝜽
𝒚⊺𝑪−1

𝜃
𝒚 + log |𝑪𝜃 | (1)

s.t. 𝜽 > 0𝐷+2 .

The positivity constraint keeps 𝑪𝜃 well-conditioned and positive

definite. The optimization (1) requires computing 𝑪−1
𝜃

at each itera-

tion, with O(𝑁 3) computations and O(𝑁 2 + 𝐷𝑁) storage.

2.1 Centralized Factorized GP Training
(fact-GP)

To reduce the complexity of GP training, factorized GP (fact-GP)

[6] partitions the global dataset D = {𝑿,𝒚} across multiple agents

𝑀 disjoint subsets, D = {D𝑖 }𝑀𝑖=1, where 𝑖 = {1, 2, · · · , 𝑀} and

(a) Without Boundary Penalty (b) Without Repulsive penalty (c) With Boundary & Repulsive Penalty

Figure 2: Effect of pxpGP regularization. (a) Pseudo-points drift beyond local bounds without boundary penalty (highlighted
red circles). (b) Without the repulsive penalty, points cluster densely in a local region (highlighted red circles). (c) Combined
boundary (𝔏𝑏) and repulsive (𝔏𝑟) penalties yield a well-distributed local pseudo-representations.

D𝑖 =
{
𝑿 𝑖 ,𝒚𝑖

}
. The global objective is approximated by the sum of

local objectives with independent local datasets, L ≈ ∑𝑀
𝑖=1 L𝑖 . Each

agent 𝑖 trains local hyperparameters 𝜽 𝑖 and enforces global consen-

sus through a shared parameter 𝒛,

ˆ𝜽 =argmin

𝜽

𝑀∑︁
𝑖=1

L𝑖 (𝜽 𝑖) (2)

s.t. 𝜽 𝑖 = 𝒛, ∀𝑖 = 1, 2, · · · , 𝑀,

where L𝑖 (𝜽 𝑖) = 𝒚⊺
𝑖
𝑪−1
𝜃,𝑖
𝒚𝑖 + log |𝑪𝜃,𝑖 | is the local NLL and 𝑪𝜃,𝑖 is

the local covariance matrix. To formulate the proposed distributed

training algorithms, we introduce two specific assumptions about

data distribution and communication structure among agents.

Assumption 1. Each agent 𝑖 trains a local sub-model on a statis-
tically independent dataset that corresponds to a distinct region of the
input space.

Assumption 2. Communication between agents is restricted to
parameter or summary exchange and does not involve sharing raw
datasets to preserve data privacy.

The approximate proximal GP (apx-GP) [36] uses proximal in-

exact consensus ADMM to solve (2), reducing local complexity to

O((𝑁 /𝑀)3) with convergence guarantees for the non-convex opti-

mization. It enables GP models to scale over large datasets, but as

the number of agents𝑀 increases, Assumption 1 weakens, degrad-

ing hyperparameter estimates. On the other hand, gapx-GP [18]

addresses this challenge by augmenting each local dataset D+𝑖
with randomly sampled data from other agents. However, the latter

violates Assumption 2 about privacy and does not scale beyond

networks of approximately 40 agents.

2.2 Decentralized GP Training
In practical scenarios, a central coordinator is infeasible due to com-

munication constraints, which motivates decentralized GP training

where each agent collaborates onlywith its immediate neighborsN𝑖 .

We model the decentralized network of 𝑀 agents as a connected

undirected graph G = (V, E), with V = {𝑣1, 𝑣2, · · · , 𝑣𝑀 } as a set

of agents i.e nodes in the network, and E ⊆ V × V the commu-

nication links i.e edges between them. For each agent 𝑖 , the set of

neighbors is defined as N𝑖 =
{
𝑣 𝑗 ∈ V|

(
𝑣𝑖 , 𝑣 𝑗

)
∈ E

}
.

Prior work [18] introduced dec-cGP, dec-apxGP, and dec-gapxGP,

to decentralized networks using edge-based ADMM [31] to solve,

ˆ𝜽 =argmin

𝜽

𝑀∑︁
𝑖=1

L𝑖 (𝜽 𝑖) (3)

s.t. 𝜽 𝑖 = 𝒛𝑖 𝑗 , ∀𝑖 ∈ V, 𝑗 ∈ N𝑖

𝜽 𝑗 = 𝒛𝑖 𝑗 , ∀𝑖 ∈ V, 𝑗 ∈ N𝑖 ,

where each agent optimizes its local hyperparameters 𝜽 𝑖 while

maintaining consensus with neighbors via shared auxiliary vari-

ables 𝒛𝑖 𝑗 . The per-agent complexity remains O
(
(𝑁 /𝑀)3

)
. Similar

to the gapxGP, dec-gapxGP also shares raw data with neighboring

agents, violating Assumption 2.

Problem 1. Consider a large network of 𝑀 robots that collabo-
ratively model an unknown latent function using GPs. Each agent 𝑖
holds a local datasetD𝑖 and communicates with its one-hop neighbors.
Under Assumption 1 (Independence) and 2 (Federated Constraints),
the goal is to estimate the global GP hyperparameters 𝜽 by solving
the centralized optimization problem (2) and its decentralized coun-
terpart (3), while minimizing communication rounds by ensuring fast
convergence.

3 PSEUDO INEXACT PROXIMAL GP (PXP-GP)
TRAINING

In this section, we present the formulation of theProximal Inexact
Pseudo GP (pxpGP) training method for centralized and decen-

tralized networks. Existing distributed GP training methods, such

as gapxGP and dec-gapxGP [18], reduce approximation error of fac-

torized GP methods by augmenting each agent’s dataset D+𝑖 with
randomly sampled data from other agents. While these approaches

are effective for small networks, they i) yield poorly representa-

tive augmented datasets in large-scale networks and ii) require

raw-data exchange that violates the federated constraint (Assump-

tion 2). pxpGP addresses these issues by letting each agent build a

local pseudo-augmented dataset D∗+𝑖 from a local sparse GP model

trained over its local dataset D𝑖 , rather than from random samples.

Sparse GP approximations use a compact set of 𝑃 inducing points

𝑿𝑝 =
{
𝑥𝑝1 , 𝑥𝑝2 , · · · , 𝑥𝑝𝑖

}𝑃
𝑖=1
⊂ R𝑃×𝐷

, where typically 𝑃 << (𝑁 /𝑀).
Thus, the training and prediction complexity reduces to O(𝑁𝑃2)
and O(𝑃2), respectively [32, 35]. The inducing points 𝑿𝑝 , varia-

tional parameters 𝝁𝑃 , and 𝑨𝑝 are optimized by minimizing the

negative Evidence Lower Bound (ELBO) 𝔏ELBO that yields,

𝑞(𝑓𝑃) = min

𝑞 (𝑓𝑃),𝑿𝑃

−𝔏ELBO

= min

𝑞 (𝑓𝑃),𝑿𝑃

−
(
E𝑞 (𝒇) [log 𝑝 (𝒚 |𝒇)] − KL

(
𝑞(𝒇𝑃) | | 𝑝 (𝒇𝑃)

))
, (4)

where 𝑞(𝑓𝑃) =N
(
𝝁𝑃 ,𝑨𝑃

)
is a Gaussian distribution with 𝝁𝑃 vari-

ational mean and 𝑨𝑃 variational covariance matrix, and KL (𝑞 | | 𝑝)
is the Kullback-Leibler (KL) divergence between the variational

distribution 𝑞 and GP prior 𝑝 over the inducing variables 𝒇𝑃 . The

first term of 𝔏ELBO encourages accurate data fitting, and the second

term regularizes the variational approximation by penalizing diver-

gence from the true posterior. The optimization starts with K-means

initialization of the inducing points 𝑿𝑃 , followed by variational

inference to minimize the negative ELBO (4).

Once each agent 𝑖 generates a local pseudo-dataset D∗𝑖 by solv-

ing (4), then all agents transmit D∗𝑖 to create a shared commu-

nication dataset D∗𝑐 = ∪𝑀𝑖=1D∗𝑖 . Next, each agent constructs its

local pseudo-augmented dataset D∗+𝑖 = D𝑖 ∪ D∗𝑐 by merging the

original local dataset with the shared communication dataset, pro-

viding a richer global representation for GP training. The quality of

the pseudo-dataset largely depends on the placement of inducing

points. Without constraints, inducing points may drift beyond local

data boundaries or cluster in dense regions as shown in Fig. 2a, 2b,

respectively, leading to poor generalization, ill-conditioned covari-

ance matrices, and occasionally Cholesky decomposition failures.

To mitigate this, we introduce two regularization terms in the vari-

ational ELBO: 1) a boundary penalty (𝔏𝑏) to confine points within

data bounds; and 2) a repulsive penalty (𝔏𝑟) to ensure well-spread

inducing points.

3.0.1 Boundary Penalty (𝔏𝑏). This penalty constrains inducing

points to remain within the bounds of the local dataset,

𝔏𝑏 =

𝑃∑︁
𝑖=1

ReLU

(
𝒙min − 𝒙∗𝑖

)
2 + ReLU

(
𝒙∗𝑖 − 𝒙max

)
2

, (5)

where 𝒙∗𝑖 represents the 𝑖-th inducing pseudo-input point among 𝑃

points, 𝒙min and 𝒙max denote the minimum and maximum bound-

aries of the local dataset, respectively. The Rectified Linear Unit

(ReLU) function ensures zero penalty inside the valid region, but

applies a quadratic cost when points stray beyond the boundaries.

3.0.2 Repulsive Penalty (𝔏𝑟). The variational sparse GP objective (4)
[35] inherently discourages redundant overlapping inducing points

through its complexity and trace terms. However, this implicit

repulsive and non-overlapping effect is soft and data-dependent.

Thus, the variational sparse GP objective (4) does not explicitly

prevent local clustering, especially in distributed, data-partitioned,

or non-stationary multi-agent setups where data exhibit spatial

bias. As a result, the standard ELBO may yield clustered or poorly

spaced inducing points, as seen in Fig. 2b. To address this limitation,

the proposed repulsive penalty 𝔏𝑟 introduces an explicit geomet-

ric prior to enforce a minimum separation distance 𝑑min between

pseudo-inputs and improve spatial coverage,

𝔏𝑟 =

𝑃∑︁
𝑖=1

𝑃∑︁
𝑗=1

ReLU

(
𝑑min −

𝒙∗𝑖 − 𝒙∗𝑗

)2 , (6)

where ∥·∥ denotes the Euclidean norm between two inducing points.

The ReLU function ensures zero penalty when points are sufficiently

separated, but applies a quadratic cost distance between points that

fall below the threshold 𝑑min.

Together, these penalties produce a compact, well-distributed,

and privacy-preserving local pseudo-augmented dataset D∗+𝑖 that
enhances global GP approximation and improves numerical con-

ditioning of covariance matrices. The final objective function for

Sparse GP combines ELBO (4) with the boundary (5) and repulsive

penalties (6) as,

𝑿𝑃 =argmin

𝑞 (𝑓𝑃),𝑿𝑃

−𝔏ELBO + 𝔏𝑏 + 𝔏𝑟 . (7)

3.1 Centralized pxpGP training
In the proposed centralized pxpGP framework, each agent 𝑖 op-

timizes the hyperparameters 𝜽 𝑖 of its local GP model using the

local pseudo-augmented datasetD∗+𝑖 . This is formulated as a scaled

proximal-inexact consensus ADMM (pxADMM) problem, with an-

alytical synchronous iterates [14] coordinated by a central node,

with a fixed set of participating agents. By introducing a scaled dual

variable 𝑢𝑘𝑖 = 1

𝜌
𝜆𝑘𝑖 , we simplify the update rules, improve numeri-

cal stability, and enable adaptive penalty updates and warm-start

initialization.

Consistent with existing distributed GP training methods such

as cGP [37], apxGP [36], and gapxGP [18], pxpGP also enables

each local agent to train independently while maintaining global

consensus (2). The pxADMM linearizes the augmented Lagrangian

around a stationary point 𝒗𝑖 = 𝒛 + 𝒖𝑖 that yields,

ℒ (𝜽 𝑖 , 𝒛, 𝒗𝑖) =
𝑀∑︁
𝑖=1

L𝑖 (𝒛) + ∇⊺𝜽L𝑖 (𝒗𝑖) (𝜽 𝑖 − 𝒗𝑖)

+ 𝐿𝑖 + 𝜌𝑖
2

∥𝜽 𝑖 − 𝒗𝑖 ∥2 , (8)

where 𝐿𝑖 > 0 is a positive Lipschitz parameter and 𝜌𝑖 a regulariza-

tion penalty parameter. The iterative updates for the pxpGP are

provided by,

𝜽 (𝑠+1)
𝑖

= 𝒗 (𝑠)
𝑖
− 1

𝐿
(𝑠)
𝑖
+ 𝜌 (𝑠)

𝑖

∇𝜽L𝑖

(
𝒗 (𝑠)
𝑖

)
(9a)

𝒛 (𝑠+1) =
1

𝑀

𝑀∑︁
𝑖=1

(
𝜽 (𝑠+1)
𝑖

+ 𝒖 (𝑠)
𝑖

)
(9b)

𝒖 (𝑠+1)
𝑖

= 𝒖 (𝑠)
𝑖
+ 𝜽 (𝑠+1)

𝑖
− 𝒛 (𝑠+1) . (9c)

While optimizing the global hyperparameters 𝜽 , the proposed
pxpGP framework leverages the locally learned variational hyper-

parameters 𝜽 ∗𝑖 from each sparse GP model to initialize subsequent

Algorithm 1 pxpGP

Input: D𝑖 = (𝑿 𝑖 ,𝒚𝑖), 𝑘 (·, ·), 𝜌𝑖 , 𝐿𝑖 , 𝜖abs, 𝜖rel
Output: ˆ𝜽 , D∗+𝑖

1: for 𝑖 = 1 to𝑀 do ⊲ Sparse Modeling

2: D∗𝑖 , 𝜽
∗
𝑖 ← SparseModel(D𝑖) (7)

3: Communicate D∗𝑖 to central node.

4: end for
5: Aggregate D∗𝑐 = ∪𝑀𝑖=1D∗𝑖 at central node.

6: Broadcast D∗𝑐 to all agents 𝑖 ∈ 𝑀 from central node.

7: for 𝑖 = 1 to𝑀 do
8: D∗+𝑖 =D𝑖 ∪ D∗𝑐 ⊲ Local Augmented Dataset

9: Initialize 𝜽 (1)
𝑖

= 𝜽 ∗𝑖 ⊲ Warm Start

10: end for
11: repeat ⊲ ADMM optimization

12: Communicate 𝜽 (𝑠)
𝑖

to central node.

13: 𝒛 (𝑠+1) ← primal-2(𝜽 (𝑠)
𝑖

, 𝒖 (𝑠)
𝑖
) (9b)

14: Broadcast 𝒛 (𝑠+1) to all agents from central node.

15: for 𝑖 = 1 to𝑀 do
16: 𝜽 (𝑠+1)

𝑖
← primal-1(𝒛 (𝑠+1) , 𝒖 (𝑠)

𝑖
,D∗+𝑖) (9a)

17: 𝒖 (𝑠+1)
𝑖

← dual(𝒖 (𝑠)
𝑖

, 𝜽 (𝑠+1)
𝑖

, 𝒛 (𝑠+1)) (9c)
18: Update 𝜌

(𝑠+1)
𝑖

(11), 𝐿
(𝑠+1)
𝑖

(12)

19: end for
20: until

𝒓 (𝑠+1)𝑖

 ≤ 𝜖primal (10a),

𝒔 (𝑠+1)𝑖

 ≤ 𝜖dual (10b)
21: return ˆ𝜽

global training rounds. This warm-start mechanism preserves pos-

terior information from local models and accelerates convergence

by providing informed initial estimates for 𝜽 (1)
𝑖

= 𝜽 ∗𝑖 .

We monitor the convergence of each agent using primal 𝒓 (𝑠+1)
𝑖

=

𝜽 (𝑠+1)
𝑖

− 𝒛 (𝑠+1) and the dual residual 𝒔 (𝑠+1)
𝑖

= 𝜌𝑖

(
𝒛 (𝑠+1) − 𝒛 (𝑠)

)
.

These residuals must satisfy the conditions,

𝒓 (𝑠+1)𝑖

 ≤ 𝜖primal and

𝒔 (𝑠+1)𝑖

 ≤ 𝜖dual with tolerances,

𝜖primal =
√
𝑛p𝜖abs + 𝜖rel max

{

𝜽 (𝑠+1)𝑖

 ,

𝒛 (𝑠+1)

} (10a)

𝜖dual =
√
𝑛d𝜖abs + 𝜖rel

𝜌𝑖𝒖 (𝑠+1)𝑖

 , (10b)

where 𝑛p and 𝑛d are the dimensions of the primal 𝜽 and dual 𝒖
variables, and 𝜖abs, 𝜖rel are absolute and relative tolerances.

The penalty parameter 𝜌𝑖 balances the consensus constraint and

the local objective in the augmented Lagrangian (8). Unlike prior

works that fix 𝜌𝑖 to a heuristic value, we adopt a residual-balancing

strategy [2] that adjusts 𝜌𝑖 based on primal and dual residuals,

𝜌
(𝑠+1)
𝑖

=


𝜏incr𝜌

(𝑠)
𝑖

, if

𝑟 (𝑠)

 > 𝛽

𝑠 (𝑠)

𝜌 (𝑠)

𝜏
decr

, if

𝑠 (𝑠)

 > 𝛽

𝑟 (𝑠)

𝜌 (𝑠) , otherwise,

(11)

where 𝛽 , 𝜏iccr, 𝜏decr > 1. In addition, we also adjust the local Lipschitz

variable 𝐿
(𝑠+1)
𝑖

using a backtracking line search based on the Armijo

condition [1]. In addition, at each iteration, we ensure that the local

Algorithm 2 dec-pxpGP

Input: D𝑖 = (𝑿 𝑖 ,𝒚𝑖), 𝑘 (·, ·), 𝜌𝑖 , 𝐿𝑖 , N𝑖 , 𝑠
end

dec-pxpGP

Output: ˆ𝜽 , D∗+𝑖
1: for 𝑖 = 1 to𝑀 do ⊲ Sparse Modeling

2: D∗𝑖 , 𝜽
∗
𝑖 ← SparseModel(D𝑖) (7)

3: D∗𝑐 ← Flooding(D∗𝑖 ,N𝑖)
4: D∗+𝑖 =D𝑖 ∪ D∗𝑐 ⊲ Local Augmented Dataset

5: Initialize 𝜽 (1)
𝑖

= 𝜽 ∗𝑖 ⊲ Warm Start

6: end for
7: for 𝑠 = 1 to 𝑠end

dec-pxpGP
do ⊲ dec-ADMM optimization

8: for each 𝑖 ∈ V do
9: Communicate 𝜽 (𝑠)

𝑖
with N𝑖

10: 𝜶 (𝑠+1)
𝑖

← dual(𝜶 (𝑠)
𝑖

, 𝜽 (𝑠)
𝑖

, 𝜽 (𝑠)
𝑗
) (13b)

11: 𝜽 (𝑠+1)
𝑖

← primal(𝜶 (𝑠+1)
𝑖

, 𝜽 (𝑠)
𝑖

, 𝜽 (𝑠)
𝑗
D∗+𝑖) (13a)

12: Update 𝜌
(𝑠+1)
𝑖

(11), 𝐿
(𝑠+1)
𝑖

(12)

13: end for
14: end for
15: return ˆ𝜽

objective satisfies the condition,

L𝑖 (𝜽 (𝑠+1)𝑖
) ≤ L𝑖 (𝒗𝑖) −

𝑐 ∥∇𝜽L𝑖 (𝒗𝑖)∥2

𝐿
(𝑠+1)
𝑖

+ 𝜌 (𝑠+1)
𝑖

, (12)

where 𝑐 ∈ (0, 1). If the condition fails, 𝐿
(𝑠+1)
𝑖

is reduced by a factor

𝜏lip ∈ (0, 1) until satisfied or a retry limit is reached.

The details of pxpGP implementation are presented in Algo-

rithm 1. First, each agent computes locally a compact sparse GP

model by solving (7) and communicates the local compact pseudo-

dataset D∗𝑖 to the central node. Next, the central node aggregates

and broadcasts the communication dataset D∗𝑐 to all agents. Then,

each agent forms the local pseudo-augmented dataset D∗+𝑖 and ini-

tializes the local hyperparameter vector based on the local compact

sparse GP model 𝜽 ∗𝑖 to warm-start the optimization. The ADMM

optimization begins by communicating 𝜽 (𝑠)
𝑖

to the central node to

update the primal variable 𝒛 (𝑠+1) (9b) and broadcast the computed

value to all agents. Algorithm 1 requires coordination with a cen-

tral node; asynchronous federated GP formulations that rely on

different update rules and convergence assumptions are studied

in [30]. Then, each agent computes the primal variable 𝜽 (𝑠+1)
𝑖

(9a),

the dual variable 𝒖 (𝑠+1)
𝑖

(9c), while updating the penalty parameter

𝜌
(𝑠+1)
𝑖

(11) and Lipschitz parameter 𝐿
(𝑠+1)
𝑖

(12). The optimization

iterates until the primal (10a) and dual residual (10b) converge.

3.2 Decentralized pxpGP training
We extend the pxpGP framework to decentralized network topolo-

gies by addressing the optimization problem (3). In decentralized

pxpGP (dec-pxpGP), each agent 𝑖 independently optimizes its local

GP hyperparameters 𝜽 𝑖 using its local pseudo-augmented dataset

D∗+𝑖 , while communicating only with its immediate neighbors N𝑖

over a static, connected undirected graph G. To distribute the

pseudo-datasets across the network, we adopt a flooding mech-

anism that ensures all agents receive the shared communication

−2−1
0

1
2

x1

−2−1
0

1
2

x2

0

2

4

6

(a) GP Generative 1

−2−1
0

1
2

x1

−2−1
0

1
2

x2

0

2

4

6

(b) GP Generative 2

−2−1
0

1
2

x1

−2−1
0

1
2

x2

0

2

4

6

(c) GP Generative 3

Longitude (oE)

L
at

itu
de

(o N
)

(d) N39W106

Longitude (oE)

L
at

itu
de

(o N
)

(e) N43W080

Figure 3: Visualization of the datasets used for experimentation. Figures (3a), (3b), and (3c) depict synthetic generative GP
datasets used for hyperparameter accuracy evaluation experiments, while Figure (3d) and (3e) show real-world NASA SRTM
terrain datasets [7] used for assessing prediction performance.

dataset D∗𝑐 . Similarly to the centralized pxpGP, dec-pxpGP lever-

ages locally learned variational hyperparameters 𝜽 ∗𝑖 for warm-start

initialization of the local hyperparameters 𝜽 (1)
𝑖

= 𝜽 ∗𝑖 in the global

training stage. Each agent optimizes 𝜽 𝑖 while maintaining consen-

sus on shared variables 𝒛𝑖 𝑗 with its neighbors. Through synchronous
iterative updates, all agents progressively converge to a consistent

global hyperparameter estimate by following [18] that yields,

𝜽 (𝑠+1)
𝑖

=
1

𝐿
(𝑠)
𝑖
+ 2𝜌𝑖 |N𝑖 |

©­«𝜌 (𝑠)𝑖

∑︁
𝑗∈N𝑖

𝜽 (𝑠)
𝑗
− ∇𝜽L𝑖

(
𝜽 (𝑠)
𝑖

)
−𝜶 (𝑠)

𝑖
+
(
𝜌
(𝑠)
𝑖
|N𝑖 | + 𝐿 (𝑠)𝑖

)
𝜽 (𝑠)
𝑖

)
(13a)

𝜶 (𝑠+1)
𝑖

= 𝜶 (𝑠)
𝑖
+ 𝜌 (𝑠)

𝑖

©­«|N𝑖 | 𝜽 (𝑠+1)𝑖
−

∑︁
𝑗∈N𝑖

𝜽 (𝑠+1)
𝑗

ª®¬ , (13b)

where |N𝑖 | denotes the number of neighbors of agent 𝑖 (cardinality)

and 𝜶 𝑖 represents the dual variable. This formulation enables par-

allel, neighbor-only communication updates, resulting in a scalable

and robust approach across varying network topologies.

The dec-pxpGP employs the adaptive residual-balancing strategy

for 𝜌𝑖 (11) and tunes the Lipschitz parameter 𝐿𝑖 (12) using the

Armijo condition (Algorithm 2).

4 NUMERICAL EXPERIMENTS AND RESULTS
To illustrate the efficacy of the proposed pxpGP and dec-pxpGP
training method, we conduct numerical experiments with both

synthetic and real-world datasets, and compare against existing

distributed GP methods [36], [18]. For our experiments, we gen-

erate 2D synthetic datasets using generative GP functions with

known hyperparameters 𝜽 = (𝑙1, 𝑙2, 𝜎𝑓 , 𝜎𝜖)⊺ = (0.7, 0.5, 1.8, 0.1)⊺
for controlled benchmarking of GP hyperparameters, and used the

NASA Shuttle Radar Topography Mission (SRTM) terrain elevation

dataset [7] to evaluate the prediction performance.

We perform synthetic dataset experiments with two different

dataset sizes, 𝑁 = 16, 900 and 𝑁 = 34, 900. For the real-world

SRTM dataset, we use 3 tiles (N39W106, N37W120, N43W080),

each with 𝑁 = 30, 000 training samples divided among agents

and assign 𝑁test = 300 test samples to each agent. Each training

dataset is spatially and sequentially partitioned into equal-sized

local datasets, satisfying Assumption 1, across varying fleet sizes

𝑀 ∈ {16, 49, 64, 100}. For real-world dataset experiments, we use

a single consistent global test dataset 𝑁test among all agents to

evaluate prediction performance. In all experiments, the number of

inducing points per agent is chosen as 𝑃 =max{(𝑁𝑖/𝑀), 4}, where
𝑁𝑖 is the dataset size of agent 𝑖 . All experiments are implemented in

Python using PyTorch and GPyTorch [8], running on a workstation

with an Intel Core i7-14700 CPU, 62 GB RAM, and an NVIDIA

GeForce RTX 4080 GPU with 16 GB VRAM.

The proposed pxpGP and dec-pxpGP frameworks are evaluated

by benchmarking their hyperparameter estimation accuracy against

several baseline methods, including the global full GP, centralized

variants (apxGP [36] and gapxGP [18]), and their decentralized

counterparts (dec-apxGP [18] and dec-gapxGP [18]). The predic-

tive performance of proposed pxpGP and dec-pxpGP is compared

against gapxGP and dec-gapxGP. The apxGP method is excluded

from this comparison, since the gapxGP formulation provides a

superior and more scalable alternative. For the centralized methods,

the penalty and Lipschitz parameters are fixed at 𝜌 = 5, 𝐿𝑖 = 10

respectively, with convergence tolerances set to 𝜖abs = 10
−5

and a

maximum of 1, 000 ADMM iterations. In contrast, pxpGP uses adap-

tive updates of 𝜌 and 𝐿𝑖 , initialized with 𝜌 (1) = 1.0 and 𝐿
(1)
𝑖

= 5.0,

with the outer ADMM iterations are capped at 𝑠end = 500. For the

decentralized experiments, we adopt a minimal connected graph

topology in which each agent has a maximum neighborhood de-

gree of |N | = 2, yielding a 1-connected network that satisfies the

standard connectivity assumption for consensus while providing

a lower-bound scenario on communication redundancy and mix-

ing speed. This graph topology and data distribution represent the

worst-case connectivity and worst-case data allocation conditions.

As network connectivity increases or local regions begin to overlap,

all methods demonstrate improved performance.

The evaluation focuses on three aspects: i) hyperparameter es-
timation accuracy relative to the ground-truth using the synthetic

dataset; ii) prediction performance relative to the ground-truth

on the real-world SRTM dataset; and iii) computational and com-
munication complexity compared to baseline methods.

4.1 Hyperparameter Accuracy Estimate
The accuracy of the hyperparameter estimation is a key indicator

of model consistency and scalability across agents. For the smaller

Figure 4:Hyperparameter estimation accuracy of baselineGPmethods and proposed pxpGP (highlightedwith green background)
for centralized (black) and decentralized (blue) setups across fleet sizes 𝑀 = {16, 49, 64, 100} on a dataset with 𝑁 = 16,900. Red
dashed lines indicate ground-truth hyperparameters.

Figure 5:Hyperparameter estimation accuracy of baselineGPmethods and proposed pxpGP (highlightedwith green background)
for centralized (black) and decentralized (blue) setups across fleet sizes 𝑀 = {16, 49, 64, 100} on a dataset with 𝑁 = 32,400. Red
dashed lines indicate ground-truth hyperparameters.

synthetic dataset (𝑁 = 16, 900), Fig. 4, pxpGP and dec-pxpGP remain

close to the ground-truth hyperparameters for all fleet sizes 𝑀 ,

while the accuracy of baseline methods degrades noticeably as the

number of agents𝑀 increases. For the larger synthetic dataset (𝑁 =

34, 900), Fig. 5, all methods benefit from the increased data volume,

but the pxpGP and dec-pxpGP still provide the most accurate and

stable estimates across all fleet sizes, particularly in larger networks.

4.2 Prediction Performance
Reliable prediction and uncertainty estimation are key to evalu-

ating model performance in distributed multi-robot learning. To

evaluate these parameters, we assess the predictive performance of

the proposed pxpGP and dec-pxpGP frameworks on three tiles of

the real-world SRTM terrain dataset, comparing them with base-

line gapxGP and dec-gapxGP methods. As summarized in Table 1,

both pxpGP and dec-pxpGP achieve comparable or nearly identical

Normalized Root Mean Square Error (NRMSE) values relative to

their respective baselines.

More importantly, the proposed methods consistently yield sub-

stantially lower Negative Log Predictive Density (NLPD) values,

which measure predictive uncertainty. Lower NLPD corresponds

to more accurate and confident predictions, particularly for larger

fleet sizes and non-stationary datasets such as tiles N37W120 and

N43W080. Thus, the reduced NLPD values demonstrate that the

proposed methods provide superior uncertainty quantification and

higher model confidence compared to baseline approaches. Overall,

both pxpGP and dec-pxpGPmaintain stable prediction accuracy and

well-calibrated uncertainty across diverse datasets and large-scale

networks.

Table 1: Prediction accuracy of the proposed pxpGP and dec-pxpGP frameworks across fleet size 𝑀 = 16, 49, 64, 100, using a
training dataset of size 𝑁 = 30, 000 equally distributed among agents and a test dataset size 𝑁𝑡𝑒𝑠𝑡 = 300 per agent, compared with
the baseline models (gapxGP and dec-gapxGP [18]) on the SRTM dataset [7].

Centralized GPs Decentralized GPs

Dataset M

pxpGP gapxGP [18] dec-pxpGP dec-gapxGP [18]

NRMSE ↓ NLPD ↓ NRMSE ↓ NLPD ↓ NRMSE ↓ NLPD ↓ NRMSE ↓ NLPD ↓

N39W106

16 0.058 ± 0.012 0.265 ± 0.057 0.071 ± 0.001 0.437 ± 0.009 0.067 ± 0.001 0.305 ± 0.009 0.072 ± 0.007 0.311 ± 0.093
49 0.080 ± 0.002 0.414 ± 0.033 0.076 ± 0.002 0.487 ± 0.014 0.061 ± 0.002 0.153 ± 0.038 0.062 ± 0.003 0.213 ± 0.076
64 0.081 ± 0.003 0.422 ± 0.037 0.076 ± 0.002 0.492 ± 0.018 0.062 ± 0.002 0.170 ± 0.029 0.062 ± 0.003 0.204 ± 0.056
100 0.086 ± 0.003 0.562 ± 0.021 0.081 ± 0.003 0.521 ± 0.019 0.067 ± 0.008 0.219 ± 0.084 0.068 ± 0.006 0.272 ± 0.139

N37W120

16 0.067 ± 0.012 0.387 ± 0.130 0.069 ± 0.002 0.381 ± 0.057 0.067 ± 0.005 0.202 ± 0.029 0.071 ± 0.001 0.235 ± 0.070
49 0.076 ± 0.004 0.281 ± 0.135 0.074 ± 0.003 0.421 ± 0.067 0.062 ± 0.002 0.061 ± 0.101 0.061 ± 0.003 0.151 ± 0.114
64 0.077 ± 0.004 0.292 ± 0.133 0.075 ± 0.003 0.432 ± 0.062 0.064 ± 0.004 0.084 ± 0.094 0.063 ± 0.003 0.133 ± 0.093
100 0.083 ± 0.004 0.392 ± 0.040 0.078 ± 0.003 0.457 ± 0.066 0.066 ± 0.005 0.106 ± 0.129 0.068 ± 0.006 0.204 ± 0.123

N43W080

16 0.057 ± 0.016 0.327 ± 0.139 0.065 ± 0.005 0.314 ± 0.105 0.065 ± 0.008 0.123 ± 0.055 0.062 ± 0.005 0.161 ± 0.091
49 0.071 ± 0.005 0.193 ± 0.169 0.071 ± 0.008 0.371 ± 0.095 0.054 ± 0.008 -0.086 ± 0.178 0.061 ± 0.004 0.091 ± 0.131
64 0.072 ± 0.004 0.206 ± 0.165 0.072 ± 0.009 0.397 ± 0.077 0.060 ± 0.006 0.005 ± 0.130 0.057 ± 0.007 0.067 ± 0.124
100 0.082 ± 0.004 0.343 ± 0.035 0.075 ± 0.005 0.432 ± 0.065 0.060 ± 0.008 0.005 ± 0.182 0.067 ± 0.006 0.178 ± 0.128

Table 2: Computational and Communication Complexity Comparison of Distributed GP Methods

apxGP [36] gapxGP [18] pxpGP (Ours) dec-gapxGP [18] dec-pxpGP (Ours)

Time O
(
𝑁 3

𝑀3

)
O

(
8
𝑁 3

𝑀3

)
O

(
8
𝑁 3

𝑀3

)
+ O

(
𝐵𝑃2 + 𝑃3

)
O

(
8
𝑁 3

𝑀3

)
O

(
8
𝑁 3

𝑀3

)
+ O

(
𝐵𝑃2 + 𝑃3

)
Space O(𝜉) O

(
2𝜉 + 2𝑁 2

𝑀2

)
O

(
2𝜉 + 2𝑁 2

𝑀2
+ 𝑃2

)
O

(
2𝜉 + 2𝑁 2

𝑀2

)
O

(
2𝜉 + 2𝑁 2

𝑀2
+ 𝑃2

)
Comms O

(
𝑠end𝑀 (𝐷 + 2)

)
O

(
𝑠end𝑀 (𝐷 + 2)

)
O

(
𝑠end𝑀 (𝐷 + 2)

)
O

(
𝑠end𝑀 (𝐷 + 2)

)
O

(
𝑠end𝑀 (𝐷 + 2)

)
4.3 Computational Analysis
We compare the computational efficiency and scalability of all dis-

tributed GP training methods in Table 2, which summarizes their

time, space, and communication complexity, where 𝜉 = 𝑁 2/𝑀2 +
𝐷 (𝑁 /𝑀). While pxpGP and dec-pxpGP add a one-time compu-

tational overhead from local sparse GP training (O
(
𝐵𝑃2 + 𝑃3

)
) to

generate the local compact pseudo-datasetD∗𝑖 , where 𝐵 is the batch

size. This overhead is offset by: i) improved initialization, which re-

quires fewer ADMM iterations to converge; and ii) adaptive tuning

of 𝜌𝑖 , and 𝐿𝑖 , which minimizes manual adjustments and accelerates

convergence.

Unlike gapxGP and dec-gapxGP [18], which rely on random

sampling from local datasets, the proposed pxpGP and dec-pxpGP

share compact pseudo-representations that enhance data privacy,

and reduce communication overhead. Moreover, the dataset het-

erogeneity in gapxGP often leads to ill-conditioned covariance

matrices, resulting in numerical instability during inversion, es-

pecially for large-scale networks. In contrast, pxpGP maintains

numerical robustness through the use of optimized sparse datasets,

warm-start initialization, and adaptive parameter selection, all of

which contribute to faster convergence. Additionally, the proposed

pxpGP employs warm-start initialization with near-optimal hyper-

parameters, reducing the need for strict convergence tolerances and

requiring fewer ADMM iterations. The latter leads to improved hy-

perparameter estimation accuracy for large-scale networks, while

lowering computational and communication costs.

5 CONCLUSION
In this work, we introduced pxpGP and dec-pxpGP, scalable and
federated GP methods for large-scale multi-robot learning. By com-

bining sparse variational inference with boundary and repulsive

penalty terms, pxpGP constructs informative and well-distributed

shared pseudo-datasets that enhance global data representation.

The proposed centralized and decentralized variants demonstrate

efficient and accurate hyperparameter estimation, and superior pre-

dictive performance in numerical experiments, spanning fleet sizes

from 16 to 100 agents, while preserving data privacy.

These results underscore the scalability, efficiency, and robust-

ness of the proposed method, positioning pxpGP as a strong candi-

date for real-world federated learning applications in large-scale

multi-robot systems. Beyond scalable model learning, the proposed

framework establishes a foundation for model-based control and

decision-making, maintaining consistent uncertainty estimates un-

der limited communication. This makes it particularly suited for

cooperative exploration, where reliablemodeling directly influences

control and coordination strategies.

REFERENCES
[1] Dimitri P Bertsekas. 1999. Nonlinear programming. Athena Scientific.
[2] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011.

Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers. Vol. 3.

[3] Michael Brancato and Artur Wolek. 2024. Adaptive sampling of a stationary

Gaussian spatial process by a team of robots with heterogeneous dynamics and

measurement noise variance. IEEE Access 12 (2024), 94407–94423.
[4] Micah Corah, Cormac O’Meadhra, Kshitij Goel, and Nathan Michael. 2019.

Communication-efficient planning and mapping for multi-robot exploration in

large environments. IEEE Robotics and Automation Letters 4, 2 (2019), 1715–1721.
[5] Jnaneshwar Das, Frédéric Py, Julio BJ Harvey, John P Ryan, Alyssa Gellene, Rishi

Graham, David A Caron, Kanna Rajan, and Gaurav S Sukhatme. 2015. Data-

driven robotic sampling for marine ecosystem monitoring. The International
Journal of Robotics Research 34, 12 (2015), 1435–1452.

[6] Marc Deisenroth and Jun Wei Ng. 2015. Distributed Gaussian processes. In

International Conference on Machine Learning. 1481–1490.
[7] Tom G Farr, Paul A Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott

Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, et al.

2007. The shuttle radar topography mission. Reviews of geophysics 45, 2 (2007).
[8] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G

Wilson. 2018. GPyTorch: Blackbox matrix-matrix Gaussian process inference

with GPU acceleration. Advances in Neural Information Processing Systems 31
(2018).

[9] Maani Ghaffari Jadidi, Jaime Valls Miro, and Gamini Dissanayake. 2018. Gaussian

processes autonomous mapping and exploration for range-sensing mobile robots.

Autonomous Robots 42 (2018), 273–290.
[10] Jennifer Gielis, Ajay Shankar, and Amanda Prorok. 2022. A critical review of

communications in multi-robot systems. Current Robotics Reports 3, 4 (2022),

213–225.

[11] Robert B. Gramacy. 2020. Surrogates: Gaussian Process Modeling, Design and
Optimization for the Applied Sciences. Chapman Hall/CRC, Boca Raton, Florida.

[12] Peter L Green. 2024. Distributed Gaussian Processes with Uncertain Inputs. IEEE
Access 12 (2024), 176087–176093.

[13] Trong Nghia Hoang, Quang Minh Hoang, Kian Hsiang Low, and Jonathan How.

2019. Collective online learning of Gaussian processes in massive multi-agent

systems. In AAAI Conference on Artificial Intelligence, Vol. 33. 7850–7857.
[14] Mingyi Hong, Zhi-Quan Luo, and Meisam Razaviyayn. 2016. Convergence

analysis of alternating direction method of multipliers for a family of nonconvex

problems. SIAM Journal on Optimization 26, 1 (2016), 337–364.

[15] Dohyun Jang, Jaehyun Yoo, Clark Youngdong Son, Dabin Kim, and H Jin Kim.

2020. Multi-Robot Active Sensing and Environmental Model Learning With

Distributed Gaussian Process. IEEE Robotics and Automation Letters 5, 4 (2020),
5905–5912.

[16] George P Kontoudis and Daniel J Stilwell. 2021. Decentralized nested Gaussian

processes for multi-robot systems. In IEEE International Conference on Robotics
and Automation. 8881–8887.

[17] George P Kontoudis and Daniel J Stilwell. 2023. Decentralized federated learning

using Gaussian processes. In IEEE International Symposium on Multi-Robot and
Multi-Agent Systems. 1–7.

[18] George P Kontoudis and Daniel J Stilwell. 2024. Scalable, Federated Gaussian

Process Training for Decentralized Multi-Agent Systems. IEEE Access 12 (2024),
77800–77815.

[19] George P Kontoudis and Daniel J Stilwell. 2025. Multi-Agent Federated Learning

Using Covariance-Based Nearest Neighbor Gaussian Processes. IEEE Transactions
on Machine Learning in Communications and Networking 4 (2025), 115–138.

[20] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. 2020. When Gaussian

process meets big data: A review of scalable GPs. IEEE Transactions on Neural
Networks and Learning Systems 31, 11 (2020), 4405–4423.

[21] Fernando Llorente, Daniel Waxman, and Petar M Djurić. 2025. Decentralized

Online Ensembles of Gaussian Processes for Multi-Agent Systems. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing. 1–5.

[22] Wenhao Luo and Katia Sycara. 2018. Adaptive sampling and online learning

in multi-robot sensor coverage with mixture of Gaussian processes. In IEEE
International Conference on Robotics and Automation. 6359–6364.

[23] Kizito Masaba and Alberto Quattrini Li. 2023. Multi-robot adaptive sampling

based onmixture of experts approach to modeling non-stationary spatial fields. In

IEEE International Symposium on Multi-Robot and Multi-Agent Systems. 191–198.
[24] Pablo Moreno-Muñoz, Antonio Artés, and Mauricio Alvarez. 2021. Modular

Gaussian processes for transfer learning. In Advances in Neural Information
Processing Systems, Vol. 34. 24730–24740.

[25] Tanner Norton, Grant Stagg, Derek Ward, and Cameron K Peterson. 2023. De-

centralized sparse Gaussian process regression with event-triggered adaptive

inducing points. Journal of Intelligent & Robotic Systems 108, 4 (2023), 72.
[26] Tanner A Norton. 2022. Efficient and Adaptive Decentralized Sparse Gaussian Pro-

cess Regression for Environmental Sampling Using Autonomous Vehicles. Master’s

thesis. Brigham Young University.

[27] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan Sarker,

Tuan Nguyen Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raitoharju, and

Tomi Westerlund. 2020. Collaborative multi-robot search and rescue: Planning,

coordination, perception, and active vision. IEEE Access 8 (2020), 191617–191643.
[28] Carl Edward Rasmussen and Christopher KI Williams. 2006. Gaussian Processes

for Machine Learning (2 ed.). Cambridge, MA, USA: MIT Press.

[29] Maria Santos, Udari Madhushani, Alessia Benevento, and Naomi Ehrich Leonard.

2021. Multi-robot learning and coverage of unknown spatial fields. In IEEE
International Symposium on Multi-Robot and Multi-Agent Systems. 137–145.

[30] Jianwei Shi, Sameh Abdulah, Ying Sun, and Marc G Genton. 2025. Scalable Asyn-

chronous Federated Modeling for Spatial Data. arXiv preprint arXiv:2510.01771
(2025).

[31] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. 2014. On the lin-

ear convergence of the ADMM in decentralized consensus optimization. IEEE
Transactions on Signal Processing 62, 7 (2014), 1750–1761.

[32] Edward Snelson and Zoubin Ghahramani. 2005. Sparse Gaussian processes using

pseudo-inputs. Advances in Neural Information Processing Systems 18 (2005).
[33] Ethan Stump and Nathan Michael. 2011. Multi-robot persistent surveillance plan-

ning as a vehicle routing problem. In IEEE International Conference on Automation
Science and Engineering. 569–575.

[34] Varun Suryan and Pratap Tokekar. 2020. Learning a Spatial Field in Minimum

Time with a Team of Robots. IEEE Transactions on Robotics 36, 5 (2020), 1562–
1576.

[35] Michalis Titsias. 2009. Variational learning of inducing variables in sparse Gauss-

ian processes. In Artificial intelligence and statistics. PMLR, 567–574.

[36] Ang Xie, Feng Yin, Yue Xu, Bo Ai, Tianshi Chen, and Shuguang Cui. 2019. Dis-

tributed Gaussian processes hyperparameter optimization for big data using

proximal ADMM. IEEE Signal Processing Letters 26, 8 (2019), 1197–1201.
[37] Yue Xu, Feng Yin, Wenjun Xu, Jiaru Lin, and Shuguang Cui. 2019. Wireless

traffic prediction with scalable Gaussian process: Framework, algorithms, and

verification. IEEE Journal on Selected Areas in Communication 37, 6 (2019), 1291–

1306.

[38] Xubo Yue and Raed Kontar. 2024. Federated Gaussian Process: Convergence,

Automatic Personalization and Multi-fidelity Modeling. IEEE Transactions on
Pattern Analysis and Machine Intelligence 46, 6 (2024), 4246–4261.

	Abstract
	1 Introduction
	2 Gaussian Process Training
	2.1 Centralized Factorized GP Training (fact-GP)
	2.2 Decentralized GP Training

	3 Pseudo Inexact Proximal GP (pxp-GP) Training
	3.1 Centralized pxpGP training
	3.2 Decentralized pxpGP training

	4 Numerical Experiments and Results
	4.1 Hyperparameter Accuracy Estimate
	4.2 Prediction Performance
	4.3 Computational Analysis

	5 Conclusion
	References

