
Closed-Form Active Learning using Expected Variance Reduction
of Gaussian Process Surrogates for Adaptive Sampling

George P. Kontoudis and Michael Otte

Abstract— Adaptive sampling of latent fields remains a chal-
lenging task, especially in high-dimensional input spaces. In
this paper, we propose an active learning method of expected
variance reduction with Gaussian process (GP) surrogates using
a closed-form gradient. The use of closed-form gradient leads
the optimization to find better solutions with reduced compu-
tations. We derive the closed-form gradient for active learning
Cohn (ALC) using GP surrogates that are formed with the
separable squared exponential covariance function. Moreover,
we provide algorithmic details for the execution of the closed-
form ALC (cALC). Numerical experiments with multiple input
space dimensions illustrate the efficacy of our method.

I. INTRODUCTION

Autonomous systems have shown substantial improve-
ments in recent years, due to enhanced computational ca-
pabilities, development of software tools, and novel ma-
chine learning and control system techniques. Big data
is a ubiquitous area of research, yet regression in high-
dimensional input spaces remains an open research topic,
even with smaller dataset size. A powerful technique for
regression is the non-parametric Gaussian process (GP), but
with high computational complexity requirements [1]. An
approach to circumvent the complexity of GPs is to carefully
select the input points so that similar prediction accuracy
is achieved with much smaller dataset size. To this end,
active learning of GPs is used to facilitate sequential growing
of datasets and perform adaptive sampling [2]. However,
when there are no closed-form solutions to the optimization
of active learning, the use of approximation methods (e.g.,
finite difference method (FDM)) for gradient computation
are promoted. For low-dimensional input fields of D ≤ 2,
gradient approximation methods are efficient, yet in high
input space dimensions the approximation performs poorly.

Our aim in this work is to derive a closed-form solution for
the optimization of active learning Cohn (ALC) [3] to reduce
the iterations of active learning optimization, alleviate the
computations, and improve the prediction accuracy in high-
dimensional latent fields. Applications for realistic model
learning include at least 6D input spaces such as heli-
copters [4], underwater vehicles [5], and model identification
of pH process [6] to name few.

Related work: Although GPs produce accurate predictions,
they scale poorly with the dataset size n. In particular, the
training requires cubic computations O(n3) to invert an n×n
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covariance matrix multiple times during the optimization
and the prediction entails quadratic computations O(n2).
Although there are many efforts to reduce the computational
complexity [7], [8], the workload still remains high.

To avoid the use of large datasets with GPs, sequential
active learning with GP surrogates is an alternative approach
[9, Chapter 6]. Seo et al. [3] introduced the first active
learning methods using GP surrogates. In particular, the
authors proposed active learning MacKay (ALM) which
seeks to maximize the expected Shannon information gain
by selecting as next input the location of maximum vari-
ance of the GP surrogate, and active learning Cohn (ALC)
which aims to maximize the integrated deduced variance
by selecting as next input the location that if sampled will
reduce the overall variance of the GP surrogate model. Active
learning for adaptive sampling is applied to other areas, such
as computer experiments (or surrogates) [9], robotics [10],
manufacturing [11], and multi-agent systems [12].

Another criterion for active learning with GPs exploits the
expected Fisher information (ALFIE) [13]. ALFIE proposes
next input locations that improve the GP surrogate model ac-
curacy of hyperparameters, but not necessarily the accuracy
of predictions. Liu et al. [14] introduced an adaptive sam-
pling strategy that maximizes the expected prediction error
by taking into account the variance and bias. Recently [2]
surveyed adaptive sampling techniques with GP surrogates.

Bayesian optimization (BO) works similar to active learn-
ing (AL) methods by performing sequential adaptive sam-
pling, but has a different objective. In particular BO aims
to address global optimization problems [9], [15]. In other
words, BO focuses on sampling strategies that identify the
global minimum of unknown functions, while AL techniques
focus on improving the prediction accuracy or reducing
the uncertainty. This means that BO strategies may leave
complete areas of the input space unexplored which is highly
unlikely for most AL strategies. A data-driven methodology
for adaptive sampling by minimizing the cumulative regret
is presented in [10]. The methodology is evaluated with real
world experiments using an autonomous underwater vehicle
that collected water samples for marine ecosystem monitor-
ing. In [16] the authors employ the GP upper confidence
bound (GP-UCB) [17] to implement adaptive sampling with
GP surrogate models. The methodology is evaluated with
an unmanned surface vehicle that surveyed a region with an
altimeter to create a bathymetric map. A multi-agent adaptive
sampling methodology with mixture of GP experts for envi-
ronmental monitoring is presented in [12]. The authors used
the GP-UCB along with expected minimization and proposed



a centralized algorithm for a team of agents. In [18], an active
learning methodology is discussed using sparse GP models
and the online deterministic annealing (ODA). ODA allows
pseudo-inputs to adjust their locations at each learning step.

Contribution: The contribution of this paper is the deriva-
tion of the closed-form gradient for active learning of GP
surrogates using the separable squared exponential (SSE)
covariance function. Numerical experiments validate the ef-
ficiency of the optimization with closed-form gradient for
adaptive sampling in high-dimensional input spaces.

II. ACTIVE LEARNING WITH GAUSSIAN PROCESSES

In this section, we review Gaussian processes, active
learning, and state the problem.

A. Gaussian Processes
The observation model is described by,

y(x) = f(x) + ϵ,

where f(x) ∼ GP(0, kθ(x,x
′)) is a zero-mean GP with

covariance function kθ : RD × RD → R, x ∈ X ⊂ RD is
the input vector of D dimension, and ϵ ∼ N (0, σ2

ϵ ) is the
i.i.d. noise with variance σ2

ϵ . We select the general version of
the most common covariance function, the separable squared
exponential (SSE) which follows,

kθ(x,x
′) = σ2

f exp

{
−1

2

D∑
d=1

pxd − x′
dq

2

l2d

}
, (1)

where σ2
f is the signal variance and ld the length-scale

hyperparameter for the d-th direction of the input space. The
main difference of the SSE covariance function as compared
to the most commonly used squared exponential (SE) is that
a separate length-scale hyperparameter is assigned for each
input dimension, i.e., SSE has l1, . . . , lD length-scale hyper-
parameters while SE has just one length-scale hyperparam-
eter l. Thus, a GP with SSE covariance function can more
accurately predict anisotropic latent fields. The overall goal
is to predict a latent field f given data D = {X,y} with
X = {xi}ni=1 the inputs, y = {yi}ni=1 the outputs, and
n the number of observations. This is two-step probabilistic
learning, where first the hyperparameters θ are estimated and
then a prediction takes place at unknown inputs x∗.

1) Training: The first step is to train the hyperparameters
θ = (l1, . . . , lD, σf , σϵ)

⊺ ∈ Θ ⊂ RD+2 by maximizing,

log p(y | X) = −1

2

`

y⊺C−1
n y + log|Cn|+n log 2π

˘

,

where Cn = K + σ2
ϵ In is the covariance matrix with K =

kθ(X,X) ⪰ 0 ∈ Rn×n the semi-positive correlation matrix.
2) Prediction: After training the hyperparameters θ̂, the

posterior distribution of the location of interest x∗ ∈ RD

yields a multi-variate normal distribution p(y∗ | D,x∗) ∼
N (µ(x∗), σ

2(x∗)) with prediction mean and variance,

µfull(x∗) = k⊺
∗C

−1
n y, (2)

σ2
full(x∗) = k∗∗ − k⊺

∗C
−1
n k∗, (3)

where k∗ = kθ(X,x∗) ∈ Rn and k∗∗ = kθ(x∗,x∗) ∈ R.
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Fig. 1. Block diagram of active learning using GP surrogate models.

3) Complexity: The training step requires O(n3) compu-
tations for the inverse of the covariance matrix C−1

n . Note
that for every iteration of the training optimization a new
inverse of the covariance matrix has to be computed, because
the covariance matrix is a function of the optimizing param-
eter θ. The prediction mean (2) entails O(n) computations,
while the variance (3) yields and O(n2) computations.

B. Active Learning of Gaussian Processes

Since the training complexity of GPs is considerably
high O(n3), an alternative strategy is to carefully select the
observation inputs X by sequentially growing the size n
of the dataset D based on GP surrogate models. To this
end, we can achieve similar model estimation and prediction
accuracy with a significantly smaller dataset. We employ
an active learning strategy for the decision making of new
sampling inputs, as shown in Fig 1. We start with a small
initial dataset Dn to build the first GP surrogate model with
hyperparameters θ̂n. Next, we use an active learning criterion
to find the next input xn+1. Then, the autonomous system
is assigned to take an observation from the selected input
y(xn+1). After gathering the observation, a new dataset is
formed Dn+1 = Dn∪(yn+1,xn+1). Using Dn+1, a new GP
surrogate model is fitted which subsequently is used to find
the next input. The method terminates either until a condition
is met or after predetermined iterations.

We select the active learning Cohn (ALC) [3] criterion that
produces accurate predictions among other criteria [9]. The
ALC criterion is defined as the negative expected reduction
in variance over the input space J := −

∫
X ∆σ2(x) dx. In

other words, the criterion looks for an input that if observed,
the overall variance of the GP surrogate will be reduced.
Since this integral does not admit an analytical solution, the
ALC is approximated by a summation over a reference set,

xn+1 = arg min
x∈X

{
−
∫
X
∆σ2(x) dx

}
≈ arg min

x∈X

{
− 1

Nref

Nref∑
t=1

∆σ2(x,xt)

}

= arg min
x∈X

{
− 1

Nref

Nref∑
t=1

σ2
n(xt)− rσ2

n+1(x,xt)

}
(4)



where ∆σ2(x) = σ2
n(xt) − rσ2

n+1(x,xt) is the deduced
variance, rσ2

n+1(x,xt) is the approximated variance using
the estimated hyperparameters from the previous step θ̂n
and assuming that the candidate location x is added in
the dataset, xt is a reference input from the reference set
X ref ∈ RNref×D. The elements of the deduced variance
∆σ2(x,xt) take the form of,

σ2
n(xt) = kn − k⊺

n,tC
−1
n kn,t,

rσ2
n+1(x,xt) = kn − k⊺

n+1,tC
−1
n+1kn+1,t,

where kn = kθ(xt,xt) ∈ R, kn,t = kθ(xt,Xn) ∈ Rn,
kn+1,t = kθ(xt,Xn+1) ∈ Rn+1, Cn = kθ(Xn,Xn) ∈
Rn×n, Cn+1 = kθ(Xn+1,Xn+1) ∈ R(n+1)×(n+1)

with Xn+1 = [X⊺
n x] ∈ Rn+1. The covariance matrix

Cn+1 can be expressed as,

Cn+1 =

„

Cn kn+1

k⊺
n+1 kn+1,n+1

ȷ

,

where kn+1 = kθ(x,Xn) ∈ Rn and kn+1,n+1 =
kθ(x,x) ∈ R. The partitioned inverse identity is given as,

C−1
n+1 =

„`

C−1
n + ono

⊺
nvn

˘

on

o⊺
n v−1

n

ȷ

, (5)

where on = −v−1
n C−1

n kn+1 ∈ Rn and vn = kn+1,n+1 −
k⊺
n+1C

−1
n kn+1 ∈ R.

Proposition 1: [3] The ALC criterion takes the form of,

J(θ̂n;x,xt) = − 1

Nref

Nref∑
t=1

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

.

(6)

Proof. Direct use of the partitioned inverse identity (5) to (4).
A step-by-step proof is provided in [19, Appendix A.1]. ˝

A critical component of the ALC criterion (6) is the
selection of the reference set. The traditional Latin hyper-
cube sampling (LHS) is a space-filling sampling method
that shares the properties of a random uniform distribution
[20], [21]. Although there are multiple modern space-filling
sampling methods, LHS remains competitive [9], [22]. A
Latin hypercube is described by a matrix L ∈ Rq×r, where
each column colj{L}, j = 1, . . . , r consist of q-equally
levels of a permutation. The entries of the LHS matrix in
the input space [0, 1]D ⊂ RD are given by [XLHS]ij =
([L]ij + (q − 1)/2 + [u]ij)/q, where [u]ij ∼ U[0,1]. In our
case, the reference set is designed as a LHS, X ref = XLHS.

To optimize the ALC criterion (6) we employ naive
gradient descent,

x(k+1) = x(k) − γ
∂J(θ̂n;x,xt)

∂x

∣∣∣∣∣
x=x(k)

, (7)

where ∂J(θ̂n;x,xt)/∂x ∈ RD is the unknown gradient
and k the iteration index. There are more sophisticated
optimization algorithms that can be used, but our scope here
is to illustrate the efficiency of the closed-form solution in
simple terms. However, the proposed method can be used by
any first-order method (e.g., ADMM [23], [24]).

A common approach for gradient approximation is to
use the finite difference method (FDM) [25, Ch. 7]. To
approximate the gradient at an input x, the FDM evaluates
the ALC criterion at 2D + 1 inputs on a collocated grid,

∂J(θ̂n;x,xt)

∂[x]d
≈ J(θ̂n;x+ sd,xt)− J(θ̂n;x− sd,xt)

2s

where sd = [01:d−1 s 0d+1:D]⊺ ∈ RD is a vector of zeros
except of the d-th entry that contains the spacing parameter s.
For low-dimensional input spaces the approximation can be
efficient, provided that the spacing parameter s is properly
selected. However, for high-dimensional input spaces, FDM
becomes inexact and computationally demanding with 2D+1
evaluations. Thus, as the input dimension D increases, not
only the optimization becomes inaccurate, but also the algo-
rithm requires significant computations. To this end, our goal
is to derive a closed-form solution of the ALC criterion (6).

Problem 1: Find the closed-form expression of the gra-
dient for the ALC criterion ∂J(θ̂n;x,xt)/∂x to perform
closed-form optimization.

III. CLOSED-FORM ACTIVE LEARNING

In this section, we discuss the derivation of the closed-
form gradient for the optimization with the ALC criterion.
In addition, we present the proposed algorithm that uses the
closed-form solution for the active learning optimization. The
algorithm makes use of LHS to determine the reference set
and naive gradient descent for the optimization.

A. Active Learning Optimization

We first consider the case of deriving the closed-form
gradient for any covariance function and then we calculate
the analytical solution for the SSE covariance function (1)
which is our main contribution. The following Lemma pro-
vides the general form of the gradient regardless the selected
covariance function.

Lemma 1: The gradient of the ALC criterion
J(θ̂n;x,xt) (6) for all covariance functions yields,

∂J(θ̂n;x,xt)

∂x
=

∇xh(θ̂n;x)
∑Nref

t=1 gt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
−

h(θ̂n;x)
∑Nref

t=1 ∇xgt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
, (8)

where the elements h, g, ∇xh, ∇xgt are given by,

h(θ̂n;x) = kn+1,n+1 − k⊺
n+1C

−1
n kn+1, (9a)

∂h(θ̂n;x)

∂x
= −2

ˆ

∂

∂x
kθ(x,Xn)

˙⊺

C−1
n kn+1, (9b)

gt(θ̂n;x,xt) =
`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2
, (9c)

∂gt(θ̂n;x,xt)

∂x
= 2

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘

×
ˆ

∂

∂x
k⊺
n,tC

−1
n kn+1 −

∂

∂x
kθ(x,xt)

˙

.

(9d)



Proof. The objective function takes the form of,

J(θ̂n;x,xt) = − 1

Nref

Nref∑
t=1

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

=

∑Nref
t=1

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2

Nref
`

kn+1,n+1 − k⊺
n+1C

−1
n kn+1

˘

= −
∑Nref

t=1 gt(θ̂n;x,xt)

Nrefh(θ̂n;x)
. (10)

Next, we apply the quotient rule to obtain (8). Finally, (9a)
and (9c) follow simple gradient rules to result in (9b), (9d)
respectively. ■

After obtaining the general form of the gradient we derive
the closed-form solution of the ALC gradient, by using the
SSE covariance function in the following Proposition.

Proposition 2: The closed-form gradient of the ALC cri-
terion J(θ̂n;x,xt) (6) for the SSE covariance function (1)
to perform exact optimization using (7) yields,

∂J(θ̂n;x,xt)

∂x
=

∇xh(θ̂n;x)
∑Nref

t=1 gt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
−

h(θ̂n;x)
∑Nref

t=1 ∇xgt(θ̂n;x,xt)

Nrefh(θ̂n;x)2
, (11)

where the elements h, g, ∇xh, ∇xgt result in,

h(θ̂n;x) = kn+1,n+1 − k⊺
n+1C

−1
n kn+1, (12a)

∂h(θ̂n;x)

∂x
= 4

`

(1Dk⊺
n+1)⊙ (Λ−1∆X⊺)

˘

C−1
n kn+1,

(12b)

gt(θ̂n;x,xt) =
`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘2
, (12c)

∂gt(θ̂n;x,xt)

∂x
= −4

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘

Λ−1×
´

∆X⊺ `

(k⊺
n,tC

−1
n )⊺ ⊙ kn+1

˘

− kθ(x,xt)(x− xt)
¯

. (12d)

Proof. In addition to Lemma 1, we need to compute two
gradients ∇xh(θ̂n;x), ∇xgt(θ̂n;x,xt) with respect to (1).
Thus, ∇xgt(θ̂n;x,xt) from (9d) yields,

∂gt(θ̂n;x,xt)

∂x
= 2

`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘

×
ˆ

∂

∂x
k⊺
n,tC

−1
n kn+1 −

∂

∂x
kθ(x,xt)

˙

= 2
`

k⊺
n,tC

−1
n kn+1 − kθ(x,xt)

˘

(T1 − T2).
(13)

Note that the SSE covariance function (1) can also be
expressed in a vector form as,

kθ(x,xt) = σ2
f exp

{
−

D∑
d=1

(xd − xt,d)
2

l2d

}
= σ2

f exp
{
−(x− xt)

⊺Λ−1(x− xt)
}
, (14)

where Λ = diag(l21, l
2
2, . . . , l

2
D).

We start by computing the second unknown term T2
because we shall use the result for the computation of the
first unknown term T1. Hence, T2 using the vector form of
SSE (14) yields,

T2 =
∂

∂x
kθ(x,xt)

=
∂

∂x
σ2
f exp

{
−

D∑
d=1

(xd − xt,d)
2

l2d

}

=
∂

∂x
σ2
f exp

{
−(x− xt)

⊺Λ−1(x− xt)
}

= σ2
f exp

{
−(x− xt)

⊺Λ−1(x− xt)
}
×

∂

∂x
(−(x− xt)

⊺Λ−1(x− xt))

= −2kθ(x,xt)Λ
−1(x− xt). (15)

The first unknown term T1 takes the form of,

T1 =
∂

∂x
k⊺
n,tC

−1
n kn+1

=
∂

∂x
α⊺

t kθ(x,Xn)

=
∂

∂x

n∑
i=1

[αt]ikθ(x, [Xn]i)

=

n∑
i=1

[αt]i
∂

∂x
kθ(x, [Xn]i), (16)

where α⊺
t = k⊺

n,tC
−1
n ∈ Rn. Next, we employ the result

of the second unknown term T2 (15) as it appears in the
resulting partial derivative of the first unknown term T1 (16)
to obtain,

T1 =

n∑
i=1

[αt]i
∂

∂x
kθ(x, [Xn]i)

=

n∑
i=1

[αt]i(−2kθ(x, [Xn]i)Λ
−1(x− [Xn]i))

= −2

n∑
i=1

[αt]ikθ(x, [Xn]i)Λ
−1rowi{∆X⊺}

(17)

where ∆X = [x − [Xn]1, . . . ,x − [Xn]n]
⊺ ∈ Rn×D and

⊙ denotes the Hadamard product. Substitute T2 (15) and
T1 (17) into (13) to obtain (12d).

The gradient ∇xh(θ̂n;x) results in,

∂h(θ̂n;x)

∂x
= −2

ˆ

∂

∂x
kθ(x,Xn)

˙⊺

C−1
n kn+1

= 4[kθ(x, [Xn]1)Λ
−1row1{∆X⊺}, . . . ,

kθ(x, [Xn]n)Λ
−1rown{∆X⊺}]C−1

n kn+1

= 4
`

(1Dk⊺
n+1)⊙ (Λ−1∆X⊺)

˘

C−1
n kn+1,

(18)

where 1D = [1, . . . , 1]⊺ ∈ RD. Since (18) is identical
to (12d), this concludes the proof. ■



Algorithm 1 Closed-Form ALC (CALC)
Input: D, kθ , Nref, Nm-s, NGD-max, ninit, nmax, γ, η
Output: θ̂nmax , Dnmax

1: Xn ← LHS(ninit, D) ▷ Initial Dataset
2: yn ← sample(Xn)
3: θ̂n ← GPtraining(Xn,yn, kθ) ▷ Fit GP Surrogate
4: repeat ▷ Closed-Form ALC
5: X ref ← conditionedLHS(Nref, D,Xn)
6: Xm-s ← conditionedLHS(Nm-s, D,Xn,X ref)

7: {x(1)
i }

Nm-s
i=1 = Xm-s

8: for i = 1 to Nm-s do ▷ Multiple Starting Locations
9: repeat ▷ Compute ALC Gradient

10: h;∇h← hGradH(kθ , θ̂n,xi,Xn) (12a), (12b)
11: for t = 1 to Nref do
12: gt;∇gt ← gGrG(kθ , θ̂n,xi,Xn,X ref) (12c), (12d)
13: end for
14: ∇J ← gradJ(h,∇h,

∑Nref
t=1 gt,

∑Nref
t=1∇gt, Nref) (11)

15: x
(k+1)
i ← gradientDescent(x

(k)
i ,∇J, γ) (7)

16: if ∥x(k+1)
i − x

(k)
i ∥D< η then

17: Jn+1,i ← objJ(x
(k+1)
i , {gt}Nref

t=1, h,Nref) (10)
18: xn+1,i = x

(k+1)
i

19: break
20: end if
21: until NGD-max
22: end for
23: xn+1 ← minJ({xn+1,i}Nm-s

i=1 , {Jn+1,i}Nm-s
i=1 ) ▷ Next Input

24: yn+1 ← sample(xn+1)
25: yn = yn ∪ yn+1; Xn = Xn ∪ xn+1 ▷ New Dataset
26: θ̂n ← GPtraining(Xn,yn, kθ)
27: until nmax
28: return θ̂nmax ,Dnmax

Lemma 1 is the general version of Proposition 2, where
gradients (9b), (9d) are computed for the SSE covariance (1)
as (12b), (12d).

B. Closed-Form ALC (cALC) Algorithm

The main routine of cALC is provided in Alg. 1. The
method starts by computing the space-filling inputs using
LHS and then samples the corresponding inputs to obtain
the initial dataset D = {Xn,yn}. Using D, a GP surrogate
model is fitted to train the hyperparameters θ̂n. Next, the
algorithm proceeds to the active learning part. The first steps
of cALC is to design a reference set X ref and a multi-
start location dataset Xm-s. Note that for both datasets the
conditionedLHS routine is used which operates similarly
to LHS, but conditioned on the inputs of the previous LHS
designs. The multi-start location dataset Xm-s is computed
to start the gradient descent from multiple locations, as the
objective function (6) is non-convex on x and local minima
need to be avoided. Next, our contribution is highlighted in
brown font. More specifically, the closed-form gradient is
computed according to Proposition 2 (Alg. 1-[lines 10–14]).
Then, a gradient step is taken with step γ following (7). If
the L-D norm of the difference between the new input x(k+1)

i

and the previous input x
(k)
i is below the η threshold, then

the optimization is terminated and the value of the ALC
criterion for each multi-start location Jn+1,i is computed.
Otherwise, the algorithm iterates for a predetermined number
of iterations NGD-max. Next, we compare the minima we
found from all the multi-start locations {Jn+1,i}Nm-s

i=1 to

identify the minimum with the lowest objective and we
assign the corresponding element to the next input xn+1

(Alg. 1-[line 23]). Subsequently, the next input is sampled
to obtained the new observation yn+1 and form the new
dataset. Using the new dataset a new GP surrogate model is
fitted to obtain the new trained hyperparameters. The closed-
from ALC (Alg. 1-[lines 4–26]) iterates for a predetermined
number of iterations nmax to output the hyperparameters of
the GP surrogate model θ̂nmax and the final dataset Dnmax .

IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to
illustrate the efficiency of the proposed method. We use
synthetic functions of different dimensions: i) generative GP
with θ = (l1 = 1.9, l2 = 0.6, σf = 2.1, σϵ = 0.1)⊺ as
hyperparameters and D = 2; ii) Hartmann function with
D = 3; and iii) Hartmann function with D = 6. For (i)
the initial dataset has ninit = 45 size and Nm-s = 3 multi-
start locations; for (ii) the initial dataset has ninit = 60
size and Nm-s = 5 multi-start locations; and for (iii) the
initial dataset has ninit = 90 size and Nm-s = 6 multi-
start locations. We perform nmax = 100 active learning
iterations for all test functions. We compare four methods:
a) GP with random assignment of inputs that follow a
uniform distribution (GP-random); b) GP with LHS for input
selection (GP-LHS); c) ALC with finite difference method
for gradient approximation (fALC); and d) ALC with closed-
form computation of gradient (cALC) which is the proposed
method. For methods (a) and (b) the size of the dataset is
n = 145 on test function (i), n = 160 on test function (ii),
and n = 190 on test function (iii). For methods (c) and (d)
the size of the datasets are identical, but are progressively
growing (i.e., n = ninit +nmax) and the reference set has size
Nref = 100.

All inputs are normalized to unit dimensions [0, 1]D. We
add iid noise that corresponds to 10% of the standard devia-
tion of the ground truth output values, i.e., ϵ ∼ N (0, σ2

ϵ ) with
σϵ = 0.1 std(f(X)). We set the gradient descent step to γ =
5 and the convergence tolerance to η = 10−4. For every test
function, we perform 100 Monte Carlo replications to remove
the effect of random assignment of data. We assess the
proposed method with three metrics, the prediction RMSE,
the average iterations for one ALC loop, and the average
required time for one ALC loop. The prediction RMSE fol-
lows RMSE = [

∑nS
s=1(µ(xs,∗)− y(xs,∗))2]

1/2,with nS the
number of test points. We conduct all numerical experiments
in MATLAB using GPML [26] on an Intel Core i9-10900K
CPU at 3.70 GHz with 64.0 GB memory RAM.

Best prediction accuracy (2D): In Fig. 2, we present
the evaluation of the four methods for the generative GP
function of D = 2. Since GP-random is a batch method,
it is not evaluated with respect to iterations and time. The
proposed method cALC outperforms all other methods on
prediction RMSE, revealing that the closed-form gradient
leads to more accurate predictions. The fALC is competitive,
while GP-random produces higher RMSE values. To this end,
active learning methods (fALC and cALC) are efficient when



Fig. 2. Evaluation of generative GP function with input dimension D = 2.

Fig. 3. Evaluation of Hartmann function with input dimension D = 3.

Fig. 4. Evaluation of Hartmann function with input dimension D = 6.

compared to GP-random. Although cALC is more accurate
than fALC, the latter requires less iterations and lower time
for finding the next sample location. We will show in the
next comparisons that this difference in iteration number and
time-per-loop diminishes as we increase the input dimension.

Best prediction accuracy & improved computations (3D):
In Fig. 3, we demonstrate the efficiency of the four methods
for the Hartmann test function of D = 3. We observe that
the proposed method (cALC) outperforms all other methods
in terms of prediction accuracy (RMSE). In addition, the
iterations of fALC are still less than that of cALC, but
their difference is decreased. However, time-per-loop still
remains more efficient with the fALC method with similar
difference to the previous case of D = 2. Next, we show that
the proposed cALC method improves the time and iteration
requirements as we increase the input space dimension.

Best prediction accuracy with similar computations (6D):
In Fig. 4, we show the four methods for the Hartmann test
function of D = 6. Similarly to test functions with D = 2, 3
input dimensions, the proposed cALC outperforms all other
methods in prediction accuracy (RMSE), but this time the
median value difference is even higher between cALC and
fALC. This reveals that the closed-form gradient (cALC)
improves the prediction accuracy of active learning in higher
dimensional input spaces when compared to approximated
gradient methods with finite differences (fALC). In contrast
to 2D and 3D input dimensions, the iteration number and
time-per-loop perform similarly for fALC and cALC in the
6D input space. This means that with high input dimensions,
fALC and cALC require similar time-per-loop and iterations.
As a result, the proposed method (cALC) not only improves
the prediction accuracy, but also requires similar iteration
number and time-per-loop to fALC for 6D input spaces.

V. CONCLUSION

We propose an active learning method with Gaussian
process surrogates using closed-form gradient (cALC). The
closed-form gradient derivation is emphasized with a detailed
proof. The proposed cALC produces the most accurate
predictions among all compared methods for all input di-
mensions. As the input dimension increases to 6D, cALC not
only produces more accurate results, but also requires similar
computations. Ongoing work is emphasizing on new active
learning methods that balance exploration and exploitation.
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