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Abstract— This paper presents a multi-agent motion planning
algorithm for human-like navigation in dynamic environments.
A cognitive hierarchy approach is used to model the motion of
autonomous agents. We discuss potential levels of rationality
and introduce a method to predict them in real-time. The
rationality level prediction is achieved by observing the kinody-
namic distance (KD) of other agents. An offline training phase
is required to learn the maximum KD from multiple boundary
value problems. Collision avoidance is ensured by introducing
artificial obstacles in the environment based on the predicted
levels of rationality. The motion planning is then carried out
using RRT-QX. The effectiveness of the bounded rational motion
planning algorithm is illustrated in simulations.

I. INTRODUCTION

Recent developments in artificial intelligence have signif-
icantly advanced the capabilities of mobile robots. However,
navigation remains a key problem for autonomous vehicles,
while obstacle avoidance and safe path planning are consid-
ered necessary for applications of robotics [1]. Safe motion
planning is difficult in dynamic environments, where the
environment changes over time. This is particularly true in
multi-agent environments, where an autonomous robot must
navigate past other agents both with unknown destinations
and path planning frameworks depending on their level of
rationality. To avoid these other agents, it is crucial to quickly
identify other agents in the environment and to classify their
motion planning methodology. The robot must also be able
to adjust these classifications online to account for changes
in other agent’s motions, and must accommodate online path
replanning to utilize these observations to avoid collisions.
Our focus in this work is on exploring how varying levels of
rationality affect the path planning of agents navigating an
environment, as well as identifying these levels of rationality
in autonomous robots with only knowledge of its motion.

Related work: Rapidly-exploring Random Tree (RRT) [2],
is a sampling-based path planning algorithm to navigate
high-dimensional static environments. RRT is probabilisti-
cally complete. It is expanded upon with RRT*, which is
shown to be asymptotically optimal in static environments
[3]. The main drawback of RRT* is the computational
complexity that does not allow for rapid replanning in
dynamic environments. An extension of RRT* for dynamic
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environments, referred to as RRTX, is introduced in [4]. This
algorithm provides asymptotically optimal motion planning
and replanning in dynamic environments. However, this ap-
proach requires the dynamics of the system. Following this,
RRT-QX is proposed in [5] as a sampling-based algorithm
for navigating an unpredictable dynamic environment using
a model-free Q-learning controller. This approach, however,
does not account for multi-agent environments.

In a multi-agent environment, it is critical to model the
motion of other agents in order to optimize path planning
and ensure safety. This is primarily looked at through the lens
of robots sharing environments with one or several humans,
who are presumed to all have similar planning techniques
[6]. In [7], human motion in an environment is estimated
using an intent-driven model, yet does not consider a denser
environment with additional agents necessitating further path
replanning for some agents present, nor does it consider
agents with differing levels of intelligence. Human motion
in an environment was also modelled in [8] by considering
each human as a player in a non-zero sum game, and
learning from human motion examples. This was then used to
guide an agent in [9]. Similarly, this work does not consider
online motion past additional obstacles, or with agents with
varying levels of intelligence. Robot navigation through an
environment with numerous human agents is considered
in [10], where human motion is modeled with interacting
Gaussian processes. This work considers the influence of
multiple other agents, but all still are assumed to operate
with the same level of intelligence. A model for avoiding
collisions accounting for varying levels of intelligence and
cooperation is proposed in [11], but in this work agents are
capable of communicating to jointly avoid a collision.

The kinodynamic motion problem is introduced in [12].
The kinodynamic distance (KD) of an agent is defined
in [13] as the distance between an agent and its planned
path. Bounded rationality is presented in [14], referring to
agents making decisions with imperfect information of their
environment. Following from bounded rationality, cognitive
hierarchy is a method of describing the relative intelligence
of multiple players in a game [15] which is also extended
for cyber-physical systems [16], but has not been applied to
a multi-agent motion planning problem.

Contributions: The contributions of this is threefold. First,
we consider and propose models of agent motion planning
behavior in a multi-agent environment for several levels of
agent rationality. Second, we implement these models on
agents using a path-planning algorithm for online navigation
through dynamic environments to measure effectiveness in



obstacle avoidance. Lastly, we employ an algorithm using
each agent’s KD to predict the level of rationality.

II. PROBLEM FORMULATION

Consider an environment containing N agents with dif-
ferent capabilities. Each agent can be described as a linear-
time-invariant system,

Sbl‘(t) = Awl(t) + Bui(t)7 mZ(O) =T;0, 1t 2 0

where x;(t) € X € R™ is the measurable state vector, u;(t) €
U < R™ is the control input, and A € R*"*™ and B € R**™
are plant and input matrices, respectively, for each agent ¢ =
1,..., N. Let us define the difference of an agent’s current
state x;(t) and its goal state x; , as Z;(t), and define,

We seek to guide an agent ¢ in the environment from its
initial state, x; o, to an individual goal state x; ;. We employ
a finite horizon cost function,

T

J(if@o, Uiy to, T) = (,ZS(T)‘F% J (CEIM51+UJRU1) dT, (2)

to

where ¢(T) = (1/2)z](T)P(T)z;(T) is the terminal
cost with a symmetric, positive-definite final Riccati matrix
P(T) e R™*"™ > 0,and M € R*™*" > 0, R e R™*™ > () are
user-defined matrices to penalize the state and control input,
respectively. Our goal is to obtain the optimal control u} (Z, t)
such that J(Z; 0; ul;to, T) < J(Zs,0;ui;to, T) is satisfied for
all z;. To this end, we formulate the minimization problem
J(Zi0;ufsto, T) = min,, J(Z;0;ui;to, T) subject to (I).
Subsequently, the value function gets the form of,

T
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Assumption 1. The matrix pair (A, B) is controllable and
the pair (M'/2, A) is detectable. ]

In addition, consider an agent’s closed dynamic obstacle
space as Aops; < X. The free space of the environment
Xiree,i» conversely, is defined as the complement of the
obstacle space Xjree,i = X'\ Xobs,i- In a dynamic environment,
both the obstacle space and free space evolve in time. Define
AXobs,i = f(Xobs,i;t) as the variation of the obstacle space
in the environment, where f(-) is unknown.

To minimize its cost, the agent will efficiently search
the environment by randomly constructing a space-filling
tree, and use it to find its global path m;(z; 0k, Zigk;t) €
R2(KExn) for k = 1,..,K where K € N is the number
of boundary value problems (BVPs) in the path. The path
7 (24,0,k, Ti,g.%) includes the initial states X; o = x;0% for
all ¢, where X; o € RExn < Xiree,i» as well as the goal
states X; o = x; ¢ for all 7, where & ; € RE*xn Kiree,i-
As the obstacle space AXqs; evolves in time, m; adapts
using a goal-to-start replanning, and K changes accordingly.
RRTX [17] also provides an initial graph G; = (V;, E;),
where V; is the initial set of nodes, and FE; is the initial

set of edges. The global path 7; in the graph is given by
Ti = (V1,0 BE10) < Gi

We shall next connect the game-theoretic formulation to
the motion planning problem. For each BVP provided by
RRTX for an agent i, we seek to drive the system to the
goal state. For the k-th BVP, define the initial distance as
the distance from the initial state x; o 5 and goal state z; ¢ 1,

Do(Zi0,k) = [|zi,06 — Tigkll = |[Zi0.kl], VEio € R, (4)
and the relative distance as,

D(z;) = [|lz; — mi g k|| = [|Zil, Vi 0 € R

Since the  game-theoretic = problem  utilizes a
free-final state, x;(T') will approximate the desired state z; ,
to reduce the total navigation time [18]. We assume that z; o
is reached when the agent reaches the close neighborhood
around z; .. In other words, the agent is considered to
have reached its final state when D(Z;) < pDo(Zi0k)
where p € R is a user-defined window to determine the
neighborhood. Upon reaching this goal state neighborhood,
the agent continues to its (k + 1)-th BVP.

When RRTX calculates a collision-free path m,;, it selects
only straight lines as edges in the set £;. However, the robot’s
true trajectory is subject to both kinodynamic constraints
(1) and the optimal performance constraints (2)). The actual
trajectory thus deviates from the chosen path ;, which
may result in collisions when the agent ¢ passes closely
by obstacles. We reduce this risk by adopting an obstacle
augmentation strategy. Let us define the KD as,

_ |Zi 0,k X Ti]
Dok

to find the difference between the agent’s current location
and the straight path determined by the pair (z; 0k, Zi g k)-
We then use this distance to form an augmented obstacle
space X"®. based on the maximal KD DXi»

obs,? rob,i°
aug .
Xopsi = Xobs,i @ Xiin,i (6)

where Xy, ; is the space of a compact set bounded by a circle
centered on the origin with a radius of RX® = As RKI? g

Drob,i(i‘z) : ) (5)

rob,7* rob,i
updated, the augmented obstacle space X, . is recalculated,

and RRT* will accordingly plan a collision-free path further
from each obstacle with all newly-invalid nodes and their
descendants pruned.

Each agent is operating without knowledge of the other
agents’ planned motions, and instead limited to its own
observations of other agents’ states. Therefore, each agent’s
motion planning is a problem with bounded rationality. Each
agent ¢’s knowledge of the environment is limited to the
location of obstacles and other agents within a perception
radius r around x;(t) and constructs an individual obstacle
space Xops i(t) using the locations of perceived obstacles
as well as the other perceived agents. To ensure optimal
motion planning and to mitigate the risk of colliding with the
other agents making up its obstacle space, each agent also
forms a predicted obstacle space /’\?01,5,1» which is added to the
obstacle space, considered by the motion planning algorithm,



to form XL, = X5, U Ay s This is the obstacle space
ultimately used to construct a path using RRTX. To form
this predicted obstacle space, each agent adopts a level-
k rationality cognitive hierarchy approach to anticipate the

motion of the other agents.

Definition 1. Level-k rationality is a cognitive hierarchy
model of strategies where an agent using a level-k strategy
assumes all other agents employ a level-(k — 1). O

Our goal is to describe the potential levels of rationality
present in each agent in the environment, and then to develop
an algorithm to reliably estimate the level of each agent in
the environment by observing its motion.

III. MODEL-FREE FORMULATION
The Hamiltonian associated with (I) and (3) is,

. GV*(?V* . 1 =T . T .

H(Zy; ui; Er ) = Z(xi Mz; + u] Ru;)
ov*T ov* _
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Since the system (|1]) is linear, the optimal value function can
be written in the form of,

V*(Z;5t) = (1/2)z] P(t)z;, (7)
where P(t) € R™*™ > 0 is the symmetric positive-definite
Riccati matrix calculated by,

—P(t) = P(t)A+ ATP(t)+ M —P(t)BR™'BTP(t). (8)
Therefore, the optimal control is computed as,

—~R7'BTP(t)z;, VYt

ui (2it) =

Let us now define the Q-function for an agent ¢ as
Qi(Ziyusst) = V*(Zy5t) + %(@TM@ + u] Ru;) o
+ZT P(t)(AZ; + Bu;) + %@TP(t):fi,
where Q,(Z;;u;;t) € R is an action-dependent value. We
next define the augmented state U; := [z] u]]|T € R("+™)

(2
to express (9) in compact form as,

O uist) = 307 | 320

Qu®)] ;7 . 1rs
o ]U, = 3UT QiU
(10)

where Qu(t) = P(t) + P(t) + M + P()A + ATP(t),
Qu(t) = Qu(t) = P@)B, and Q,, = R, with Q; :
R+ x R(rtm)x(ntm) . R By using the stationar-
ity condition 0Q;(Z;;u;;t)/du; = 0, we find a model-
free expression of the optimal control ) as, uf(Z;;t) =
arg min,, Q;(Zi; ui;t) = —Qu' Qux (1)

Lemma 1. The minimization problem Qf(Z;;ul;t) =
min,,, Q;(Z;;us;t) results the same solutlon o (@)

Qi (zy;ul;t) = V*(Z45t) from (1), where P(t) > 0 (€.
Proof. The proof follows from [13]. |

Each agent shall use an actor/critic structure in order to
approximate its optimal control for each BVP [19].

IV. COGNITIVE HIERARCHY AND MOTION PLANNING
FRAMEWORK

A. Levels of rationality

Let us consider the scenario where the agents navigate
in a bounded space X with no perfect rationality. To this
end, we consider the cognitive hierarchy theory of “level-k”
reasoning (Definition E]) Under this framework, each agent
is assigned an individual time-invariant rationality level of
k. An agent operating with level-k reasoning assumes that
every other agent in the environment operates at level-(k—1).
By predicting the strategies resulting from different levels of
rationality and observing the motions of other agents, each
agent ¢ forms a predicted obstacle space at time ¢, XAobsﬂ'(t).
This predicted obstacle space is incorporated into the agent’s
total perceived obstacle space used for motion planning. To
determine the levels of rationality, we presume each agent
in the environment seeks to minimize its cost-to-go to its
individual goal state while avoiding collisions.

B. Level-0 Policy

To describe higher levels of rationality, we find the level-
0, or “anchor,” policy. The anchor can be defined as either
a random approach or a naive approach where the agent is
unable to detect any other agents. As random navigation is
often ineffective, we consider the naive approach. A level-
0 agent 7 will ignore the other agents in the environment,
and construct the obstacle space X, ; using solely perceived
non-agent obstacles. In other words, fobsyi = {&}. Then, the
agent plans its motion to its goal state using RRT* which
seeks the optimal path according to,

min
T(24,0,Ti,5)EXtree,i

T (T30, Tig) = dr(zi0,Tig), (11)
constrained by the dynamics (I}), where d is the length of
the path between z; o and x; ;. An example of the predicted
behavior of a level-0 agent ¢ in a multi-agent environment

with no other obstacles is shown in Fig. [T}(a).

C. Level-1 Policy

Similarly to a level-0 agent, a level-1 agent j traversing the
environment seeks to drive to its goal state by constructing its
obstacle space Xps ;, and conducting online motion planning
to find the optimal path 7*(z;0,%;4) using RRTX. Level-
1 agents additionally seek to predict the motion of other
agents in the environment, and use this to construct the
predicted obstacle space fob& ;(t) to form their total obstacle
space A0’ ;. In this case, the agent 7 anticipates level-0
behavior from all other agents. A level-1 agent is not aware
of the path that a level-0 agent may be following, as the
bounded rationality of the problem dictates that no agent
knows another’s current or future goal states. Thus, the level-
1 agent will instead need to avoid collision by avoiding all
possible collisions with level-0 agents.

Consider the distance between a level-0 agent % and level-1
agent j as D;;(z;, ;) = ||z; —x;||. Let us define a collision
between ¢ and j as occurring at time ¢ if D;;(x;(t), z;(t)) <
deol, where do,; € RT is a user-defined distance based
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goal while avoiding an agent . (c) A level-2 agent k travelling to its goal while presuming that another agent j will avoid a possible collision.

on the radii of the agents to represent when the agents
have physically collided. We assume that agent j is familiar
with the kinodynamic constraints of agent ¢, and with the
kinodynamic constraints present on agent i. Hence, agent j
constructs the potential future state space X, which consists
of all states agent ¢ can reach within a given time-frame ;.
Agent 7 then generates obstacles over this space, augments
them to account for the maximal KD Dﬁﬁ’ j» incorporates
them into the predicted obstacle space -)eobs,j, and finds the
optimal policy,

min

o da(®0,75),
(25,0,%5,8)€(Xtree,j \ Xobs, ;)

T (25,0, %j.6) =
constrained by (I). This space is rapidly updated by j as i
traverses the environment to ensure its accuracy.

Theorem 1. Consider a level-1 agent j that is familiar
with the kinodynamic constraints of a different agent 1. In
addition, the level-1 agent j can observe that agent’s 1 state,
velocity, and trajectory. Then, agent j can plan a motion that
is guaranteed to avoid a collision with 1.

Proof. Consider a collision between the agents ¢ and j. A
collision necessitates that at some time ¢, D(xz;(t), z;(t)) <
dco1- However, because of the predicted obstacle space of
agent j /'?Obs’j, the free space of agent j Xjc; contains
no potential states of j #; such that D(X;,#;) < deo1, and
therefore j’s motion planning will not enter these points.
Thus, the theorem is true by contradiction. |

Following Theorem [T} the level-1 agent plans an asymp-
totically optimal path minimizing its path length through the
environment while ensuring that it safely avoids all other
agents present. An example of this is shown in Fig. [TH(b).

D. Higher Level Policies

A level-2 agent k assumes level-1 behavior from all other
agents, and must choose its predicted obstacle space /'\A’ob&k
such that it avoids all collisions with these agents. It then
seeks to find the optimal path 7*(zy0, %) similarly to
agents of a lower level. However, Theorem |I| states that if
all other agents in the environment are level-1 agents, then
their motion planning will avoid collisions regardless of the
actions of agent k. Thus, to find the optimal possible path,
the agent k chooses fobs,k = {@} in order to maximize
Xiree, k- It then finds the optimal policy,
min

dr (17%07 x’%g)-
T(Zk,0,Tk,g5)EXfree, k

T (Th,05 Thyg) =

Theorem 2. Consider a level-0 agent i and level-2 agent k
placed in identical environments with a shared initial state
and goal state xo and x4, respectively. Then, both agents
have the same optimal path.

Proof. Consider the optimal path of agents ¢ and &, where
m; # . This implies that ming (;, 2, )exn...; dr(T0, Tg) #
Ml (20 2, )Xo O (T0, Tg). However, as A58, = XE,
then Xfeei = Xiree,k. Thus, there exists no optimal path 7*
such that m* € Xprec,is ¢ Xiree,k OF Vice versa. Therefore, the

theorem is true by contradiction. [ ]

An example of level-2 path planning is shown in the third
image of Fig. [I] The level-2 policy being identical to the
level-0 policy also indicates that the level-3 policy is identical
to the level-1 policy. This alternating pattern repeats for all
higher levels of rationality. Therefore, to model all levels
of rationality of each agent, we only need to consider two
levels: level-0 and level-1.

E. Motion Planning Framework

The motion planning structure consists of five stages: 1)
dynamic planning with RRTX; ii) Q-learning; iii) terminal
state evaluation; iv) obstacle augmentation; and v) predictive
obstacle avoidance. The four stages (i)-(iv) are similar to
those used in RRT-QX. The key difference in the implemen-
tation is the fifth stage, where the agent, is operating with
an appropriate level of rationality, incorporates the potential
motion of other agents into its obstacle space. This adjusted
implementation is shown in Algorithm [T}

V. LEVEL OF RATIONALITY ESTIMATION

We next propose a framework to estimate the level of
rationality of each agent in an environment. We consider
an environment containing N agents, each driven with the
proposed framework with either level-0 or level-1 rationality.
Note that, all higher levels can be expressed by level-O and
level-1. In addition, we consider an algorithm observing the
environment that is only familiar with each agent’s state,
velocity, and trajectory at any time .

In order to identify the level of rationality of each agent,
we consider the tendencies of each level of rationality.
Since level-1 agents react online to the potential motion
of agents to avoid collisions, they need to often rapidly
replan in congested environments. Conversely, level-0 agents
rarely need to replan their trajectory. Considering this, the
algorithm first seeks to estimate the series of BVPs that
each agent 7 followed through the environment as part of its
path 7;. Then, agent ¢ compares the maximum KD during



Algorithm 1 Bounded Rational RRT-Q%

Input: 7' - finite horizon; At - resolution; M, R - cost weight
matrices; P(T) - fixed Riccati matrix; p - admissible window; Zgoal
- goal state; xstart - Start state; Xons - obstacle space; X, - states
of other agents; X' - state space; L - level of rationality; ts - agent
range time-frame

Qutput: @ - control

I: Qa, ¢ < Stability(M, R)

2: X:ll)lsg < Xobs;

3: Dr0b7D1}r(<i?) — 0 k<1

4: while x40 # = do

5: if L =1 then > Predictive obstacle avoidance
6: Xobs «— Potent;’LalStates(Xa,L,ts);

7: ggg «— Aobs + Xobs

8: end if

9: while NoCollision do

10: Dy «InitialDistance(zo) @);

11: for t € T do )

12: if Dioy > DK then > Obstacle augmentation
13: i‘;ﬁ «— Diop; )

14: X;;Sg « Augment (XL, Df;rf,) (eb;

15: end if

. > Q-learning

16: We < Critic(M, R, At, ac, T, )

17: Q; < EstimateQ(We, T, 1)

18: Wa «— Actor(Qi,aa,:E)

19: % «— Control(W,,T)
20: return ;
21: Diob < KinodynamicDist(zo,k, Z, Do) ();
22: if D < pDo then > Terminal state evaluation
23: Lo,k < I(t);
24: k—k+1;
25: break;
26: end if
27: end for

28: end while > Dynamic planning
29: g,ﬂ' <« RRTX(X,X:I:Sg7wstart,$goal);
30: end while

each of these BVPs with the expected maximum KD. If
the measured maximum KD of agent j is larger than the
predicted maximum KD, then agent 7 needs to significantly
adjust its planned path online, which in turn implies that
agent ¢ has level-1 rationality. Conversely, if this never
occurs, it implies that ¢ is level-0.

A. BVP Estimation

Every agent 7 in the environment constructs a global path
composed of a series of BVPs m; (0 k, Ti g k;t) € R2(Kxn)
for kK = 1,---, K. As the agent traverses the k-th BVP
of the path, it moves to the k + 1-th BVP after entering
the pre-defined neighborhood of the goal state x; .. We
seek to estimate the start and end location of each BVP to
estimate the path. Moreover, since each BVP is a straight
line, an agent is considered to be travelling on one BVP so
long as its trajectory does not significantly change over time.
In addition, BVP endpoints can be estimated by observing
where the agent’s trajectory changes over a sufficiently short
period of time. To this end, we mark the initial state x; ¢
as the first BVP endpoint. We then denote the trajectory of
agent ¢ at time ¢ as ¥;(t) € R™. We observe the agent online,

and note the change of its trajectory over a short time frame
t., and calculate the angle of change,

T/i(t) ) T]i(t — ta)
llos (@)1 H[i(t = ta)l]
If the angle of change is found to exceed a user-chosen value
7, then x;(t) is marked as a BVP endpoint. Note that v must
be sufficiently large to avoid falsely interpreting an agent’s
slight trajectory adjustments due to kinodynamic constraints
as a BVP endpoint. Increasing this threshold also means that
some BVP endpoints will be missed, but the level estimation
algorithm is searching primarily for endpoints resulting from
online replanning to avoid new obstacles, which will result
in significant trajectory changes.

After finding these endpoints, we measure the KD of the
agent over each BVP, and compare it to the expected KD of
the BVP. The expected KD of an agent over a BVP increases
with the length of the BVP, and therefore if the measured KD
exceeds the expected KD, it implies that the estimated BVP
is shorter than it was originally planned to be. This in turn
implies that the agent’s trajectory significantly adjusted from
what was originally expected, and that the agent in question
is avoiding collisions and therefore is a level-1 agent. If this
never occurs, it implies that the path was not significantly
altered, and the agent in question is a level-0 agent.

0;(t) = cos™*

12)

VI. SIMULATION RESULTS

For our simulation, we consider four agents placed in
an environment with several environmental obstacles. Each
agent is represented by the system (I)), with plant and input
matrices identical to those used in the simulation in [5] with
x = [z; y; &; y;| as the state. The translations of each
agent ¢ are denoted as z;, y;, the velocities as z;, y;, and
the accelerations as Z;, ¢;. The inputs are forces denoted
as f1, fo. We choose the finite horizon T = 10s, and the
admissible window p = 0.9. The user-defined matrices for
the cost function are M = 1014, and R = 215. For the level
estimation algorithm, we choose the BVP angle threshold
~v = 18°, the angle measurement time frame ¢, = 0.2s, and
the KD error threshold d = 0.05. The critic and actor gains
are set as a. = 90 and o, = 1.2.

Two simulations at different time frames are depicted in
Fig. [2] and Fig. 3] We choose one agent to operate at our
proposed level-1 rationality (shown in green), and the rest
agents at level-0 (shown in gold). The generating artificial
obstacles are shown in blacks squares, We then assign to each
agent an initial state and a goal state in the environment,
and allow our level estimation algorithm to determine the
level of rationality of each agent in the environment. We
repeated this experiment with a variety of initial and goal
states for each agent. Over these simulations, we found that
all agents were able to consistently avoid collision with the
other agents. Our level estimation algorithm was also able to
very consistently recognize the level-1 agent regardless of its
starting position, as well as correctly recognize the level-0
agents as such despite their nonlinear movement around the
environment’s other obstacles. A video demonstration can be
found at: youtu.be/7/nBL1g67RKE.


https://youtu.be/7nBL1g67RKE
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Fig. 2. The navigation of a level-1 agent is illustrated in gray. The traversed
path, indicated by the blue line, is replanned online to avoid both newly-
detected environmental obstacles as well as other agents, shown in gold.
The level-1 agent’s current goal is indicated by the green token.

VII. CONCLUSION

This paper proposes the Bounded Rational RRT-QX, an
approach to model the motion of agents in a multi-agent en-
vironment using cognitive hierarchy, and employ the levels of
rationality to implement collision-free kinodynamic motion
planning. For the kinodynamic motion planning we use a
model-free Q-learning controller and a dynamic path plan-
ning algorithm to navigate in unpredictable dynamic human-
like environments. For the level of rationality prediction we
propose an algorithm that efficiently predicts each agent’s
level by observing all agents in the environment. The results
reveal an efficient multi-agent kinodynamic motion planning
algorithm with no collisions for any agent. The principles
discussed in this paper could also be adapted for use in
a three-dimensional environment, where level-1 agents are
allowed many additional trajectories to avoid collision.

Ongoing work focuses on the design of an adaptive motion
planning algorithm for a robot that responds in real-time to
perceived levels of rationality in other agents.
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