
RRT-QX: Real-Time Kinodynamic Motion Planning in Dynamic

Environments with Continuous-Time Reinforcement Learning

George P. Kontoudisa, Kyriakos G. Vamvoudakisb, and Zirui Xuc

aMaryland Robotics Center, University of Maryland, College Park, MD, USA;
bGuggenheim Sch. of Aerospace Eng., Georgia Institute of Technology, Atlanta, GA, USA;
cDepartment of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

ARTICLE HISTORY

Compiled May 2022

ABSTRACT
This chapter presents a real-time kinodynamic motion planning technique for linear
systems with completely unknown dynamics in environments with unpredictable
obstacles. The methodology incorporates: i) a sampling-based algorithm for path
planning and fast replanning; and ii) continuous-time Q-learning for the solution of
finite-horizon optimal control problems in real-time. The path planner produces a
set of waypoints that dynamically change in time according to the unpredictably ap-
pearing obstacles, while the Q-learning controller is responsible for optimal waypoint
navigation. The efficacy of the methodology has been validated with simulations.

1. Introduction

Substantial improvements in artificial intelligence, computing resources, and software
tools have enabled tremendous capabilities to mobile robots and autonomous systems.
The problem of navigation is a core topic in robotics and autonomous vehicles, as
the majority of robotic applications require safe path planning and obstacle avoidance
(Yang et-al., 2018). Ideally, a solution to this problem considers collision-free navi-
gation in dynamic environments, computationally affordable algorithms for real-time
implementation, and optimal control strategies. Such a challenging problem should be
addressed in the continuous-time domain, as naive discretization of the system dynam-
ics and of the policy space disregards critical information and leads to discretization
errors (Lillicrap et al., 2015). In addition, dynamic environments impose time con-
straints to the motion planning problem, because collision-free navigation is only en-
sured for limited time frames (Nägeli, Alonso-Mora, Domahidi, Rus, & Hilliges, 2017).
The latter necessitates a finite-horizon formulation to the optimal control problem.
Moreover, system modeling is a challenging task with inevitable model simplifications
and inaccuracies (Berkenkamp & Schoellig, 2015). Thus, a combination of optimal and
adaptive control is needed. Finally, even if the system dynamics assumed to be known,
the finite-horizon optimal control problem requires extensive offline computations to
solve the Hamilton-Jacobi-Bellman equation (Lewis, Vrabie, & Syrmos, 2012).

Our aim in this work is to present a real-time kinodynamic motion planning tech-
nique for dynamic environments with unpredictably appearing obstacles. We address

CONTACT G. P. Kontoudis. Email: kont@umd.edu



the finite-horizon optimal control problem with completely unknown system dynamics.
The unknown model is considered to be continuous-time linear time-invariant.

Motion planning in high-dimensions has been addressed with probabilistic road-
maps (PRM) (Kavraki, Svestka, Latombe, & Overmars, 1996) and rapidly-exploring
random trees (RRT) (Kuffner & LaValle, 2000; LaValle, 1998). These algorithms are
probabilistically complete, but not optimal. The work of Karaman & Frazzoli (2011)
proposed a variation of RRT based on rewiring, namely RRT?. The latter was proved
to probabilistically complete and asymptotically optimal. These methods do not in-
corporate realistic system dynamics and instead use simple dynamics.

The problem of kinodynamic motion planning is introduced in (Donald, Xavier,
Canny, & Reif, 1993). Kinodynamic RRT (LaValle & Kuffner, 2001) employs the dy-
namical model of the system, but the proposed control strategy is selected either
randomly or by testing multiple controls and selecting the best. LQR-trees (Tedrake,
Manchester, Tobenkin, & Roberts, 2010) is a feedback motion planning algorithm that
utilizes optimization tools. This method requires significant computations to solve the
Riccati equation. A combination of linear quadratic regulator (LQR) and RRT? is
proposed in (Perez, Platt, Konidaris, Kaelbling, & Lozano-Perez, 2010). In particular,
the authors formulate a free-final-state, infinite-horizon optimal control problem with
minimum energy cost and a heuristic extension of the RRT?. This algorithm incorpo-
rates the system dynamics and enforces extensive offline computations. Kinodynamic
RRT? (Webb & Van Den Berg, 2013) is an asymptotically optimal motion planner for
known linear time-invariant systems. The authors formulate a finite-horizon optimal
control problem of fixed-final-state and free-final-time with minimum fuel-time perfor-
mance. However, kinodynamic RRT? yields an open-loop controller and the computa-
tion of the continuous reachability Gramian requires significant offline computation.
The authors in (Li,Cui, Li, & Xu, 2018) proposed a near optimal kinodynamic motion
planning technique, that is named NoD-RRT. The methodology utilizes neural net-
work approximation and RRT. NoD-RRT achieved reduced computational complexity
and enhanced performance for nonlinear systems, comparing to RRT and kinody-
namic RRT?. Yet, their framework is model-based and requires offline computations.
In (Kontoudis & Vamvoudakis, 2019a), the authors presented RRT-Q?, an online,
model-free kinodynamic motion planning framework which computes approximately
optimal control policies for motion planning in static environments. RRT-Q? combines
continuous-time Q-learning, RRT?, and local replanning in relatively small spaces. The
latter has been robustified in (Kontoudis & Vamvoudakis, 2019b). In (Chiang, Hsu,
Fiser, Tapia, & Faust, 2019), the authors combined reinforcement learning (RL) and
RRT for kinodynamic motion planning. RL is used to learn obstacle avoiding policies
and supervised learning to predict the time to reach a state and guide the growth
of the tree. However, this algorithm requires significant offline computations. All the
aforementioned motion planning techniques can only deal with static environments.

Randomized kinodynamic motion planning in dynamic environments is introduced
in (Hsu, Kindel, Latombe, & Rock, 2002). In (Bruce & Veloso, 2002), the execution-
extended RRT is presented for real-time replanning. This algorithm stores selective
nodes in a waypoint cache and performs an iterative, adaptive cost search on the for-
ward tree, towards efficient replanning in dynamic domains. Dynamic RRT (Ferguson,
Kalra, & Stentz, 2006) trims the invalid leafs of the tree when a collision occurs due
to new obstacle configuration and grows the rest tree from goal to the current config-
uration of the robot. The authors in (Otte & Frazzoli, 2014, 2016) present the RRTX,
an asymptotically optimal motion planning algorithm for both static and dynamic
environments. RRTX has the ability to perform quick online replanning. In (Allen &

2



Pavone, 2019), the authors proposed an online kinodynamic motion planning algorithm
which was experimentally validated in dynamic indoor environments. The technique
requires the model of the system and its efficiency depends on the offline training
of reachability sets. Kontoudis, Xu, & Vamvoudakis (2020) combined event-triggered
Q-learning and RRTX to address the kinodynamic motion planning problem in dy-
namic domains. In addition, cognitive hierarchy along with RRTX and Q-learning has
been used to multi-robot motion planning in human-crowded environments Netter,
Kontoudis, & Vamvoudakis (2021).

Optimal control (Lewis, Vrabie, & Syrmos, 2012) can be efficiently merged with
adaptive control (Ioannou & Sun, 2012) by employing principles of reinforcement
learning (Sutton, & Barto, 2018), and approximate dynamic programming (Busoniu,
Babuska, De Schutter, & Ernst, 2010; Lewis, Vrabie, & Vamvoudakis, 2012; Powell,
2007; Vrabie, Vamvoudakis, & Lewis, 2013). In (Watkins & Dayan, 1992), a solution to
Markovian systems was proposed with the use of discrete-time Q-learning. The authors
in (Mehta & Meyn, 2009), presented a connection of Q-learning with nonlinear control
based on the observation that the Q-function is related to the Hamiltonian. A solution
to the model-free, infinite horizon optimal control problem for continuous-time linear
time-invariant systems is presented in (Vamvoudakis, 2017).

The remainder of this paper is organized as follows. In Section 2 we formulate the
problem, Section 3 discusses the optimal control problem, Section 4 provides a model-
free formulation based on Q-learning, and Section 5 presents the structure of RRT-Q?.
Section 6 illustartes the efficiency of our method through simulations and Section 7
concludes the chapter.

The notation here is standard. The set of real numbers is denoted R, the set of all
positive real numbers R+, the set of n×m real matrices Rn×m, and the set of natural
numbers N. The notation (·)ᵀ and (·)−1 denote the transpose and inverse operator re-
spectively. The superscript ? denotes the optimal solutions of a minimization problem.
The notations λ(A) and λ(A) denote the minimum and maximum eigenvalues of the
matrix A respectively. We denote vech(A), vec(A), and mat(A) the half-vectorization,
vectorization, and matrization of a matrix A respectively. The Minkowski sum of two
sets is denoted ⊕ . A positive and semi-positive definite A matrix is denoted by A � 0
and A � 0 respectively. The notation U ⊗ V denotes the Kronecker product of two
vectors and ‖ · ‖ denotes the L2 norm.

2. Problem Formulation

Let a linear time-invariant continuous-time system,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,

where x(t) ∈ X ⊆ Rn is the state vector, u(t) ∈ Rm is the control input, and A ∈ Rn×n,
B ∈ Rn×m are the unknown plant and input matrix respectively. To drive our system
from an initial state x0 to a final state x(T ) = xr, we define the difference between
the state x(t) and the state xr, as our new state x̄(t) := x(t) − xr. The final time is
denoted by T ∈ R+. The new system yields,

˙̄x(t) = Ax̄(t) +Bu(t), x̄0 = x0 − xr, t ≥ 0. (1)

3



Consider an energy cost function,

J(x̄;u; t0, T ) = φ(T ) +
1

2

∫ T

t0

(x̄ᵀMx̄+ uᵀRu) dτ, ∀t0, (2)

where φ(T ) = 1
2 x̄

ᵀ(T )P (T )x̄(T ) is the terminal cost with P (T ) = PT ∈ Rn×n � 0 the
final Riccati matrix, M ∈ Rn×n � 0 and R ∈ Rm×m � 0 user defined matrices that
penalize the states and the control input respectively.

Assumption 1. The unknown pairs (A,B) and (
√
M , A) are controllable and de-

tectable respectively.

We are interested in finding an optimal control u? such that it satisfies
J(x̄;u?; t0, T ) ≤ J(x̄;u; t0, T ), ∀x̄, u, which can be described by the minimization
problem J(x̄;u?; t0, T ) = minu J(x̄;u; t0, T ) subject to (1). In other words, we want to
obtain the optimal value function V ? that is defined by,

V ?(x̄; t0, T ) := min
u

(
φ(T ) +

1

2

∫ T

t0

(x̄ᵀMx̄+ uᵀRu) dτ

)
, (3)

but without any information about the system dynamics.
Consider the known obstacle closed space Xobs ⊂ X . For multiple obstacles, the

obstacle space is defined Xobs :=
⋃No

l=1Xobs,l, where No ∈ N is the total number of

obstacles. Thus, the free space is an open space Xfree = (Xobs)
{ = X\Xobs. In dynamic

environments, the obstacle space Xobs and the free space Xfree evolve in time. We define
the unpredictable variation of the obstacle space as ∆Xobs := f(Xobs; t), where f(·) is
unknown, and ∆Xobs = {∅} indicates no obstacle changes in the environment. We use
RRTX for path planning. RRTX constructs a graph G = (V,E), where V is the set of
nodes and E is the set of edges. As a slight abuse of notation, we will refer to nodes
v ∈ V as states x ∈ X . The planner provides an optimal sub-tree that contains the
planned path π(x0,k, xr,k; t) ∈ R2(K×n), where k = 1, . . . ,K, K ∈ N is the number of
boundary value problems (BVPs). Each BVP is described by the initial and desired
state (x0,k, xr,k). Since the obstacle space Xobs evolves in time, π is also a function of
time, and thus K also change accordingly.

We seek to drive the system to a desired state, without any knowledge of the system
dynamics. For the k-th BVP, let us define the initial distance as the distance from the
initial state x0,k to the desired state xr,k,

D0(x̄0,k) := ‖x0,k − xr,k‖ = ‖x̄0,k‖, ∀x̄0 ∈ Rn, (4)

and the relative distance to xr,k,

D(x̄) := ‖x− xr,k‖ = ‖x̄‖, ∀x̄ ∈ Rn. (5)

Since we address the free-final state finite-horizon optimal control problem, the con-
troller at final time T approximates the desired state xr, i.e., x(T ) converges to a
close neighborhood around xr (Bryson, 1975; Lewis, Vrabie, & Syrmos, 2012). In or-
der to reduce the navigation time, we assume that the desired state is reached when
the system enters the close neighborhood of the desired final state xr. That is to say,
when D(x̄) ≤ ρD0(x̄0,k), where ρ is the user-defined admissible window, the robot is

4



considered to have reached the desired state xr,k. Subsequently, the system proceeds
to the next (k + 1)-th problem.

Moreover, since the system dynamics are unknown, when RRTX calculates the
collision-free path π, it can only adopt straight lines as edges in E. However, the
actual trajectory of the robot is curved due to the kinodynamic constraints (1) and
the optimal performance (2). Thus, the actual trajectory deviates from the nominal
trajectory provided by the RRTX, and collisions may occur in near-to-obstacle areas.
To address this issue, we introduce an obstacle augmentation strategy. More specifi-
cally, the algorithm computes at every time instance the kinodynamic distance,

Drob(x̄) :=
|x̄0,k × x̄|
D0,k

, (6)

which represents present the current deviation of the robot’s current position from the
nominal trajectory, i.e. corresponding straight path determined by (x0,k, xr,k). Then,
an augmented obstacle space X aug

obs is obtained from,

X aug
obs := Xobs ⊕Xkin, (7)

where Xkin is the space of a compact set bounded by a circle with radius the maximum
kinodynamic distance Dkin

rob. When the maximum kinodynamic distance is updated,
RRTX provides a new path based on the the newest augmented obstacle space (7).

3. Finite-Horizon Boundary Value Problem

Let us define the Hamiltonian with respect to (1) and (3) as,

H(x̄;u;λ) :=
1

2
(x̄ᵀMx̄+ uᵀRu) + λᵀ(Ax̄+Bu), ∀x̄, u, λ.

In order to solve the finite-horizon optimal control problem (3), we use the sweep
method (Bryson, 1975) and we set λ = ∂V ?

∂x̄ . Thus, the Hamilton-Jacobi-Bellman
(HJB) equation yields,

−∂V
?

∂t
=

1

2
(x̄ᵀMx̄+ uᵀRu) +

∂V ?

∂x̄

ᵀ

(Ax̄+Bu), ∀x̄.

Since our system (1) is linear, we write the value function in a quadratic form as,

V ?(x̄; t) =
1

2
x̄ᵀP (t)x̄, ∀x̄, t ≥ t0, (8)

where P (t) ∈ Rn×n � 0 is the Riccati matrix that solves the differential Riccati
equation,

−Ṗ (t) = M + P (t)A+AᵀP (t)− P (t)BR−1BᵀP (t). (9)

Hence, the optimal control gets the form of,

u?(x̄; t) = −R−1BᵀP (t)x̄, ∀x̄, t. (10)

5



Theorem 3.1. Suppose that there exists a P (t) � 0 that satisfies the Riccati equation
(9) with a final condition given by PT, and the control obtained by,

u(x̄; t) = −R−1BᵀP (t)x̄. (11)

Then, the control input (11) minimizes the cost given in (3), and the origin is a globally
uniformly asymptotically stable equilibrium point of the closed-loop system.

Proof. The proof follows from (Kontoudis & Vamvoudakis, 2019a).

4. Model-Free Formulation

Let us now define the following Q-function as,

Q(x̄;u; t) :=V ?(x̄; t) +H(x̄;u;
∂V ?

∂t
,
∂V ?

∂x̄
)

=V ?(x̄; t) +
1

2
x̄ᵀMx̄+

1

2
uᵀRu+ x̄ᵀP (t)(Ax̄+Bu) +

1

2
x̄ᵀṖ (t)x̄, (12)

where Q(x̄;u; t) ∈ R is an action-dependent value.
Next, we define the augmented state U := [x̄ᵀ uᵀ]ᵀ ∈ R(n+m) to express the Q-

function (12) in a compact form as,

Q(x̄;u; t) =
1

2
Uᵀ

[
Qxx(t) Qxu(t)
Qux(t) Quu

]
U =:

1

2
UᵀQ̄(t)U, (13)

where Qxx(t) = Ṗ (t) + P (t) + M + P (t)A + AᵀP (t), Qxu(t) = Qᵀ
ux(t) = P (t)B, and

Quu = R, with Q : Rn+m × R(n+m)×(n+m) → R. Using the stationarity condition
∂Q(x̄;u; t)/∂u = 0, we find a model-free expression of the optimal control u? (10) as,

u?(x̄; t) = arg min
u
Q(x̄;u; t) = −Q−1

uuQux(t)x̄. (14)

Lemma 4.1. The value of the minimization Q?(x̄;u?; t) := minuQ(x̄;u; t) is the same
with the optimal value V ? in (8) of the minimization problem (3), where P (t) � 0 is
the Riccati matrix found from (9).

Proof. The proof follows from (Kontoudis & Vamvoudakis, 2019a).

4.1. Actor/Critic Network

A critic approximator is designed to approximate the Q-function in (13) as,

Q?(x̄;u?; t) =
1

2
Uᵀ

[
Qxx(t) Qxu(t)
Qux(t) Quu

]
U :=

1

2
vech(Q̄(t))ᵀ(U ⊗ U),

where vech(Q̄(t)) ∈ R
(n+m)(n+m+1)

2 . The half-vectorization operation exploits the sym-
metric properties of the Q̄ matrix to reduce the computations. Then, by setting

6



ν(t)ᵀWc := 1/2vech(Q̄(t)) we obtain,

Q?(x̄;u?; t) = W ᵀ
c ν(t)(U ⊗ U),

where Wc ∈ R
(n+m)(n+m+1)

2 is the critic weight estimator vector, and ν(t) ∈
R

(n+m)(n+m+1)

2
× (n+m)(n+m+1)

2 is a radial basis function of appropriate dimensions that de-
pends explicitly on time. Since the ideal weight estimates are unknown, we employ an
adaptive estimation technique (Ioannou & Sun, 2012) to approximate the Q-function,

Q̂(x̄;u; t) = Ŵ ᵀ
c ν(t)(U ⊗ U), (15)

where Ŵcν(t) := 1
2vech( ˆ̄Q(t)).

By using a similar way of thinking for the actor we assign µ(t)ᵀWa := −Q−1
uuQux(t)

to write,

u?(x̄; t) = W ᵀ
a µ(t)x̄,

where Wa ∈ Rn×m is the actor weight estimator vector, µ(t) ∈ Rn×n is a radial basis
function of appropriate dimensions that depends explicitly on time. The actor by using
current weight estimates yields,

û(x̄; t) = Ŵ ᵀ
a µ(t)x̄. (16)

Remark 1. The approximation errors of the critic and the actor approximators de-
scribed in (15) and (16) respectively, vanish as the system (1) is linear. To this end,
we exploit the whole space and not just a compact set. With this structure, the ap-
proximations will converge to the optimal policies, and hence the superscript ?, that
denotes the ideal values of the adaptive weight estimation, render similarly with the
optimal solutions.

Next, we adopt an integral reinforcement learning approach (Vrabie, Vamvoudakis,
& Lewis, 2013) that let us express the Bellman equation as,

V ?(x̄(t); t) = V ?(x̄(t−∆t); t−∆t)− 1

2

∫ t

t−∆t
(x̄ᵀMx̄+ u?ᵀRu?) dτ, (17)

V ?(x̄(T );T ) =
1

2
x̄ᵀ(T )P (T )x̄(T ), (18)

where ∆t ∈ R+ is a small fixed value, i.e. resolution. By following Lemma 4.1, where
we proved that Q?(x̄;u?; t) = V ?(x̄; t), we can write (17) and (18) as,

Q?(x̄(t);u?(t); t) = Q?(x̄(t−∆t);u?(t−∆t); t−∆t)− 1

2

∫ t

t−∆t
(x̄ᵀMx̄+ u?ᵀRu?) dτ,

Q?(x̄(T );T ) =
1

2
x̄ᵀ(T )P (T )x̄(T ).

Next, we define the errors ec1
, ec2
∈ R, that we seek to drive to zero by appropriately

7



tuning the critic weights of (15). Define the first critic error ec1
as,

ec1
:= Q̂(x̄(t); û(t); t)− Q̂(x̄(t−∆t); û(t−∆t); t−∆t)

+
1

2

∫ t

t−∆t
(x̄ᵀMx̄+ ûᵀRû) dτ

= Ŵ ᵀ
c

(
ν(t)(U(t)⊗ U(t))− ν(t− T )(U(t−∆t)⊗ U(t−∆t)

)
+

1

2

∫ t

t−∆t
(x̄ᵀMx̄+ ûᵀRû) dτ, (19)

Intrinsic dynamics are included in (19), which can be evaluated by taking the time
derivative,

ṗ = x̄ᵀ(t)Mx̄(t)− x̄ᵀ(t−∆t)Mx̄(t−∆t) + ûᵀ(t)Rû(t)− ûᵀ(t−∆t)Rû(t−∆t).

The second critic error is defined by,

ec2
:=

1

2
x̄ᵀ(t)P (T )x̄(t)− Ŵ ᵀ

c ν(t)(U(t)⊗ U(t)).

The actor approximator error ea ∈ Rm is defined by,

ea := Ŵ ᵀ
a µ(t)x̄+ Q̂−1

uu Q̂ux(t)x̄,

where Q̂uu, Q̂ux will be obtained from the critic weight matrix estimation Ŵc. By em-
ploying adaptive control techniques (Ioannou & Sun, 2012), we formulate the squared-
norm of errors as,

K1(Ŵc, Ŵc(T )) =
1

2
‖ec1
‖2 +

1

2
‖ec2
‖2, (20)

K2(Ŵa) =
1

2
‖ea‖2. (21)

4.2. Learning Methodology

The weights of the critic estimation matrix are obtained by applying a normalized
gradient descent algorithm in (20),

˙̂
Wc = −αc

∂K1

∂Ŵc

= −αc

(
1

(1 + σᵀσ)2
σec1

+
1

(1 + σᵀ
f σf)2

σfec2

)
, (22)

where σ(t) := ν(t)(U(t)⊗ U(t) − U(t − ∆t)⊗ U(t − ∆t)), σf(t) = ν(t)(U(t)⊗ U(t)),
and αc ∈ R+ is a constant gain that specifies the convergence rate. The critic tuning
(22) guarantees that as ec1

→ 0 and ec2
→ 0 then Ŵc →Wc and Ŵc(T )→Wc(T ).

Similarly, the weights of the actor estimation matrix Ŵa by applying a gradient
descent algorithm in (21) yield,

˙̂
Wa = −αa

∂K2

∂Ŵa

= −αax̄e
ᵀ
a , (23)

8



where αa ∈ R+ is a constant gain that specifies the convergence rate. The actor
estimation algorithm (23) guarantees that as ea → 0 then Ŵa →Wa.

For the theoretical analysis we introduce the weight estimation error for the critic

W̃c := Wc−Ŵc and for the actor W̃a := Wa−Ŵa, with W̃c ∈ R
(n+m)(n+m+1)

2 , W̃a ∈ Rn×m.
The estimation error dynamics of the critic yields,

˙̃Wc = −αc
1

(1 + σᵀσ)2
σσᵀW̃c,

and the estimation error dynamics of the actor becomes,

˙̃Wa = −αax̄x̄
ᵀµ(t)ᵀW̃a − αax̄x̄

ᵀ µ(t)Q̃xuR
−1

‖1 + µ(t)ᵀµ(t)‖2
, (24)

where Q̃xu := mat(W̃c[
n(n+1)

2 + 1 : n(n+1)
2 + nm]).

Lemma 4.2. For any given control input u(t) ∈ U the estimation error dynamics of
the critic (24) have an exponentially stable equilibrium point at the origin as follows,

‖W̃c‖ ≤ ‖W̃c(t0)‖κ1e−κ2(t−t0),

where κ1, κ2 ∈ R+. In order to establish exponential stability, we require the signal

∆(t) := σ(t)
1+σ(t)ᵀσ(t)) to be persistently exciting (PE) at [t, t+TPE], where TPE ∈ R+ the

excitation period, if there exists a β ∈ R+ such that βI ≤
∫ t+TPE

t ∆(τ)∆ᵀ(τ)dτ , where
I is an identity matrix of appropriate dimensions.

Proof. The proof follows from (Vamvoudakis, 2017).

The main stability theorem for the Q-learning framework is provided below.

Theorem 4.3. Consider the linear time-invariant continuous-time system (1), the
critic, and the actor approximators given by (15), and (16) respectively. The weights of
the critic, and the actor estimators are tuned by (22), and (23) respectively. The origin
with state ψ = [x̄ᵀ W̃ ᵀ

c W̃ ᵀ
a ]ᵀ is a globally uniformly asymptotically stable equilibrium

point of the closed-loop system and for all initial conditions ψ(0), given that the critic
gain αc is sufficiently larger than the actor gain αa and the following inequality holds,

0 < αa <
2λ(M +QxuR

−1Qᵀ
xu)− λ(QxuQ

ᵀ
xu)

δλ

(
µ(t)R−1

‖1+µ(t)ᵀµ(t)‖2

) , (25)

with δ a constant of unity order.

Proof. The proof follows from (Kontoudis & Vamvoudakis, 2019a).

5. Kinodynamic Motion Planning Framework

The motion planning structure comprises of four stages: i) dynamic planning; ii) Q-
learning; iii) terminal state evaluation; and iv) obstacle augmentation, as shown in

9



Online

Terminal State Evaluation

xr

ed

x0

Online

Obstacle Augmentation

Drob

Dynamic Planning

-

+ -

Yes

xr

Obstacle
Augmentation

Condition

Yes

Online

Q-Learning

x

Q^

Actor

Critic

u^

ur

System

Initial
Distance

Current
Distance

Kinodynamic
distance

RRT

X obs
aug

X

Online

Condition

Figure 1. The motion planning structure consists of four stages. The algorithm runs clockwise, starting from

the dynamic planning.

Fig. 1. The path planning is assigned to RRTX which provides all the waypoints for
navigation in a dynamic environment. Next, the online Q-learning and the terminal
state evaluation are implemented. In parallel, we monitor the kinodynamic distance
to augment the obstacle space. The implementation is presented in Algorithm 1

Dynamic Planning : The RRTX contains not only the sub-tree—which stores the
desired path—but also the search-graph of the initial planning process. In this way, the
algorithm reuses the search-graph for a rewiring cascade whenever the domain changes.
Consequently, information is transferred rapidly throughout the tree in the modified
environment. Moreover, RRTX maintains an ε-consistent1 graph, which guarantees the
quality of existing paths and allows for quick replanning. The neighborhood size at
each node remains constant by selecting neighbors to maintain the runtime at each
iteration. Therefore, RRTX can provide a quick reaction in unpredictable dynamic
environments as well as high-quality new paths.

Obstacle Augmentation: Since the model of the system is unknown, it is assumed
that the robot traverses straight paths, given the waypoints from the RRTX. In addi-
tion, optimality in terms of path planning usually indicates narrow distance between
the obstacles and the path. In our case, kinodynamic constraints (1) as well as the opti-
mal performance (2) result in traversing curved paths, instead of the assumed straight-
line paths. Thus, there exists a deviation from the assumed straight-line path and the
traversed path of the robot. This deviation of paths may result in unsafe navigation
with collisions. To address this problem, we introduce the concept of kinodynamic
distance and follow an obstacle augmentation strategy (Kontoudis & Vamvoudakis,
2019a,b). Therefore, instead of considering the physical shape of the obstacles, their
augmented shape is taken into account. The augmented obstacle space X aug

obs is com-
puted trough the Minkowski sum (7) based on the maximum kinodynamic distance
Dkin

rob. Whenever new obstacles are detected, the obstacle augmentation precedes the
replanning process to avoid collision.

1ε-consistency means that the cost-to-goal value is within ε of the minimum of sum distance-to-neighbor and

the neighbor’s cost-to-go.

10



Algorithm 1 RRT-QX

Input: T - finite horizon; ∆t - resolution; M , R - cost weight matrices; P (T ) - fixed Riccati
matrix; ρ - admissible window; xgoal - goal state; xstart - start state; Xobs - obstacle space; X
- state space
Output: û - control

1: αa, αc ← Stability(M,R) (25);
2: X aug

obs ← Xobs;

3: Drob, D
kin
rob ← 0; k ← 1;

4: while xgoal 6= x do
5: while NoCollision do
6: D0 ←InitialDistance(x0) (4);
7: for t ∈ T do
8: if Drob > Dkin

rob then . Obstacle augmentation
9: Dkin

rob ← Drob;
10: X aug

obs ← Augment(Xobs, D
kin
rob) (7);

11: end if
12: Ŵc ← Critic(M,R,∆t, αc, x̄, û) (22); . Q-learning

13: Q̂ ← EstimateQ(Ŵc, x̄, û) (15);

14: Ŵa ← Actor(Q̂, αa, x̄) (23);

15: û← Control(Ŵa, x̄) (16);
16: return û;
17: Drob ← KinodynamicDistance(x0,k, x̄, D0) (6);
18: if D ≤ ρD0 then . Terminal state evaluation
19: x0,k ← x(t);
20: k ← k + 1;
21: break;
22: end if
23: end for
24: end while
25: G, π ← RRTX(X ,X aug

obs , xstart, xgoal); . Dynamic planning
26: end while

Q-Learning : At every k-pair of waypoints (x0,k, xr,k) of the planned path π, the
proposed control law (16) is implemented to drive the system. The critic is used to
assess the policy, and the actor to perform the policy update. The critic approximates
the Q-function according to (15), where Ŵc are the critic parameters that can be
computed online by (22). The actor approximates the optimal control policy according

to (16), where Ŵa are the actor parameters following the tuning law (23).
Terminal State Evaluation: A distance metric is employed to evaluate the terminal

condition. At every ∆t we compute the initial distance D0 (4) and the relative distance
D (5). When the relative distance drops below an admissible portion of the initial
distance D ≤ ρD0, then the algorithm assigns the current state as the new initial
state x0,k+1 = x(t) and proceeds to the next (k + 1)-pair of waypoints.

Remark 2. The obstacle augmentation is a conservative strategy, because we are
using the maximum kinodynamic distance to limit the free space. This means we are
reserving space based on the worst case scenario that may appear only few times during
the navigation. However, since we tackle the model-free problem without offline trials,
that is a feasible methodology to ensure collision-free navigation.

11



6. Simulations and Results

In this section, we demonstrate the efficiency of the proposed motion planning tech-
nique in a dynamic environment with unpredictably appearing obstacles. We consider
the continuous-time linear time-invariant system,

ẋ
ẏ
ẍ
ÿ

 =


0 0 1 0
0 0 0 1
−.5 0 −1.125 0
0 −.5 0 −1.125



x
y
ẋ
ẏ

+


0 0
0 0
.025 0

0 .025

[f1

f2

]
, (26)

where x, y is the translation, ẋ, ẏ the velocity, and ẍ, ÿ the acceleration along the x and
y axes respectively. The inputs forces are denoted f1, f2. The system in (26) represents
an autonomous rover. More details about the parameters of (26) are discussed in
(Kontoudis & Vamvoudakis, 2019a).

The autonomous rover has full state feedback and limited perception range. Thus,
an accurate configuration of the obstacles can be detected only in the perception
range. The environment is completely unknown and consists of obstacles that appear
throughout the navigation. Since the environment is unknown, we suppose there are
no obstacles other than the obstacles detected in the perception range. The proposed
method measures the kinodynamic distance Drob and updates the augmented obstacle
space X aug

obs at every time instance ∆t. We set the finite horizon as T = 10 s for every
run and the admissible window ρ = 0.15. The user-defined matrices are M = 10I4, and
R = 2I2. The final Riccati matrix is P (T ) = 0.5I4. We set the actor and critic gains
as αc = 90, and αa = 1.2 respectively, by following (25). The resolution is ∆t = 0.05 s.

The initial values of the critic estimator vector Ŵc and the actor estimator vector
Ŵa are randomly selected, except of the last three elements of Ŵc that need to be
non-zero. These elements are the {Ŵc}19:21 = Quu values that is inverted in (14). Note
that there are three elements, because the user defined matrix R is symmetric and we
are also employing the half-vectorization operation in (15). For the implementation of
the RRTX we use the package in (Otte, 2016).

The simulation is shown in Fig. 2, and a demonstrating video is available online2.
The environment is a square with corners (−20,−20) and (20, 20) in meters. The start
state is xstart = (−15,−15, 0, 0) and the goal state xgoal = (17, 17, 0, 0). The perception
range is omnidirectional with radius of 8 m and is illustrated with a red dashed circle.
The traversed path of the rover is shown in a red solid line and the RRTX path in
a white line. The gray solid lines represent the search-tree of RRTX. In every BVP,
the rover moves toward the red dot, which denotes the desired state. The initial shape
of the obstacles is denoted by blue polygons and the corresponding augmentation in
green. The colored background represent the cost-to-go from every location to the
final goal. Note that the cost-to-go is an underestimated value, as it is calculated
with respect to straight-line paths. The maximum kinodynamic distance Dkin

rob, the
current kinodynamic distance Drob, and the cost-to-go of RRTX are shown in the left,
right and bottom colorbars, respectively. The autonomous rover successfully avoids the
obstacles throughout the navigation in an unpredictable dynamic environment using
the proposed kinodynamic motion planning technique.

2https://youtu.be/vNvOMTzxd0c.

12



Figure 2. Various time frames of the autonomous rover collision-free navigation in an unpredictable dynamic

environment.

7. Conclusion

This paper proposed a real-time kinodynamic motion planning methodology for un-
predictable dynamic environments. More precisely, we introduced a Q-learning control
law to approximate the optimal policy of a continuous-time linear time-invariant sys-
tem and we used a terminal state evaluation and an obstacle augmentation technique.
We rigorously derived the Q-learning controller, so that global asymptotic stability of
the equilibrium point is ensured. The simulations reveal that the autonomous rover
can efficiently perform safe navigation with no collisions in an unknown dynamic do-
main. Our methodology is completely model-free without offline training and requires
insignificant computations that facilitate the execution of the algorithm in real-time.

Funding

This work was supported in part, by NASA ULI, and by NSF under grant Nos. CA-
REER CPS-1851588 and S&AS 1849198.

13



References

Allen, R. E. & Pavone, M. (2019). A real-time framework for kinodynamic planning in dynamic
environments with application to quadrotor obstacle avoidance. Robotics and Autonomous
Systems, 115, 174–193.

Berkenkamp, F. & Schoellig, A. P. (2015, July). Safe and robust learning control with Gaussian
processes. In IEEE European Control Conference (ECC) (pp. 2496–2501).

Bruce, J. & Veloso, M. M. (2002, June). Real-time randomized path planning for robot navi-
gation. In Robot Soccer World Cup (pp. 288–295). Springer, Berlin, Heidelberg.

Bryson, A. E. (1975). Applied optimal control: Optimization, estimation and control. CRC
Press.

Busoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2010). Reinforcement learning and
dynamic programming using function approximators (Vol. 39). CRC press.

Chiang, H. T. L., Hsu, J., Fiser, M., Tapia, L., & Faust, A. (2019). RL-RRT: Kinodynamic
motion planning via learning reachability estimators from RL policies. IEEE Robotics and
Automation Letters, 4 (4), 4298–4305.

Donald, B., Xavier, P., Canny, J., & Reif, J. (1993). Kinodynamic motion planning. Journal
of the ACM, 40 (5), 1048–1066.

Ferguson, D., Kalra, N., & Stentz, A. (2006, May). Replanning with RRTs. In IEEE Interna-
tional Conference on Robotics and Automation, (pp. 1243–1248).

Hsu, D., Kindel, R., Latombe, J. C., & Rock, S. (2002). Randomized kinodynamic motion
planning with moving obstacles. International Journal of Robotics Research, 21 (3), 233–
255.

Ioannou, P. A. & Sun, J. (2012). Robust adaptive control. Courier Corporation.
Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12 (4), 566–580.

Karaman, S. & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30 (7), 846–894.

Kontoudis, G. P. & Vamvoudakis, K. G. (2019). Kinodynamic motion planning with
continuous-time Q-learning: An online, model-free, and safe navigation framework. IEEE
Transactions on Neural Networks and Learning Systems, 30 (12), 3803–3817.

Kontoudis, G. P. & Vamvoudakis, K. G. (2019, July). Robust kinodynamic motion planning
using model-free game-theoretic learning. In American Control Conference (pp. 273–278).

Kontoudis, G. P., Xu, Z., & Vamvoudakis, K. G. (2020, July). Online, Model-Free Motion Plan-
ning in Dynamic Environments: An Intermittent, Finite Horizon Approach with Continuous-
Time Q-Learning. In American Control Conference (pp. 3873–3878).

Kuffner, J. J. & LaValle, S. M. (2000, April). RRT-connect: An efficient approach to single-
query path planning. In IEEE International Conference on Robotics and Automation (pp.
995–1001).

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning.
LaValle, S. M. & Kuffner Jr, J. J. (2001). Randomized kinodynamic planning. international

Journal of Robotics Research, 20 (5), 378–400.
Li, Y., Cui, R., Li, Z., & Xu, D. (2018). Neural network approximation based near-optimal

motion planning with kinodynamic constraints using RRT. IEEE Transactions on Industrial
Electronics, 65 (11), 8718–8729.

Lewis, F. L., Vrabie, D., & Syrmos, V. L. (2012). Optimal control. John Wiley & Sons.
Lewis, F. L., Vrabie, D., & Vamvoudakis, K. G. (2012). Reinforcement learning and feed-

back control: Using natural decision methods to design optimal adaptive controllers. IEEE
Control Systems Magazine, 32 (6), 76–105.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Mehta, P. & Meyn, S. (2009, December). Q-learning and Pontryagin’s minimum principle. In
IEEE Conference on Decision and Control (pp. 3598–3605).

14



Nägeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., & Hilliges, O. (2017). Real-time motion
planning for aerial videography with dynamic obstacle avoidance and viewpoint optimiza-
tion. IEEE Robotics and Automation Letters, 2 (3), 1696–1703.

Netter, J., Kontoudis, G. P., & Vamvoudakis, K. G. (2021, December). Bounded Rational RRT-
QX: Multi-Agent Motion Planning in Dynamic Human-Like Environments Using Cognitive
Hierarchy and Q-Learning. In IEEE Conference on Decision and Control (pp. 3597–3602).

Otte, M. & Frazzoli, E. (2014). RRTX: Real-Time Motion Planning/Replanning for Environ-
ments with Unpredictable Obstacles. Algorithmic Foundations of Robotics, (pp. 461–478).

Otte, M. & Frazzoli, E. (2016). RRTX: Asymptotically optimal single-query sampling-based
motion planning with quick replanning. International Journal of Robotics Research, 35 (7),
797–822.

Otte, M. (2016). RRT-X (dynamic obstacles). Retrieved from:
http://ottelab.com/html_stuff/code.html#RRTXcode

Perez, A., Platt, R., Konidaris, G., Kaelbling, L., & Lozano-Perez, T. (2012, May). LQR-RRT*:
Optimal sampling-based motion planning with automatically derived extension heuristics.
In IEEE International Conference on Robotics and Automation (pp. 2537–2542).

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimension-
ality (Vol. 703). John Wiley & Sons.

Sutton, R. S. & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Tedrake, R., Manchester, I. R., Tobenkin, M., & Roberts, J. W. (2010). LQR-trees: Feed-

back motion planning via sums-of-squares verification. International Journal of Robotics
Research, 29 (8), 1038–1052.

Vamvoudakis, K. G. (2017). Q-learning for continuous-time linear systems: A model-free infi-
nite horizon optimal control approach. Systems & Control Letters, 100, 14–20.

Vrabie, D., Vamvoudakis, K. G., & Lewis, F. L. (2013). Optimal adaptive control and differ-
ential games by reinforcement learning principles (Vol. 2). IET.

Watkins, C. J. & Dayan, P. (1992). Q-learning. Machine learning, 8 (3-4), 279–292.
Webb, D. J. & Van Den Berg, J. (2013, May). Kinodynamic RRT*: Asymptotically optimal

motion planning for robots with linear dynamics. In IEEE International Conference on
Robotics and Automation (pp. 5054–5061).

Yang, G. Z., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., Full, R., . . . , Nelson, B. J.
(2018). The grand challenges of Science Robotics. Science robotics, 3 (14).

15


