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Abstract. In this paper, we present a distributed information-gathering
algorithm for multi-robot systems that use multiple path-based sensors
to infer the locations of hazards within the environment. Path-based sen-
sors output binary observations, reporting whether or not an event (like
robot destruction) has occurred somewhere along a path, but without the
ability to discern where along a path an event has occurred. Prior work
has shown that path-based sensors can be used for search and rescue
in hazardous communication-denied environments—sending robots into
the environment one-at-a-time. We extend this idea to enable multiple
robots to search the environment simultaneously. The search space con-
tains targets (human survivors) amidst hazards that can destroy robots
(triggering a path-based hazard sensor). We consider a case where com-
munication from the unknown field is prohibited due to communication
loss, jamming, or stealth. The search effort is distributed among multiple
robots using an entropy-weighted Voronoi partitioning of the environ-
ment, such that during each search round all regions have approximately
equal information entropy. In each round, every robot is assigned a region
in which its search path is calculated. Numerical Monte Carlo simula-
tions are used to compare this idea to other ways of using path-based
sensors on multiple robots. The experiments show that dividing search
effort using entropy-weighted Voronoi partitioning outperforms the other
methods in terms of the information gathered and computational cost.

Keywords: path planning, multi-robot exploration, distributed deci-
sion making, Shannon Information Theory, information-driven partition-
ing, Bayesian Probability

1 Introduction

Autonomous agents are increasingly used in scientific, commercial, and military
applications. In critical missions of locating human survivors after disasters, the
deployment of multi-robot systems may be more efficient than deploying a single
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Fig. 1. Information gathering with two robots where the search space is decomposed
in two entropy-weighted Voronoi partitions. The dotted lines represent the path that
the agent traverses in the three search rounds. Robot 1 efficiently traverses the path
of round 1, reporting a potential target at the location shown in green. However, it
gets destroyed on round 2 and 3, and thus we only know that a hazard exist along
these two paths. The overlapping areas of the round 2 and 3 for robot 1 have higher
probability of hazard existence (darker gray). Robot 2 gets destroyed at round 1, and
survives round 2 and 3. Since robot 2 reports a target at the same location at round 2
and 3, the probability of target existence is higher (darker green).

agent. In this work, we are primarily motivated by search and rescue missions
of human survivors in lethally hostile environments. We consider a general case
where information exchange between agents in the field is prohibited. Yet, the lo-
cations of base stations—where robots start and end each search round’s journey
through the environment—provide connectivity to a shared centralized server
(i.e., before and after each journey). The environment is completely unknown
and lethally hostile such that agents may be destroyed by a stationary hazards
during each search round, and the locations of hazards are initially unknown.
Due to the lack of communication in the field, agent destruction happens at an
unknown location along the agent’s path and leads to loss of any information
collected about targets along that path. However, agent loss also provides infor-
mation about the location of hazards within the environment (see Fig. 1). Even
though we do not know where along the path the event of robot destruction has
occurred, the shape of the path constrains the set of possible locations at which
the hazard may have destroyed the agent.

The idea that a path’s shape provides information that can be used to update
a belief map (e.g., of hazard presence) given that an event (e.g., robot destruc-
tion) has occurred somewhere along a path is called a path-based sensor [1].
The objective of the work described in the current paper is to extend the use of
path-based sensors to the case where multiple robots explore the environment
simultaneously and in a distributed fashion, to improve the computational ef-
ficiency and accelerate the convergence speed of the hazard and target belief
maps.

The proposed distributed methodology decomposes this problem into two
distinct sub-problems – decomposition of search space, and path planning in the
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decomposed space. Thus, this technique is a decoupled approach consisting of
two steps: (i) centralized Shannon entropy-driven partitioning of the environ-
ment into a set of disjoint regions (one region per agent); and (ii) distributed
information theoretic path planning of each agent in its region. The first step
assigns each agent a particular partitioned region in the search space. To ensure
that each point in the partitioned space is given to the nearest base station and
affects the entropy of the partitioned space the least, we use entropy-weighted
Voronoi partitioning. This helps distribute the workload among the agents for
the next step, where each agent simultaneously and locally plans an information-
driven path in its corresponding search space, as described in Fig. 1. Thereby
helping the multi-robot system to efficiently and robustly infer the hazard and
target belief map of the environment.

Related Work : The concept of path-based sensors was introduced in [1], which
focused on the scenario where multiple agents explored the environment sequen-
tially. The current paper compares three different extensions of the path-based
sensor idea in which 𝑚 agents explore the environment in parallel during each
search round.

We now discuss two different bodies of related work. We begin by reviewing
the literature that studied the passive cooperation problem for coverage path
planning (CPP) algorithms, and then we review work on information gathering.
CPP algorithms use a combination of environmental partitioning and passive
communication [3]. In [4], Nair and Guruprasad use a partition-and-cover ap-
proach based on Voronoi partitioning to achieve a passive cooperation between
agents to avoid task duplicity. Distributed strategies are used in [5–12] to keep
track of regions covered. The use of geodesic or Manhattan distance as a dis-
tance metric to improve exploration is proposed in [13]. Cooperative sweeping
of the environment by multiple robots is studied in [14] and the use of en-
tropy as a weight for Voronoi tessellation was discussed in [15]. In our work,
we employ a divide-and-conquer approach to environmental partitioning using
entropy-weighted Voronoi decomposition. Our work assumes that base stations
have a centralized communication topology, and we focus on using path-based
sensors to gather information about hazards when communication is denied in
the field.

Recursive Bayesian filters are used in the literature to update belief maps of
the environment [16, 17]. However, [17] assumed knowledge of exact location of
malfunctioning agents, i.e., false positive location is known. A formal derivation
of mutual information gradient for information gathering is presented in [18]. The
latter introduced information surfing, the idea of using the gradient of mutual
information for information gathering, and the work is extended in [19,20], but
with the assumption that a hazard could not destroy the agents. The focus
of this work is on combining path-based sensors and information gathering in
environments with lethal hazards and targets, using a team of imperfect robots
that may malfunction (false positive) or report false negative observations.

Contribution : The contribution of this paper is twofold. First, we present a
distributed methodology for information gathering in a multi-robot system using
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path-based sensors. The proposed technique is a decoupled two-step scheme
that uses a distributed information-theoretic mechanism for partitioning the
environment and local information-theoretic planner to maximize information
gathering. Second, we also synthesize a centralized global planner for information
gathering in a multi-robot system that uses sequential Bayesian filter to calculate
estimated belief maps of the environment.

2 Problem Formulation

Consider a spatial environment which is divided into 𝑎×𝑏 discrete cells composing
the search space S ∈ R2. A team of 𝑀 agents is deployed in the environment,
where each agent is denoted by 𝑖 = 1, . . . , 𝑀. The search space includes 𝑛 base
stations 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} ⊂ S, where 𝑛 ≤ 𝑀. Note that in this paper we
consider the case of 𝑛 = 𝑀. Each agent 𝑖 is located at its corresponding base
station 𝑑𝑖 to explore a specific bounded region 𝑆𝑖 ⊂ S. The union of the regions
of exploration 𝑆𝑖 constitute the search space

⋃𝑚
𝑖=1 𝑆𝑖 = S, with no overlap ∀𝑖 ≠ 𝑗 ,

𝑆𝑖 ∩ 𝑆 𝑗 = ∅, where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑚}. Each agent 𝑖 can visit up to 𝑙𝑖 cells 𝑐 in its
search space forming the path 𝜁𝑖 = ⟨𝑐1, 𝑐2, . . . , 𝑐𝑙𝑖 ⟩ ⊆ 𝑆𝑖 such that the exploration
starts and ends at the agent’s corresponding base station 𝑑𝑖, i.e., 𝑐1 = 𝑐𝑙𝑖 = 𝑑𝑖.
When all the surviving agents reach their respective base stations at the end of
their exploration, we terminate one search round 𝑟 ∈ Z>0. We define the time
taken by an agent 𝑖 to move from cell 𝑐 𝑗 to 𝑐 𝑗+1 as one timestep 𝑡. Thus, the
duration of a search round can be defined as 𝑡𝑟 B max𝑖∈{1,...,𝑀 } 𝑙𝑖𝑡.

Definition 1. Path-based sensor [1]
A sensor that reports whether or not an event has occurred somewhere along a
path, but has no conception of where along the path that event has taken place.

The search space includes hazardous elements Z = {0, 1} that may destroy
the agent, where 𝑍 = 1 indicates the presence of a hazard, while 𝑍 = 0 denotes
the absence of a hazard in a particular cell. If the agent 𝑖 is destroyed anywhere
along the path 𝜁𝑖 then the path-based sensor (Definition 1) is triggered (Θ = 1),
and if the agent 𝑖 survives the path 𝜁𝑖 then we consider that the path-based
sensor is not triggered (Θ = 0). We assume that the path-based sensor may
report false positive and false negative triggering. False-positive accounts for
faulty or malfunctioning robots that get destroyed regardless of the presence of
a hazard, whereas false-negative accounts for the chance of the robot surviving
a cell despite having a hazard. The search space also includes some elements of
interest, hereafter referred to as targets, X = {0, 1}, where 𝑋 = 1 indicates the
presence of a target, while 𝑋 = 0 denotes the absence of a target in a particular
cell. The presence of a target is recorded by a noisy sensor that may also report
a false positive or a false negative observation of the target. The sensor used for
the detection of targets is not a path-based sensor. In other words, if a robot
survives a path, the target sensor reports the exact whereabouts of the target
observation along the survived path.
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All agents start their exploration simultaneously at the beginning of a search
round. Inter-agent communication is prohibited at all times. However, the suc-
cessful traverse of a path by an agent indicates information about absence of
hazards, and each survived agent also transmits information about targets along
their path to its base station. In other words, each agent 𝑖 reports its observation
only to its base station 𝑑𝑖. A central server 𝜎 can obtain this information from
each base station to update the global belief map.

Problem 1. Given a team of 𝑀 agents, with inter-agent communication prohib-
ited at all times, in an environment with multiple available base stations 𝐷 that
communicate with a central server 𝜎, the task of the agents is to explore a com-
pletely unknown environment efficiently and gather information about targets
𝑋 and hazards 𝑍.

Remark 1. The use of the centralized server to partition the environment and
update shared belief maps is convenient, but not required. If a completely de-
centralized and distributed algorithm is desired, then the use of the centralized
server can be eliminated, assuming that base stations are able to synchronize
their data after each search round. Each base station can perform the same
(deterministic) weighted Voronoi partitioning algorithm in parallel such that all
base stations achieve the same partitioning.

3 Distributed Information Gathering

In this section, we propose three methodologies to address Problem 1. The
first methodology consists of a decoupled two-step scheme: i) entropy-weighted
Voronoi partitioning as a centralized method to decompose the environment in
𝑆𝑖 spaces; and ii) mutual information-based planner from each base station 𝑑𝑖
that maximizes local information gathering. In the second method, we assume
no partitioning of the environment, thus information-based planning is executed
in the search space S. However, we deploy a team of robots simultaneously from
various base stations 𝑑𝑖. Lastly, we discuss a global planning method that cal-
culates expected belief maps for each agent 𝑖 before deployment from the same
base station 𝑑 and then plans an information-driven path for all agents.

3.1 Distributed Entropy Voronoi Partition and Planner (DEVPP)

To address the obscure information obtained from a path-based sensor, [1] pro-
posed integration of all potential location for a path-based sensor triggering.
However, this increases the computational complexity of optimal path solutions
beyond short path lengths. Therefore, we propose a distributed strategy with
multiple agents that partitions the environment in a way that maximizes the
expected information gain of the entire search space S without task duplicity.
The structure of the proposed methodology is presented in Fig. 2.
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Fig. 2. The block diagram illustrates a decoupled two-step scheme of distributed local
planning with centralized partitioning. In the leftmost block diagram base stations 𝑑𝑖

communicate their belief maps 𝑋
(𝑟)
𝑖

, 𝑍
(𝑟)
𝑖

to the central server 𝜎. Next, the central
server partitions the environment S into sub-search spaces 𝑆𝑖 and then transmits this
information to each base station 𝑑𝑖 . The sub-search spaces 𝑆𝑖 are used locally for
information theoretic planning.

Centralized Entropy Decomposition For centralized decomposition we use
weighted Voronoi partitioning to decompose the search space S into 𝑀 smaller
search spaces {𝑆1, 𝑆2, . . . , 𝑆𝑀 }, where each robot 𝑖 is assigned 𝑆𝑖. This partition-
ing uses base stations 𝑑𝑖 as generators, assigning each agent 𝑖 to a specific search
space 𝑆𝑖. Let 𝒑𝑖 = [𝑝𝑖,𝑥 , 𝑝𝑖,𝑦]⊺ ∈ S denote the location of a cell in the search space
and 𝒑𝑑 𝑗

∈ S denote the location of base station 𝑑 𝑗 , where 𝑗 = 2, 3, . . . , card(S)
with card(S) = 𝑎𝑏. The geodesic Voronoi partitioning of the search space is
computed by,

𝑆𝑖 = { 𝒑𝑖 ∈ S | 𝑔( 𝒑𝑖 , 𝒑𝑑 𝑗
) ≤ 𝑔( 𝒑𝑖 , 𝒑𝑑𝑘

), ∀ 𝑗 ≠ 𝑘}, (1)

where 𝑔( 𝒑𝑖 , 𝒑𝑑) = ∥ 𝒑𝑖− 𝒑𝑑 ∥ is the distance between 𝒑𝑖 and 𝒑𝑑. Next, we redefine
𝑔( 𝒑𝑖 , 𝒑𝑑) to incorporate the Shannon entropy of the partition,

𝑔𝑤( 𝒑𝑖 , 𝒑𝑑; 𝑋𝒑𝑖 , 𝑋𝑆𝒑𝑑
) = 𝑤(𝑋𝒑𝑖 , 𝑋𝑆𝒑𝑑

)𝑔( 𝒑𝑖 , 𝒑𝑑), (2)

where 𝑤(𝑋𝒑𝑖 , 𝑋𝑆𝒑𝑑
) = (𝐻 (𝑋𝒑𝑖 ) + 𝐻 (𝑋𝑆𝒑𝑑

))/(card(𝑋𝑆𝒑𝑑
) + 1) is a weight repre-

senting the average entropy of the expected partition with entropy given as
𝐻 (𝑋𝒑𝑖 ) = −

∫
X P(𝑋𝒑𝑖 ) log P(𝑋𝒑𝑖 ) d𝑥. Thus, by substituting (2) to (1) the entropy-

weighted Voronoi partitioning yields,

𝑆𝑖 = { 𝒑𝑖 ∈ S | 𝑤(𝑋𝒑𝑖 , 𝑋𝑆 𝑗
)𝑔( 𝒑𝑖 , 𝒑𝑑 𝑗

) ≤ 𝑤(𝑋𝒑𝑖 , 𝑋𝑆𝑘
)𝑔( 𝒑𝑖 , 𝒑𝑑𝑘

), ∀ 𝑗 ≠ 𝑘}. (3)

Note that for the initial decomposition of the environment with no prior informa-
tion, the entropy-weighted Voronoi partitioning (3) is identical to the geodesic
Voronoi partitioning (1), i.e., 𝑤(𝑋𝒑𝑖 , 𝑋𝑆 𝑗

) = 𝑤(𝑋𝒑𝑖 , 𝑋𝑆𝑘
) for all 𝑗 ≠ 𝑘.

Local Information-theoretic Planning Centralized entropy-weighted Voronoi
partitioning decomposes the problem into single-agent sub-problems of informa-
tion gathering. Here, each agent 𝑖 stationed at its base station 𝑑𝑖 is now assigned
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Algorithm 1 Distributed Entropy Voronoi Partitioning and Planner (DEVPP)

Inputs: {𝑋 (0)
𝑖
}𝑀
𝑖=1, {𝑍

(0)
𝑖
}𝑀
𝑖=1, S, 𝑀, 𝐷, 𝑟max

Output: {𝜁 (𝑟)∗
𝑖
}𝑀
𝑖=1

1: for 𝑖 = 1, . . . , 𝑀 do ⊲ Initial decomposition and planning

2: 𝑆
(0)
𝑖
← geodesicPartition( 𝒑, 𝒑𝑑𝑖 ) (1)

3: 𝜁
(0)∗
𝑖
← calculatePath(𝑋 (0)

𝑖
, 𝑍
(0)
𝑖

, 𝑆
(0)
𝑖
)

4: 𝑋
(1)
𝑖

, 𝑍
(1)
𝑖
← beliefUpdate(𝑋 (0)

𝑖
,𝒀
(0)
𝑖

, 𝑍
(0)
𝑖

, 𝜁
(0)∗
𝑖
)

5: end for
6: for 𝑟 = 2 to 𝑟max do
7: for 𝑖 = 1, . . . , 𝑀 do ⊲ Communication to server

8: communicate 𝑋
(𝑟−1)
𝑖

, 𝑍
(𝑟−1)
𝑖

from base stations to central server
9: end for
10: 𝑆

(𝑟)
𝑖
← {∅}

11: for 𝒑 ∈ S do ⊲ Centralized Entropy Decomposition
12: for 𝑖 = 1, . . . , 𝑀 do
13: 𝑔𝑤 ← EntropyWeight( 𝒑, 𝒑𝑑𝑖 ; 𝑋𝒑 , 𝑋𝑆𝒑𝑑𝑖

) (2)

14: end for
15: 𝒑𝑑𝑖 = argmin𝒑𝑑𝑖

∈𝐷{𝑔𝑤}
16: 𝑖 ← index( 𝒑𝑑𝑖 ); 𝑆

(𝑟)
𝑖

= 𝑆
(𝑟)
𝑖
∪ 𝒑

17: end for
18: broadcast 𝑆

(𝑟)
𝑖

from central server to base stations ⊲ Communication from
server

19: for 𝑖 = 1, . . . , 𝑀 do ⊲ Local Information Theoretic Planning

20: 𝜁
(𝑟)∗
𝑖
← calculatePath(𝑋 (𝑟−1)

𝑖
, 𝑍
(𝑟−1)
𝑖

, 𝑆
(𝑟)
𝑖
)

21: Θ
(𝑟)
𝜁𝑖

,𝒀
(𝑟)
𝑖
← traversePath(𝜁 (𝑟)∗

𝑖
)

22: 𝑋
(𝑟)
𝑖

, 𝑍
(𝑟)
𝑖
← beliefUpdate(𝑋 (𝑟−1)

𝑖
,𝒀
(𝑟)
𝑖

, 𝑍
(𝑟−1)
𝑖

,Θ
(𝑟)
𝜁𝑖

, 𝜁
(𝑟)∗
𝑖
)

23: end for
24: end for

to find a path 𝜁∗
𝑖
in its corresponding search space 𝑆𝑖 that maximizes the ex-

pected information gained about targets 𝑋 and hazards 𝑍, given the observed
target sensor measurement 𝑌 and path-based sensor measurements Θ𝜁𝑖 along a
path 𝜁𝑖 at the exploration round 𝑟,

𝜁
(𝑟)∗
𝑖

= argmax𝜁𝑖 ∈Ω𝑖

{
𝐼 (𝑋 (𝑟−1)

𝑖
; 𝒀 (𝑟)

𝑖
| Θ(𝑟)

𝜁𝑖
, 𝑆
(𝑟)
𝑖
) + 𝐼 (𝑍 (𝑟−1)

𝑖
;Θ(𝑟)

𝜁𝑖
| 𝑆 (𝑟)

𝑖
)
}
, (4)

where Ω𝑖 is the space all possible paths of agent 𝑖 in its search space 𝑆
(𝑟)
𝑖

, 𝒀 (𝑟)
𝑖

=

[𝑌 (𝑟)
𝑖,1 , . . . , 𝑌

(𝑟)
𝑖,𝑙
]⊺ ∈ R𝑙 denotes all 𝑙 observations collected at search round 𝑟 by

agent 𝑖, and Θ𝜁𝑖 is the space of observation of agent 𝑖 about the path-based sensor
triggering. This local path planning (4) is addressed using the methodology in [1].

We illustrate the proposed methodology for partitioning the environment
with 𝑀 agents and 𝑀 base stations in Fig. 2. DEVPP (Algorithm 1) describes
the centralized partitioning and local planning methodology, where brown color
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Fig. 3. The block diagram illustrates a distributed local planning with centralized
sequential Bayesian filter (SBF). In the leftmost block all base stations 𝑑𝑖 communicate

their local observations 𝒀
(𝑟)
𝑖

, Θ
(𝑟)
𝜁𝑖

to the central server 𝜎. Next, the central server

updates the belief map sequentially, where the posterior belief map of agent 𝑖 is used
as prior for the 𝑖+1 update. The posterior belief map is broadcasted to the base stations
which use them for local information theoretic planning.

indicates action from central server 𝜎, and blue color local action from a base
station 𝑑𝑖. After the environment has been partitioned successfully at the central
entity, each agent 𝑖 plans a path using calculatePath algorithm introduced
in [1]. DEVPP terminates after a number of rounds 𝑟max.

3.2 Multi-agent Distributed Information-theoretic
Planner (MA-DITP)

Unlike DEVPP, this approach does not perform any partitioning of the search
space. Thus, each agent 𝑖 explores the entire search space S and plan its path
based on the prior belief of hazards and targets in the search space S at every
search round 𝑟. In other words, the planning is global in the entire search space
S and not local as in Section 3.1. After a search round, each agent 𝑖 transmits

the target observations 𝒀 (𝑟)
𝑖

and the path-based sensor measurement Θ(𝑟)
𝜁𝑖

to its
base station 𝑑𝑖 which subsequently uploads this information to the central server

𝜎. The central server then receives observations from all base stations {Θ(𝑟)
𝜁𝑖
}𝑀
𝑖=1,

{𝒀 (𝑟)
𝑖
}𝑀
𝑖=1 and updates the belief maps using sequential Bayesian filtering (SBF).

Next, the central server broadcasts the posterior belief maps to the base stations.

Lastly, each base station 𝑑𝑖 computes an information theoretic path 𝜁
(𝑟+1)∗
𝑖

in
the search space S and the robots are assigned to traverse the paths and collect
measurements. The proposed MA-DITP method is presented in Algorithm 2,
where brown color indicates action from the central entity, and blue color local
action from a base station 𝑑𝑖. The block diagram is illustrated in Fig. 3.

3.3 Multi-agent Global Information-theoretic Planner (MA-GITP)

In this section, we discuss a global planning method where a team of robots is
deployed simultaneously from the same base station 𝑑 instead of multiple base
stations as in DEVPP and MA-DITP. Using MA-DITP in a single station with
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Algorithm 2 Multi-Agent Distributed Information Theoretic Planner (MA-
DITP)

Input: {𝑋 (0)
𝑖
}𝑀
𝑖=1, {𝑍

(0)
𝑖
}𝑀
𝑖=1, S, 𝑀, 𝑟max

Output:{𝜁 (𝑟)∗
𝑖
}𝑀
𝑖=1

1: for 𝑟 = 1 to 𝑟max do
2: for 𝑖 = 1, . . . , 𝑀 do ⊲ Local information-theoretic planning

3: 𝜁
(𝑟)∗
𝑖
← calculatePath(𝑋 (𝑟−1)

𝑖
, 𝑍
(𝑟−1)
𝑖

,S)
4: Θ

(𝑟)
𝜁𝑖

,𝒀
(𝑟)
𝑖
← traversePath(𝜁 (𝑟)∗

𝑖
)

5: communicate Θ
(𝑟)
𝜁𝑖

, 𝒀
(𝑟)
𝑖

from base station to central server

6: end for
7: 𝑋

(𝑟)
𝑖

, 𝑍
(𝑟)
𝑖
← beliefUpdate(𝑋 (𝑟−1)

𝑖
,𝒀
(𝑟)
𝑖

, 𝑍
(𝑟−1)
𝑖

,Θ
(𝑟)
𝜁𝑖

, 𝜁
(𝑟)∗
𝑖
) ⊲ Centralized SBF

8: broadcast 𝑋
(𝑟)
𝑖

, 𝑍
(𝑟)
𝑖

from central server to base stations
9: end for

multiple-agent scenario would result in redundant and repeated exploration of
search space S, hampering the information gathering process. To address this
problem, we introduce the idea of using an expected belief map for each agent.
The expected belief map for the first agent is the true belief map computed by
the sequential Bayesian filter (SBF) using observations from the previous search
round 𝑟 − 1. Next, the base station makes a prediction for each possible path-

based sensor observation of agent 1 (Θ(𝑟)
𝜁1

= 1 for destruction or Θ
(𝑟)
𝜁1

= 0 for

survival) and computes the weighted average belief map which generalizes to,

𝑍
(𝑟)
𝑖+1 = 𝑝

(𝑟)
1 𝑍

(𝑟)
𝑖
(Θ(𝑟)

𝜁𝑖
= 1) + 𝑝 (𝑟)0 𝑍

(𝑟)
𝑖
(Θ(𝑟)

𝜁𝑖
= 0), ∀𝑖 = 2, . . . , 𝑀, (5)

where 𝑝
(𝑟)
1 = P(Θ(𝑟)

𝜁𝑖
= 1) is the probability of destruction, 𝑝 (𝑟)0 = P(Θ(𝑟)

𝜁𝑖
= 0) is

the probability of survival, 𝑍 (𝑟)
𝑖
(Θ(𝑟)

𝜁𝑖
= 1) is the belief map in case of destruction,

and 𝑍
(𝑟)
𝑖
(Θ(𝑟)

𝜁𝑖
= 0) is the belief map in case of survival of the previous agent

𝑖. Each expected belief map 𝑍
(𝑟)
𝑖+1 is used to compute an information-theoretic

path 𝜁
(𝑟)
𝑖+1. The multi-agent global information-theoretic planning method (MA-

GITP) from a single base station is presented in Algorithm 3. Note that Algo-
rithm 3 includes only local updates, thus the all actions are illustrated in blue
color.

The multi-agent global planner is inherently resilient to communication chan-
nel attacks, because there is no communication and all the processing is per-
formed at a base station for all agents. In addition, this approach is practical as
in most search and rescue missions we typically have access to a single station
for exploration.
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Algorithm 3 Multi-Agent Global Information Theoretic Planner (MA-GITP)

Inputs: 𝑋 (0) , {𝑍 (0)
𝑖
}𝑀
𝑖=1, S, 𝑀, 𝑟max

Output: {𝜁 (𝑟)∗
𝑖
}𝑀
𝑖=1

1: for 𝑟 = 1 to 𝑟max do
2: for 𝑖 = 1, . . . , 𝑀 do ⊲ Weighted Average Belief Map

3: 𝜁
(𝑟)∗
𝑖
← calculatePath(𝑋 (𝑟−1) , 𝑍 (𝑟−1)

𝑖
)

4: 𝑍
(𝑟−1)
𝑖+1 ← weightedAvgBelief(𝑍 (𝑟−1)

𝑖
) (5)

5: end for
6: for 𝑖 = 1, . . . , 𝑀 do ⊲ Sequential Bayesian Filter

7: Θ
(𝑟)
𝜁𝑖

,𝒀
(𝑟)
𝑖
← traversePath(𝜁 (𝑟)∗

𝑖
)

8: 𝑋 (𝑟) , 𝑍 (𝑟)
𝑖
← beliefUpdate(𝑋 (𝑟−1) ,𝒀 (𝑟)

𝑖
, 𝑍
(𝑟−1)
𝑖

,Θ
(𝑟)
𝜁𝑖

, 𝜁
(𝑟)∗
𝑖
)

9: end for
10: end for

4 Experiments and Results

Experimental Setup: To evaluate the performance of the proposed methodolo-
gies we implement 30 Monte Carlo (MC) replications for all experiments, where
each MC replication has 𝑟 = 150 search rounds. The spatial environment is of
dimensions 𝑎 × 𝑏 = 15 × 15 cells. A cell in the environment can be either empty
(contain no hazard and no target), or contain a hazard, or a target, or both. The
movement of each agent in the environment is determined by a 9-grid connec-
tivity, i.e., an agent can move anywhere to the 8-neighboring cells or decide to
stay at its current cell for the next timestep.

Let each agent to have a malfunction probability of 5% per timestep and the
target sensor to have a false positive and false negative rate of 10% per timestep.
We consider environments with different hazard lethalities of 50%, 70%, and 90%.
Lethality refers to the probability of an agent destruction when it visits a cell
that contains a hazard. We evaluate the proposed methodologies for various fleet
sizes, ranging from 𝑀 = 1 to 𝑀 = 5 agents. In all numerical experiments, we
set the maximum number of timesteps for each path to be twice the Manhattan
distance between its base station and the furthest corner of its search space 𝑆𝑖,
i.e., 𝑙𝑖 = 2max𝒑𝑖 ∈𝑆𝑖 ∥ 𝒑𝑑𝑖 − 𝒑𝑖 ∥1.

Experiment 1 : In this set of experiments, we compare the efficiency of DE-
VPP against [1] with different fleet sizes. Note that for the case of 𝑀 = 1 agent,
DEVPP is identical to [1]. We deploy up to 𝑀 = 5 robots at card(𝐷) = 5 distinct
base stations. In Fig. 4, we demonstrate the progress of information entropy for
the environment during 150 search rounds. As the number of agents increases,
the information entropy reduces faster for all adversary lethalities cases. Con-
trary to the notion that adding more agents may increase the computational
cost of the experiments, Fig. 5 (Left) presents that the time elapsed per agent to
complete 150 search rounds decreases with an increasing number of agents. This
significant reduction in computational time is attributed to the smaller search
sub-spaces for planning with multiple robots. Although the time elapsed for
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Fig. 4. Information entropy of the environment with hazard lethality of 50%, 70%,
90% using the DEVPP method. As the fleet size increases the information entropy of
the environment decreases faster.

Fig. 5. (Left) Computational time required for each agent to perform local computa-
tions for 𝑟 = 150 search rounds using DEVPP for 𝑀 ≥ 2 and 5 for 𝑀 = 1. As the fleet
size increases the computation is distributed among agents. (Right) Computational
time required by the central server 𝜎 to partition the environment using (3). As the
size of the fleet increases, the time required to compute the partitioned search spaces
𝑆𝑖 ∈ S increases.

the entire planning and execution decreases with increasing number of robots,
the time taken by the central server 𝜎 to compute the partitioning increases
with addition of robots in the search space S, as shown in Fig. 5 (Right). The
computations of the central server 𝜎 are insignificant compared to the local com-
putations of the agents for small fleet size (𝑀 = 2, 3), but increases at similar
level for local computations with higher fleet size (𝑀 = 4, 5). In any case, even
if we account the central computations for all fleet sizes, the proposed DEVPP
method outperforms [1].

Experiment 2 : Next we compare all methods with each other and with [1].
The lethality rate is fixed to 90% and we consider three fleet sizes 𝑀 = 2, 𝑀 = 4,
and 𝑀 = 5 robots. Note that when 𝑀 = 1 agent all methods are identical
to [1]. In Fig. 6, we present the progress of information entropy through 𝑟 = 150
search rounds. The results show that DEVPP outperforms all methods; MA-
DITP gathers competitive information to DEVPP; while MA-GITP performs
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Fig. 6. Information entropy of the environment with hazard lethality of 90% for all
proposed methods. We consider three fleet sizes 𝑀 = 2, 𝑀 = 4, and 𝑀 = 5 agents, while
all cases are identical to [1] when 𝑀 = 1 agent.

Fig. 7. The boxplots illustrate the execution time per agent in seconds with hazard
lethality of 90% for fleet sizes 𝑀 = 2, 𝑀 = 4, and 𝑀 = 5 agents. When of 𝑀 = 1 agent
all methods report identical execution time to [1].

slightly better to [1] for all fleet sizes. In Fig. 7, we demonstrate the execution
time required per agent after 𝑟 = 150 search rounds. The execution time of
DEVPP is significantly lower from all other methods and with minimal variation.
To this end, not only information gathered using DEVPP is more efficient, but
also it is executed significantly faster. The other proposed methods (MA-DITP
and MA-GITP) are executed in similar or slightly more time than [1].

Main result : The numerical experiments reveal that the proposed DEVPP
method with multiple robots is more efficient in terms of information gathered
compared to the case of a single robot [1]. This result is attributed to the shorter
paths produced for each agent on the assigned subspaces, which subsequently
reduces the likelihood of robot destruction and significantly reduces execution
time. To this end, simultaneous deployment of multiple robots leads to efficient
information gathering in all proposed methodologies.

5 Conclusion

This paper introduces DEVPP, a distributed information gathering approach in
an environment with path-based sensors using a team of robots simultaneously.
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We demonstrate the efficacy of this approach in various experiments with Monte
Carlo replications. We also compare this approach against two information-
gathering methods that employ multiple robots simultaneously (MA-DITP and
MA-GITP) and [1] in the same environment. We experimentally show that the
information gathered for hazards and targets using DEVPP outperforms the
rest approaches in all cases. In addition, DEVPP reduces the computational
cost, thereby accelerates the overall execution time of the information-theoretic
planner. Although MA-GITP performs slower than the rest methods, no com-
munication is required, and thus it is resilient to malicious attacks in the com-
munication system. All proposed multi-robot methodologies, reduce the entropy
of the environment faster than the case where only a single robot is deployed.
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