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Abstract— In this paper, we propose two decentralized ap-
proximate algorithms for nested Gaussian processes in multi-
robot systems. The distributed implementation is achieved with
iterative and consensus methods that facilitate local computa-
tions at the expense of inter-robot communications. Moreover,
we propose a covariance-based nearest neighbor robot selection
strategy that enables a subset of agents to perform predictions.
In addition, both algorithms are proved to be consistent.
Empirical evaluations with real data illustrate the efficiency
of the proposed algorithms.

I. INTRODUCTION

Networks of autonomous vehicles have received consider-
able attention in recent years, as they can accomplish tasks
that cannot be efficiently addressed by a single autonomous
vehicle. Major challenges of multi-robot systems include
limited computational resources and communication restric-
tions. In this work, we propose methods for decentralizing
Gaussian process (GPs) [1]–[3] so that they can be imple-
mented efficiently on teams of autonomous vehicles. GPs are
used in various multi-robot applications [4]–[17]. The major
disadvantage of GPs is the poor scalability with the number
of observations. Moreover, GPs are not easily decentralized
for implementation across multiple autonomous vehicles due
to high communication requirements.

Our aim in this work is to synthesize decentralized
methodologies that relax the computation and communica-
tion requirements of GPs, by performing only local compu-
tations and as little information exchange as possible. We
propose two approximation techniques of nested pointwise
aggregation of GP experts (NPAE) [18]: i) the decentralized
NPAE (DEC-NPAE); and ii) the distributed NPAE (DIST-
NPAE). In DEC-NPAE, we decentralize the computations by
using: i) Jacobi over-relaxation (JOR) to solve a system of
linear equations [19]; and ii) discrete-time average consensus
(DAC) to compute average values [20]. Next, in DIST-NPAE
we leverage advancements in distributed algorithms to solve
systems of linear equations (DALE) [21], [22].

Related work: Despite their effectiveness, GPs scale
poorly with the number of observations. Particularly, pro-
vided N observations, the training entails O(N3) compu-
tations and the prediction requires O(N2) computations.
Another limitation for the implementation of GPs in multi-
robot systems is the communication. For centralized GPs,
every agent has to communicate all observations to a central
node. However, excessive communication is challenging in
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robotic networks, especially in underwater [23] and under-
ground [24] applications. Moreover, robots in distributed
networks can pass messages only within a communica-
tion range [25] which may vary in space and time [26].

To overcome the computational burden of GPs, multiple
techniques have been proposed in the literature. Two major
directions are based on global and local approximations [27].
Global approximation methods promote sparsity by using
either a subset of M observations or by introducing a set
of M pseudo-inputs, where M � N [28]–[30]. Sparse
GPs have been used in mobile sensor networks to model
spatial fields [6]. In [5], a GP with truncated observations
in a mobile sensor network is proposed, and in [7] a subset
of observations is used for traffic modeling and prediction.
These methods require global knowledge of the observations,
which increases inter-robot communications. Methods that
utilize pseudo-inputs do not retain the interpolation property
at the location of observations.

Alternatively, the second research direction to alleviate
the GP computation is local approximation methods. These
are centralized algorithms with a server-client structure that
facilitate the execution of GPs. The main idea is to aggregate
local sub-models produced by local subsets of the observa-
tions [31]–[34]. In other words, every sub-model makes a
local prediction, and then the central node aggregates to a
single prediction. In comparison to global approximations,
local methods do not require inducing inputs, they distribute
the computational load to multiple agents, and they work
with all observations. However, it is proved in [35, Prop. 1]
that the local methods [31]–[33] are inconsistent, i.e. as the
observation size grows to infinity, the aggregated predictions
do not converge to the true values. Subsequently, the authors
in [18] proposed the NPAE that takes into account the
covariance between sub-models and produces consistent pre-
dictions. The price to achieve consistency in NPAE comes
with much higher computational complexity in the central
node. Liu et al. [36] introduced a computationally efficient
and consistent methodology, termed as generalized robust
Bayesian committee machine (GRBCM). However, GRBCM
entails additional communication between agents to enrich
local datasets with a global random dataset. In addition, both
NPAE and GRBCM are centralized techniques, that are not
well-suited for multi-robot teams [25].

A decentralized method for the computation of spatio-
temporal GPs is proposed in [37]. In [8], a decentralized
technique for spatial GPs with localization uncertainty is
presented. Both [37] and [8] employ JOR, which requires
a strongly complete graph topology, i.e. every agent must
communicate to every other agent. That is a conservative



topology and is not common in robotic networks [25].
Essentially, for not strongly complete topologies, JOR en-
tails flooding before every iteration. In flooding each agent
broadcasts all input packets to its neighbors [38]. Thus, the
communication requirements of JOR are significantly high.

Contributions: The contribution of this paper is fourfold.
1) We synthesize the DEC-NPAE algorithm that decentral-
izes the computations of NPAE [18]. Essentially, we over-
come the main drawback of NPAE—computational com-
plexity in central node—by distributing computations to all
robots. 2) To reduce the inter-robot communication required
by DEC-NPAE, we propose DIST-NPAE, which integrates
a consensus-based, iterative method. 3) A non-arbitrary,
covariance-based nearest neighbor (CBNN) selection is pro-
posed to further diminish the information exchange. 4) Both
algorithms are proved to produce consistent predictions.

II. CENTRALIZED GAUSSIAN PROCESSES

A. Gaussian Processes

Let the observations be modeled by,

y(x) = f(x) + ε, (1)

where x ∈ RD is the input location with D the input space
dimension, f(x) ∼ GP(0, k(x,x′)) is a zero-mean GP with
covariance function k : RD × RD → R, and ε ∼ N (0, σ2

ε )
is the i.i.d. measurement noise with variance σ2

ε . We employ
the separable squared exponential kernel,

k(x,x′) = σ2
f exp

{
−

D∑
i=1

‖x− x′‖2

2l2i

}
, (2)

where σ2
f the signal variance and li the length-scale hyper-

parameter at the i-th direction of the input space. The goal
of GPs is to infer the underlying latent function f given the
data y = {yn}Nn=1, X = {xn}Nn=1, with N observations.

1) Training: A GP is trained to find the hyperparame-
ters θ = {l1, . . . , lD, σ2

f , σ
2
ε } ∈ RD+2 that maximize the

marginal log-likelihood,

L = ln p(y |X,θ) =− 1

2

(
N ln(yᵀC−1y) + ln|C|

)
, (3)

where C = K + σ2
ε IN with K = k(X,X) ∈ RN×N the

covariance matrix. Note that (3) includes a constant which
vanishes from its gradient.

2) Prediction: After obtaining θ, the predictive distribu-
tion of the location of interest x∗ ∈ RD conditioned on the
data D = {X,y} yields p(y∗ | D,x∗) ∼ N (µ(x∗), σ

2(x∗))
with prediction mean and variance,

µfull(x∗) = kᵀ∗C
−1y, (4)

σ2
full(x∗) = σ2

f (k∗∗ − kᵀ∗C
−1k∗), (5)

where k∗ = k(X,x∗) ∈ RN and k∗∗ = k(x∗,x∗) ∈ R.
3) Complexity: The time complexity of the training is

O(N3) for computing the inverse in (3). Note that only
the inverse operation is required in training. This is because
the determinant vanishes when computing the derivative of
the likelihood (3) for the separable kernel (2). The inverse

computation is performed repeatedly in the optimization of
(3) to find the hyperparameters θ. Next, we store the inverse
C−1 and N observations, which results in O(N2 + DN)
space complexity. For small robots with limited RAM mem-
ory capacity, the space complexity may be more restrictive.
The prediction mean (4) and variance (5) yield O(N) and
O(N2) computations respectively for matrix multiplications.

B. Nested Pointwise Aggregation of GP Experts

In this section, we overview the factorized training [33]
and NPAE prediction [18]. For M robots, let us partition the
dataset D to M datasets {Di = {Xi,yi}}Mi=1 corresponding
to Ni observations for M robots.

Assumption 1. All local models Mi are independent.

1) Training: Provided the independence in Assumption 1
the global marginal likelihood takes the form of,

p(y |X,θ) ≈
M∏
i=1

pi(yi |Xi,θ), (6)

where pi(yi | Xi,θ) ∼ N (0,Ci) is the local marginal
likelihood of the i-th robot with Ci = Ki + σ2

ε INi

and Ki = k(Xi,Xi) ∈ RNi×Ni . The factorized ap-
proximation (6) implies that the covariance matrix is ap-
proximated by a block diagonal matrix that results in
K−1 ≈ diag(K−11 ,K−12 , . . . ,K−1M ). Subsequently, the
global marginal log-likelihood is approximated by L ≈∑M
i=1 Li with local marginal log-likelihood,

Li = ln pi(yi |Xi,θ) = −1

2

(
N ln(yᵀ

iC
−1
i yi) + ln|Ci|

)
,

(7)

where Ci = Ki+σ
2
ε INi . Note that the gradient of the global

marginal log-likelihood in factorized training is computed by
∇θL =

∑M
i=1∇θLi [39], [40].

2) Prediction: Local computations of NPAE for model
Mi include: i) local prediction mean µi(x∗) ∈ R; ii) i-th
entry of the cross-covariance vector {kA(x∗)}i ∈ R; and iii)
i-th row of the covariance rowi{KA(x∗)} ∈ RM . The local
prediction mean yields,

µi(x∗) = E[y(x∗) | y(Xi)] = kᵀi,∗C
−1
i yi (8)

where ki,∗ = k(x∗,Xi) ∈ RNi . The cross-covariance and
the covariance yield,

{kA(Xi,x∗)}i = kᵀi,∗C
−1
i ki,∗, (9)

rowi{KA(Xi,Xj ,x∗)} = kᵀi,∗C
−1
i KijC

−1
j kj,∗, (10)

where Kij = k(Xi,Xj) ∈ RNi×Nj , Cj = Kj + σ2
ε INj

,
and kj,∗ = (Xj ,x∗) ∈ RNj for all j 6= i, j = 1, . . . ,M .

The next step is to aggregate the local models and obtain
the aggregated prediction mean and variance,

µagg(x∗) = kᵀAC
−1
A µ, (11)

σ2
agg(x∗) = σ2

f (k∗∗ − kᵀAC
−1
A kA), (12)

where CA = KA + σ2
ε IN ∈ RM×M , kA =

{kA(Xi,x∗)}Mi=1 ∈ RM , and µ = {µi}Mi=1 ∈ RM .



Definition 1. Provided N observations, an aggregate GP
method with prediction mean µ̂ and full GP prediction mean
µfull is consistent if,

lim
N→∞

sup E[(µfull(x∗)− µ̂(x∗))
2]→ 0,

for all locations of interest x∗.

Definition 1 implies that as the number of observations
tends to infinity, the mean squared error of the prediction
mean of full GP µfull (4) and the aggregated prediction mean
of NPAE µ̂ = µagg (11) goes to zero.

Proposition 1. [35, Proposition 1] For any collection of
aggregated prediction mean values µ1(x∗), . . . , µM (x∗) the
NPAE is consistent.

3) Complexity: The computation of (7) for training yields
O(NN2

i ) time complexity. The complexity for prediction
consists of two parts: i) the local computations (8), (9), (10);
and ii) the aggregation at the central node (11), (12). The
time complexity for the local computation entails O(N2

i )
and for the aggregation at the central node O(M3). The
memory footprint is O(N2

i + DNi). Since Ni � N , the
time complexity of NPAE O(NN2

i ) is significantly less
than the time complexity of full GP O(N3). Similarly, for
the space complexity, NPAE needs O(N2

i +DNi) memory,
while GP requires O(N2+DN) space. The time complexity
of NPAE in prediction O(N2

i ) + O(M3) is less than the
time complexity of full GP O(N2). However, the time
complexity of NPAE is higher than that of other local
aggregation methods [31]–[33], [36], primarily because of
the computations at the central node O(M3). In the ensuing
discussion, we remove the expensive central computation of
NPAE by using decentralized iterative techniques.

III. DECENTRALIZED GAUSSIAN PROCESSES

In this section, we discuss graph theoretic tools that allow
the mathematical representation of networks. Next, we intro-
duce two decentralized techniques to approximate NPAE.

A. Robotic Network

Suppose that a robotic network consists of agents that can
only perform local computations. The network is described
by an undirected time-varying graph G(t) = (V, E(t)), where
V = 1, . . . ,M is the set of nodes and E(t) ⊆ V × V the
set of edges at time t. Nodes represent robots and edges
communication between robots. The neighbors of the i-th
robot are denoted Ni(t) = {j ∈ V : (i, j) ∈ E(t)}. The
adjacency matrix of G(t) is denoted A(t) = [aij ] ∈ RM×M ,
where aij = 1 if (i, j) ∈ E(t) and aij = 0 otherwise.
Similarly, the degree matrix of G(t) is denoted D(t) =
[dij ] ∈ RM×M and is diagonal with di =

∑M
j=1 aij . The

graph Laplacian is defined as L(t) := D(t) − A(t). The
maximum degree is denoted ∆ = maxi{

∑
j 6=i aij} and

represents the maximum number of neighbors in the graph.
The Perron matrix is defined as P(t) := IM−εL(t), where ε
is a parameter with range ε ∈ (0, 1]. The maximum shortest
distance between any pair of nodes in G is denoted diam(G).

Fig. 1. Graph topologies of multi-robot systems.

If the adjacency matrix A is irreducible, then the graph G is
strongly connected [20]. In addition, a graph G is strongly
complete if every robot can communicate to every other
robot in the graph. We consider three network topologies
as presented in Fig.1.

Assumption 2. [22] There exists a positive integer γ ∈ Z≥0
such that for all time t the graph H = (V, E(t) ∪ E(tγ +
1) ∪ . . . ∪ E((t+ 1)γ − 1) is strongly connected.

For the local computation of covariance (10) the agents
must know the location of observations Xj of all other
agents, to find Kij , Cj , and kj,∗. This information can be
communicated between agents, although explicitly consider
the case that it is known a priori by all agents.

Assumption 3. The trajectories π = {πi}Mi=1 and the input
locations X = {Xi}Mi=1 are known to all robots.

Assumption 4. All robots know the size of the fleet M .

B. Decentralized NPAE

We present DEC-NPAE which combines JOR [19, Ch.
2.4] and DAC [20] to decentralize the computations (11),
(12) of NPAE (Fig. 2-(a)). The JOR is an iterative method
to solve a system of linear algebraic equations in the form
of Hz = b, where H = [hij ] ∈ RM×M is a known non-
singular matrix with non-zero diagonal entries hii 6= 0, b ∈
RM is a known vector, and z ∈ RM is an unknown vector.
More specifically, the i-th robot knows: i) the i-th row of the
known matrix rowi{H} ∈ R1×M ; and ii) the i-th element
of the known vector bi ∈ R. The objective is to find zi ∈ R,
the i-th element of the unknown vector z. The JOR follows,

z
(s+1)
i = (1− ω)z

(s)
i +

ω

hii

bi −∑
j 6=i

hijz
(s)
j

 , (13)

where s ∈ Z≥0 is the iteration number and ω ∈ (0, 1) the
relaxation parameter.

Remark 1. The summation in (13) requires communication
with all robots, as it is computed over j other than i. This
means that each agent must know the update value (13)
of every other agent {z(s)j }j 6=i. That is a major restriction,
as it imposes a strongly complete graph (Fig. 1). Although
in [8], [37], [41] JOR is used for distributed networks, it
is unrealistic for many robotic applications due to limited
communication. However, we evaluate the use of JOR, as in
some applications with small fleet size, strongly complete
networks are feasible. For not strongly complete network
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Fig. 2. The structure of DEC-NPAE and DIST-NPAE. Blue dotted lines
correspond to communication. (a) DEC-NPAE incorporates Jacobi over-
relaxation (JOR) and discrete-time average consensus (DAC). (b) DIST-
NPAE makes use of covariance-based nearest neighbors (CBNN) and a
distributed algorithm to solve systems of linear equations (DALE).

topologies, distributed flooding is required at every iteration
to obtain {z(s)j }j 6=i and implement (13). The number of inter-
robot communications for distributed flooding is the diameter
of the graph diam(G). Thus, the total number of iterations
yields sJOR = diam(G)s

(end)
JOR .

We execute two parallel JOR algorithms with known
matrix H = KA and known vectors: i) b = µ; and ii)
b = kA. The first JOR is associated with the prediction
mean (11) and the second with the variance (12). Note that
KA is a symmetric and positive definite covariance matrix.

Lemma 1. [42, Theorem 2] Let the graph G be time-
invariant and strongly complete. If H is symmetric and
positive definite, and ω < 2/M , then the JOR converges
to the solution for any initialization z(0)i .

To conserve space we discuss the computation of the
prediction mean µagg (11). The computation of the variance
σ2

agg (12) is similar (Alg. 1). We split up the computation of
µagg (11) in two parts. First, each robot computes an element
of the unknown vector zi = {K−1A µ}i ∈ R (Alg. 1-[lines
18–19]) with the JOR method (13). After every iteration
and depending on the network topology, either each agent
communicates the computed value z(s)i ∈ R to its neighbors
Ni (Alg. 1-[line 14]), or a distributed flooding is executed to
broadcast all computed values {z(s)j }j 6=i ∈ RM−1 to every
other agent (Alg. 1-[line 16]). When JOR (13) converges,
each agent computes locally the i-th element of the resulting
summation from the multiplication between the vectors kᵀA
and K−1A µ (11), that is vi = {kA}izi. Second, since all
agents have stored a part of the summation vi, we use the
discrete-time average consensus (DAC) that yields,

v
(s+1)
i = v

(s)
i + ε

∑
j∈Ni(t)

aij(t)(v
(s)
j − v

(s)
i ), (14)

where ε is the parameter of the Perron matrix and aij(t) is the
(i, j)-th entry of the adjacency matrix. After every iteration
of DAC (14) (Alg. 1-[lines 24–25]) and irrespective of the
network topology, each agent communicates the computed
value v(s)i ∈ R to its neighbors Ni (Alg. 1-[line 23]). Use of

Algorithm 1 DEC-NPAE
Input: X , k, M , A, x∗, η
Output: µdec, σ2

dec
1: initialize ω = 2/M ; ε = 1/∆
2: for each i ∈ V do . Training
3: yi ← measure(Xi)
4: θ ← factorTraining(yi,Xi, k) . Section II-B.1
5: end for
6: for each i ∈ V do . Prediction
7: µi ← localMean(x∗, k,Xi,θ,yi) (8)
8: {kA}i ← crossCovariance(x∗, k,Xi,θ) (9)
9: rowi{KA} ← localCovariance(x∗, k,X,θ) (10)

10: Hi = rowi{KA}; bµ,i = µi; bσ2,i = {kA}i
11: initialize z(0)µ,i = bµ,i/{H}ii, z

(0)

σ2,i
= bσ2,i/{H}ii

12: repeat . JOR
13: if graph is strongly complete then
14: communicate z(s)µ,i , z

(s)

σ2,i
to neighbors Ni

15: else
16: {z(s)µ,j}j 6=i, {z

(s)

σ2,j
}j 6=i ← flooding

17: end if
18: z

(s+1)
µ,i ← JOR(ω,Hi, bµ,i, z

(s)
µ,i, {z

(s)
µ,j}j 6=i) (13)

19: z
(s+1)

σ2,i
← JOR(ω,Hi, bσ2,i, z

(s)

σ2,i
, {z(s)

σ2,j
}j 6=i) (13)

20: until maximin stopping criterion
21: initialize v(0)µ,i = {kA}iz

(end)
µ,i , v(0)

σ2,i
= {kA}iz

(end)
σ2,i

22: repeat . DAC
23: communicate v(s)µ,i , v

(s)

σ2,i
to neighbors Ni

24: v
(s+1)
µ,i ← DAC(ε, v

(s)
µ,i, {v

(s)
µ,j}j∈Ni

,Ni) (14)

25: v
(s+1)

σ2,i
← DAC(ε, v

(s)

σ2,i
, {v(s)

σ2,j
}j∈Ni

,Ni) (14)
26: until maximin stopping criterion
27: µdec = Mv

(end)
µ,i . Local Mean

28: σ2
dec = σ2

f (k(x∗,x∗)−Mv
(end)
σ2,i

) . Local Variance
29: end for

consensus protocols implicitly requires that each robot can
distributively determine convergence in the robotic network.
In other words, just because an agent converged does not
imply that the network has reached consensus. We employ a
maximin stopping criterion [43] to locally detect convergence
in the network for JOR (Alg. 1-[line 20]) and DAC (Alg. 1-
[line 26]). When DAC (14) converges, each robot knows
v
(end)
i = (1/M)kᵀAK

−1
A µ. Finally, using Assumption 4 the

robots compute the mean (11) with µdec = Mv
(end)
i .

Lemma 2. [20, Theorem 2], [44, Cor. 5.2] Let Assumption
2 hold. If 0 < ε < 1/∆, then the distributed consensus
algorithm (14) converges to the average for any initialization
v
(0)
i with convergence speed Tn(ε) = O(M3 log(M/ε)).

Proposition 2. Let the graph G be either time-invariant
strongly compete or time-invariant strongly connected during
the JOR iterations and let Assumption 2 hold during the DAC
iterations. In addition, let Assumption 3 and Assumption 4
hold throughout the approximation. If ω < 2/M , 0 < ε <
1/∆, then the DEC-NPAE is consistent for any initialization.

Proof: The proof is a direct consequence of Proposi-
tion 1, Lemma 1, and Lemma 2.

C. Distributed NPAE

We introduce DIST-NPAE that uses DALE to distribute the
computations (11), (12) of NPAE (Fig. 2-(b)). The DALE
is an iterative method to solve a system of linear equations



Algorithm 2 DIST-NPAE
Input: X , k, M , A, x∗, η, ηNN

Output: µdist, σ2
dist

1: for each i ∈ V do . Training
2: yi ← measure(Xi)
3: θ ← factorTraining(yi,Xi, k) . Section II-B.1
4: end for
5: for each i ∈ V do . Prediction
6: µi ← localMean(x∗, k,Xi,θ,yi) (8)
7: kA ← crossCovariance(x∗, k,X,θ) (9)
8: rowi{KA} ← localCovariance(x∗, k,X,θ) (10)
9: for each i ∈ V do . Nearest Neighbor

10: if {kA}i < ηNN then
11: delete {kA}i from kA
12: delete {rowi{KA}}i from rowi{KA}
13: end if
14: end for
15: Hi = rowi{KA}; bµ,i = µi; bσ2 = kA
16: P i ← kernelProjection(M,Hi)

17: initialize z(0)µ,i = bµ,i �Hi, z
(0)

σ2,i
= bσ2 �Hi

18: repeat . DALE
19: communicate z(s)µ,i, z

(s)

σ2,i
to neighbors Ni

20: z
(s+1)
µ,i ← DALE(P i,Hi, bµ,i, {z

(s)
µ,j}j∈Ni

,Ni) (15)

21: z
(s+1)

σ2,i
← DALE(P i,Hi, bσ2,i, {z

(s)

σ2,j
}j∈Ni

,Ni) (15)
22: until maximin stopping criterion
23: µdist = kᵀAz

(end)
µ,i . Local Mean

24: σ2
dist = σ2

f (k(x∗,x∗)− kᵀAz
(end)
σ2,i

) . Local Variance
25: end for

with identical setup to JOR Hz = b, where H is a known
matrix, b a known vector, and z an unknown vector. The i-th
robot knows: i) i-th row ofHi = rowi{H} ∈ R1×M ; and ii)
i-th element of the bi ∈ R. In addition, DALE is formulated
as a consensus problem, where the goal for all robots is to
obtain the same solution zi ∈ RM and not just an element
of the unknown vector as in JOR. The DALE follows,

z
(s+1)
i = Hᵀ

i (HiH
ᵀ
i )−1bi +

1

card(Ni(t))
P i

∑
j∈Ni(t)

z
(s)
j ,

(15)
where P i = IM − Hᵀ

i (HiH
ᵀ
i )−1Hi ∈ RM×M is the

orthogonal projection onto the kernel of Hi.

Remark 2. Notably, the i-th robot using DALE (15) ex-
changes information only with its neighbors Ni and not with
the whole network (see in contrast Remark 1 for JOR). In
addition, DALE is concurrently a consensus algorithm and
updates the whole vector z(s)i ∈ RM , while JOR updates just
the corresponding entry z(s)i ∈ R. This concurrent operation
of DALE makes it equivalent to the operation of both JOR
and DAC. To this end, the communication events of DIST-
NPAE are expected to be significantly reduced, compared
to DEC-NPAE. A qualitative comparison of communication
events for DEC-NPAE and DIST-NPAE is shown in Fig. 2.

To ensure that H is full row rank, we introduce the
covariance-based nearest neighbor (CBNN). Note that As-
sumption 3 allows the local computation of the cross-
covariance vector kA (9) and not just the i-th entry {kA}i. In
addition, DALE can be executed in a time-varying network
under Assumption 2. The main idea is to use these two ob-

TABLE I
TIME AND SPACE COMPUTATIONAL COMPLEXITY

Complexity FULL-GP NPAE DEC- & DIST-NPAE
local global local

Time O(N3) O(NN2
i ) O(NN2

i )(Training)
Time O(N2) O(N2

i ) O(M3) O(N2
i )(Prediction)

Space O(N2 +DN) O(N2
i +DNi) O(N2

i +DNi)

servations in order to select which robots should be involved
in the aggregation. In other words, instead of specifying
an arbitrary radius to determine the nearest neighbors, we
identify the non-zero elements of the cross-covariance vector
kA(x∗) and use only these robots MNN ∈ [2,M ] to the
aggregation. The CBNN selection method is executed before
the DALE (15) and modifies the cross-covariance kA and
covariance KA accordingly (Alg. 2-[lines 9–14]).

Similarly to DEC-NPAE, we execute two parallel DALE
algorithms with known matrix H = KA and known vectors:
i) b = µ; and ii) b = kA. The first DALE is associated
with the prediction mean µagg (11) and the second with
the variance σ2

agg (12). To conserve space we discuss only
the computation of the mean (11), yet the variance (12) is
similar (Alg. 2). Since DALE is concurrently an iterative
and a consensus method, the DIST-NPAE is an one step
process. To this end, each robot computes the unknown
vector zi = {K−1A µ}i ∈ RM (Alg. 2-[lines 20–21]) using
DALE (15). Next, at every iteration the computed vector
z
(s)
i ∈ RM is communicated to the neighbor set Ni (Alg. 2-

[line 19]). When (15) converges, every robot has access to
the same vector. Next, we exploit Assumption 3 to compute
the directly aggregation as µdist = kᵀAz

(end)
i .

Proposition 3. Let Assumption 2 and 3 hold. Then, the DIST-
NPAE is consistent for any initialization of DALE.

Proof: (Sketch) It can be shown that the separable
squared exponential kernel (2) is a monotonically decreas-
ing function that characterizes the CBNN with an ellipse.
Observe that the selected graph topologies include only
connected robots in the elliptical space, preserving the con-
nectivity in the nearest neighbor graph GNN. Hence, the DIST-
NPAE with CBNN maintains strong connectivity. The rest is
a direct consequence of DALE convergence [22, Theorem 3].

D. Complexity and Convergence

A comparison of time and space complexity is presented
in Table I. Since we employ iterative methods, our interest
is focused on communication and accuracy. Essentially, the
number of iteration upon convergence is identical to inter-
robot communication events. In other words, the cumulative
number of iterations (for DEC-NPAE sdec = sJOR + sDAC
and for DIST-NPAE sdist = sDALE) is the required commu-
nications per agent. In addition, the CBNN in DIST-NPAE
diminishes the communications per agent when the nearest
neighbors MNN are less then the size of the fleet M .



Fig. 3. (a) SST field [45]; (b) Observations of each robot for M = 10.

IV. NUMERICAL EXPERIMENTS

Numerical experiments are performed to illustrate the effi-
cacy of our methods. We use a real-world dataset of sea sur-
face temperature (SST) [45], [46]. We extract 122, 500 SST
values from (36.4o,−73.0o) to (40.0o,−69.4o) measured in
Kelvins. The area corresponds to 400 km × 400 km of the At-
lantic ocean and for demonstration is normalized over [0, 1]2

(Fig. 3-(a)). Additionally, we add iid noise ε ∼ N (0, 0.25)
to the observations (1). We use 20, 000 observations, equally
distributed for seven fleet sizes M = {2, 4, 5, 10, 20, 25, 40}
(Fig. 3-(b)). We employ six techniques over 100 prediction
points: i) FULL-GP; ii) NPAE; iii) DEC-NPAE with com-
plete graph; iv) DEC-NPAE with path graph; v) DIST-NPAE
with path graph; and vi) DIST-NPAE with augmented path
graph, where each graph type is shown in Fig. 1. For every
scenario we perform 15 replications to remove the effect of
random assignment of data.

The quality assessment is accomplished with four metrics.
The root mean square error RMSE = [1/N

∑N
i=1(µ(x∗) −

y(x∗))
2]1/2 assesses the accuracy. The negative log pre-

dictive density NLPD = −1/N
∑N
i=1 log p(ŷ∗ | D,x∗)

characterizes the error of the prediction mean and variance,
where p(ŷ∗ | D,x∗) is the predictive distribution [47]. The
mean variance error MVE = 1/N

∑N
i=1(σ2(x∗)−σ2

agg(x∗))
evaluates the prediction variance with respect to the variance
of NPAE. Lastly, we count the communications per agent as
the number of iterations sdec and sdist. Demonstration code
can be found at: github.com/gkontoudis/decentralized-GP.

In Fig. 4-(a), we show the average RMSE values for all
15 replications. Since our algorithms approximate NPAE,
the lowest possible RMSE values are that of NPAE (dotted
red). We observe that for fleet size equal or greater to 25
robots, DIST-NPAE with path graph (dash-dotted blue) and
with augmented path graph (dashed pink) are inaccurate, as
they produce high RMSE values. When the fleet comprises
of 20 agents or less, then DIST-NPAE offers competi-
tive predictions regardless of the neighborhood size. DEC-
NPAE with path graph (dashed green) and DEC-NPAE with
strongly complete graph (dotted maroon) produce identical
and accurate predictions for all number of agents.

In Fig. 4-(c), we depict the average MVE. Both DIST-
NPAE approximate the variance with reasonable MVE
values. The DEC-NPAE approximates very accurately the
variance of NPAE for all number of agents.

Next, we present the average communications per agent
for all 15 trials in Fig. 4-(d). Note that communications per

Fig. 4. Approximate methods over 20, 000 observations of seven fleet sizes.

agent is logarithmically scaled and thus any difference in
the plot is major. Although DEC-NPAE outperforms DIST-
NPAE both in accuracy and uncertainty quantification (see
Fig. 4-(a)–(c)), we observe that DEC-NPAE requires sub-
stantially more communications. More specifically, the com-
parison of same path graph topologies (maroon dotted and
blue dash-doted) reveals that DEC-NPAE entails at least one
order of magnitude more information exchange to converge.
Notably, even conservative network topologies with strongly
complete graphs of DEC-NPAE (green dashed) entail at least
double communications when compared to a much weaker
topology, the path graph with DIST-NPAE (pink dashed).
Alleviation in communication of DIST-NPAE is occurred due
to the CBNN selection strategy and the DALE algorithm.
As a result, a trade-off exists between prediction accuracy
and communications. For challenging communication envi-
ronments, DIST-NPAE offers a distributed solution that advo-
cates acceptable predictions with less information exchange
than competing methods. In contrary, when communication
is unrestricted, DEC-NPAE produces accurate predictions.

V. CONCLUSION

The two proposed decentralized algorithms, DEC-NPAE
and DIST-NPAE, cover a broad spectrum of decentralized
GPs in robotic applications. Both methods are computation-
ally efficient using only local computation of NPAE and
proved to be consistent under specific graph topologies. The
DEC-NPAE produces almost identical predictions to NPAE
for all graph topologies regardless of fleet size, yet entails
excessive inter-robot communication. On the other hand,
DIST-NPAE with CBNN converges with significantly less
information exchange and produces satisfactorily predictions
for small and medium fleet size.

https://github.com/gkontoudis/decentralized-GP
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