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I. INTRODUCTION

Exploration with a team of robots is an important task
for the majority of robotic missions, including environmental
monitoring [1], search and rescue [2], and coverage path plan-
ning [3]. An efficient way to perform robotic exploration is by
using active learning [4] with Gaussian processes (GPs) [5]–
[7]. Although GPs have proven to be accurate in various
multi-robot applications [8]–[16], they suffer from scalability
issues. In addition, for their implementation in decentralized
networks, the communication overhead becomes significantly
high. Since coordination of multi-robot systems requires ef-
fective communication to maintain network connectivity, the
communication channel cannot be congested for the imple-
mentation of GPs. Typically, communication links are con-
sidered as deterministic distances between robots [17]–[26].
Unambiguously, the communication performance depends on
the distance of robots, yet the environment imposes significant
challenges. The environmental variations lead to complex
channel modeling which cannot be reliably represented by
deterministic functions, but rather are interpreted as a statis-
tical realization [27]. Yet, even the best statistical model of
communication performance cannot incorporate every single
source of noise or all parameters of the environment, and may
fail in practice. Probabilistic learning combined with model-
based elements are useful to accurately model the communica-
tion performance. Thus, GPs are not only powerful to explore
the environment, but also can create communication maps
for the interaction between robots. After the goal locations
are specified to efficiently explore the environment, a motion
planning technique is required. Since the obstacle space is
usually unknown a priori, a rapid replanning algorithm is
needed to adjust in the obstacle space changes [28]. In addi-
tion, kinodynamic constraints have to be satisfied with a low-
level controller. In such cases, an optimal control scheme is
desired, yet it requires significant computations [29], suffering
from uncertain dynamics and external disturbances [30].

Objective: We aim to develop scalable and decentralized
GPs for the exploration of non-stationary environments using a
team of robots. To maintain network connectivity, we intend to
predict the communication performance at unvisited sites. For
the navigation, we seek real-time optimal kinodynamic motion
planning techniques that are robust to external disturbances.

Related Work: To alleviate the computation demand for GP
training, a factorized method is discussed in [31]. In [32], the
alternating direction method of multipliers (ADMM) [33] is
used to solve the distributed optimization problem of GP train-

ing. To further reduce the complexity, the inexact proximal
ADMM [34] is employed in [35]. However, all these works
require a centralized topology to achieve hyper-parameter
GP training. Scalable approaches for GP prediction involve
local approximations [36]. The goal is to aggregate local
predictions to a central server [31], [37]–[39]. Since most of
these methods are inconsistent [31], [37], [38], a nested point-
wise aggregation of experts is introduced in [40], but with high
computations in the central node. A generalized approach that
equips local datasets with a global dataset is proposed in [41].
Similarly to the training methods, local approximations for
GP prediction impose a centralized topology, and thus are
impractical for multi-robot missions [18].

A method to generate global and local underwater acoustic
communication maps based partially on kriging (equivalent
to GPs [6]) is proposed in [42]. In [43], communication
maps of known terrestrial environments are built using GPs
from multiple agents. Optimal relay positioning for improving
indoor communication of mobile sensor networks using GPs
is discussed in [44]. Prediction is achieved using model-free
ordinary kriging that assumes a stationary random field.

Kinodynamic motion planning in static environments with
optimal control for controllable linear systems is introduced
in [45]. A feedback kinodynamic motion planning technique
for static environments that combines convex optimization
tools and Lyapunov functions for linearized systems is dis-
cussed in [46]. In [47], a variant of deep reinforcement
learning is combined with RRT for kinodynamic motion
planning. In [48], the authors propose a real-time kinodynamic
motion planner using local replanning and offline machine
learning techniques to facilitate an online implementation.
All of these methods require significant offline computations,
exact knowledge of the system dynamics, and they are not
robust to external disturbances.

II. TECHNICAL APPROACH AND CONTRIBUTIONS

The proposed method for scalable and fully decentralized
exploration with a team of robots consists three steps: i)
decentralized GPs for the variable of interest and communica-
tion performance prediction; ii) decentralized active learning
with GPs for the variable of interest; and iii) kinodynamic
motion planning with continuous-time Q-learning for low-
level control of each robot, as shown in Fig. 1.

A. Decentralized Gaussian Processes [49], [50]

1) Training: Factorized GP training [31] invokes indepen-
dence between local models Mi to result in the approxima-
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Fig. 1. Structure of the scalable multi-robot active exploration with GPs.

tion of the log-likelihood function as L(θ) ≈
∑M

i=1 Li(θi),
where M is the number of robots. This also implies that the
costly inversion of the covariance matrix is approximated as
K−1 ≈ diag(K−1

1 , . . . ,K−1
M ), reducing the computations

from O(N3) to O(N3/M3), where N =
∑M

i=1 Ni is the
number of total observations. Assuming that the decentral-
ized network topology is strongly connected, the maximum
likelihood optimization problem for the estimation of GP
hyper-parameters θ is expressed as the edge ADMM for-
mulation [51]. To address this problem we consider a first-
order approximation of the local log-likelihood around the
optimizing hyper-parameter vector at the s-th iteration θ(s) as
discussed in [52]. We extend the latter approach by computing
an analytical solution of the nested ADMM optimization
problem. The results reveal three orders of magnitude faster
GP training when compared to a typical GP [6]. In addition,
it is reported similar time execution and accuracy with the
centralized methods [31], [35], [41] for all fleet sizes.

2) Prediction: The estimated hyper-parameter vector θ̂ is
employed from each robot i to compute a local mean µi(x∗)
and variance σ2

i (x∗). Then, the robots exchange local values
to perform local approximations. We provide decentralized
algorithms for the implementation of the centralized local
approximations [31], [37]–[39], [41] using consensus pro-
tocols [53]. Essentially, each robot i employs the average
consensus values and the size of the fleet to replace all
summations in the local approximations. Next, we introduce a
methodology to select statistically correlated nearest neighbors
for the location of interest x∗ by formulating a random
process over the local mean values, which is showed to be
a GP (µ1, . . . , µM , y(x∗))

⊺ ∼ GP(µµ,Cθ,µ). We leverage
the cross-covariance elements of Cθ,µ to represent the corre-
lation of each robot i to the location of interest. The results

demonstrate convergence of all decentralized methods to the
centralized local approximations, yielding identical predic-
tions. Moreover, the nearest neighbor method indicates 42.5%
reduction in robot involvement to the local approximations
without sacrificing prediction accuracy.

B. Communication Performance Prediction [54]–[56]
The underwater acoustic (UWA) communication of subma-

rine robots is considered as a non-stationary, spatial random
field. We use signal-to-noise ratio (SNR) to evaluate the
communication performance. The SNR measurement model
is separated to a deterministic part for the mean function
and a Gaussian random field for the spatial variability. In-
spired by the UWA stochastic model [27], we design a basis
function to estimate the mean function, which incorporates a
linear-log relationship to the distance of robots r as X =
[1,Φ(x),Φ(y), r, log r], where Φ(·) is a radial basis function.
For the spatial variability we employ three covariance func-
tions and select the most suitable model by using the posterior
distribution of the Bayesian information criterion (BIC) [57].
When no clear preference to a model is indicated, a new
covariance function is constructed as the convex combination
of the three models, with weights the posterior of BIC. Field
trials illustrate accurate predictions and realistic uncertainty
quantification in various ambient noise environments.

C. Online Kinodynamic Motion Planning [58]–[62]
A scalable decoupled approach is designed, where: i) the

sampling-based path planning method RRTX [28], [63] pro-
vides a set of boundary value problems in dynamic envi-
ronments; and ii) a Q-learning controller is responsible for
low-level robot navigation. The continuous-time Q-learning
controller is formulated to solve the finite-horizon optimal
control problem with completely unknown system dynamics.
The Q-function is defined as the optimal value function and
the Hamiltonian corresponding to the finite-horizon objective
Q(x;u; t) := V ⋆(x; t)+H(x;u; ∂V ⋆/∂t, ∂V ⋆/∂x), as in [64].
We form an actor-critic structure on the error of the Q-function
and the error of the optimal control [65]. Then, we learn the
actor-critic weights by using gradient descent with closed-
form derivatives. Lyapunov-based proofs ensure closed-loop
stability of the equilibrium point. The results reveal collision-
free navigation in unknown dynamic obstacle environments.

III. FUTURE WORK

In the future, we plan to decentralize the implementation
of active learning (AL) with GPs [4], [5]. The idea of AL is
to explore an environment with sequential GP model updates.
Objective functions are used as criteria to identify the next goal
sampling locations. Their main disadvantage is the scalability
for real-time implementation, especially with non-myopic cri-
teria [66]. In addition, for decentralized AL the robots need to
communicate as little as possible. Although fast GP updates
can be used to alleviate the computational complexity [67],
analytical solutions for the partial derivatives of the objective
functions can accelerate the convergence rate and reduce the
communication overhead of decentralized methods.
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