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Abstract

Accurate prediction of acoustic communication performance is an important
capability for marine robots. In this paper, we propose a model-based learn-
ing methodology for the prediction of underwater acoustic communication
performance. The learning algorithm consists of two steps: i) estimation
of the covariance matrix by evaluating candidate functions with estimated
parameters; and ii) prediction of communication performance. Covariance
estimation is addressed with a multi-stage iterative training method that
produces unbiased and robust results with nested models. The efficiency
of the framework is validated with simulations and experimental data from
field trials. The field trials involved a manned surface vehicle and an au-
tonomous underwater vehicle.

Keywords: Model-based Learning, Autonomous Underwater Vehicles,
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1. Introduction1

Coordination of multiple autonomous underwater agents requires effective2

communication for various cooperative missions [1]. For agents that operate3

underwater, inter-vehicle communication is usually accomplished using wire-4

less underwater acoustic (UWA) signals. In the majority of the literature,5
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wireless communication performance is treated as a deterministic, range-6

dependent function [2, 3, 4, 5, 6, 7, 8, 9]. In the graph theory literature7

this is also known as r-disk communication graph [10, 11, 12, 13, 14, 15, 16].8

Indeed, communication performance is a function of vehicle range, but it is9

also dependent on many other environmental effects, including multi-path10

propagation and background noise [17]. In addition to the exchange of data,11

acoustic communication can also provide vehicle range information to im-12

prove navigation, as global positioning system (GPS) is unavailable in subsea13

environments [18].14

Our goal in this work is to predict UWA communication performance15

at unvisited locations using a set of communication performance measure-16

ments from nearby locations. We employ a two-step learning methodology17

that comprises: i) the estimation of covariance parameters and the statistical18

selection of a covariance function; and ii) the prediction of the communica-19

tion performance and its corresponding variance. Intuitively, the two-step20

process can be interpreted as first training from data, and then predicting21

the variable of interest at unvisited locations. The estimation of the covari-22

ance function and of its parameters merits special consideration, because it23

encodes the assumption on a stationary random field and generalizes the24

properties of the underlying latent process. Accurate predictions of antici-25

pated communication performance can be exploited to plan better utilization26

of communication resources. Our general approach may be applicable to ter-27

restrial networks, including aerial and ground communication using radio28

waves. The main idea is to leverage recent advances in spatial statistics and29

UWA communication modeling, to provide a realistic statistical prediction30

of inter-vehicle communication performance for teams of marine robots.31

In underwater wireless sensor networks, kriging (equivalent to Gaussian32

processes [19, 20]) has been used to model communication performance in33

several applications. Horner et al. [21], proposed a methodology based par-34

tially on ordinary kriging for the generation of local and global acoustic35

communication performance maps to facilitate collaborative navigation. A36

distributed kriging methodology was used in [22] to estimate coverage holes37

in large-scale wireless sensor networks. The authors in [23] developed a co-38

operative robust algorithm to compose a spatial map of underwater acoustic39

communication signals and channel parameters using an H∞ filter and or-40

dinary kriging. In [24], the acoustic communication performance of micro41

autonomous underwater vehicles (AUVs) was assessed with field trials. The42

results of the latter reveal that for non-stationary transmission, i.e. moving43
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vehicle, several factors reduce communication performance, including multi-44

path effect of acoustic transmission and the Doppler effect. In [25], a method-45

ology that combines ordinary kriging and compressive sensing methods, was46

utilized for prediction of acoustic intensity. Prediction of communication47

performance has been addressed for radio applications. In [26], the authors48

employ maximum-likelihood estimation for the parameters of the covariance49

matrix, logarithmic transformation for the underlying mean towards a model-50

based approach, and compressive sensing for prediction with sparse data. In51

addition, they show that the location of measurements may improve the pre-52

diction quality. In [27], the authors proposed an ordinary kriging prediction53

framework with detrended data to build radio environment maps and they54

also considered positional error of the measurements. Gaussian processes55

have also been used to build communication maps of known terrestrial envi-56

ronments with multiple agents [28]. Specifically the authors used a Gaussian57

process with constant mean value [19, (2.38), p.27] (equivalent to ordinary58

kriging) and squared exponential covariance function. Their methodology59

uses communication priors based on four communication path-loss models to60

reduce the uncertainty of the communication maps. In the same spirit, in [29]61

a Gaussian process with fixed mean function and a squared exponential co-62

variance function is proposed to predict the WiFi channel quality and find the63

optimal relay position for mobile networks. Ordinary kriging assumes that64

the underlying process is stationary. In addition, in all of these works it was65

assumed that the covariance model follows a specific theoretical covariance66

function. In our work, we formulate the problem as a non-stationary random67

field with universal kriging, which is equivalent to GPs with model-based68

fixed basis functions [19, (2.41), p.28]. Moreover, we investigate multiple69

theoretical models for the statistical selection of the covariance function.70

Communication performance estimation can be used to estimate the po-71

sition of a vehicle. In [30], the authors employed Gaussian processes to de-72

termine a likelihood model of the received signal strength (RSS) for WiFi to73

estimate the location of robots. This approach requires to compare a training74

set of RSS observations to a ground truth map, yet this is a computationally75

demanding process for large maps. To alleviate the computational burden,76

the authors in [31] used a Gaussian process latent variable model (GP-LVM)77

to: i) generate the RSS map, ii) compute the position of the vehicle, and iii)78

build the seafloor map. In these works, only the RSS measurements were79

used for the construction of RSS maps. In our work, we also use the distance80

between communicating vehicles to build basis functions for detrending of81
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non-stationary processes.82

In [32], we formulated the UWA communication performance problem us-83

ing multivariate kriging techniques [33], namely cokriging. More specifically,84

we compared ordinary kriging with ordinary cokriging for the prediction of85

UWA communication performance. Cokriging provided better results, but86

the assumption of stationary mean and the lack of parameter estimation for87

the covariance matrix revealed deficiencies in both prediction techniques.88

Contributions : The contribution of this paper is twofold. First, we for-89

mulate the problem as a non-stationary random field and propose basis func-90

tions, inspired by the propagation model. The basis functions are then used91

to detrend the measurements and allow the implementation of stationary92

kriging. Second, we introduce an iterative technique to identify theoretical93

models that describe the unknown underwater acoustic environments. Since94

the covariance of the UWA propagation model is unknown, we compute the95

parameters of multiple theoretical covariance functions and based on the96

Bayesian information criterion we select a theoretical model that fits best97

to the data. To this end, the iterative technique selects the most suitable98

theoretical covariance model for each environment.99

Structure: The remainder of this paper is structured as follows. In Sec-100

tion 2 we formulate the problem, Section 3 discusses the parameter estima-101

tion of the covariance matrix, Section 4 focuses on the spatial prediction,102

Section 6 provides the simulations, the experiments, and the results, and103

Section 7 concludes the paper and provides future directions.104

2. Problem Formulation105

In this section we discuss the foundations of random fields, describe the106

problem, and present the UWA communication performance model. In ad-107

dition, we formulate the problem as a Gaussian random field.108

2.1. Foundations109

The notation here is standard. The set of real numbers is denoted R,110

the set of all positive real numbers R>0, and the set of all non-negative real111

numbers R≥0. The transpose and inverse operators are denoted (·)ᵀ and (·)−1
112

respectively. The expectation, the variance and the covariance operators113

are represented by E[·], Var[·], and Cov[·, ·] respectively. The notation y ∼114

N (µ,Σ) denotes y that is drawn from a Gaussian distribution with a vector115

of means µ and covariance matrix Σ. We denote by In the identity matrix116
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of n × n dimension. The vector of n zeros is represented as 0n and the117

matrix of n × m zeros as 0n×m. The hat ŷ denotes the estimated value of118

y and the superscript in parenthesis ŷ(n) the n-th iteration of an estimation119

process. The cardinality of the set K is denoted card(K), the absolute values120

is denoted |·|, and ‖·‖ denotes the L2 norm.121

Next, we introduce basic notions of random fields. For a more in-depth
discussion the reader may refer in [34, 35, 36]. A random field is a stochastic
process indexed in the Euclidean space. Let Z(x) be a random field 1 with
covariance Cov[Z(x), Z(x + h)] for all x, x + h ∈ Rm, where x denotes the
spatial coordinates, h is the separation vector between two locations, and m
is the dimension of the coordinates, e.g. m = 2 for planar coordinates. The
variogram is a statistical measure of spatial autocorrelation that is defined
by,

2γ(h) := E

[(
Z(x + h)− Z(x)

)2
]
, (1)

where γ(h) : Rm → R≥0 is a conditionally negative definite function [33]122

termed as semivariogram. The condition ensures that the variance of the123

random field Z(x) is positive.124

Lemma 1. A semivariogram function γ : Rm → R≥0 is a conditionally125

negative definite function if and only if exp{−ζγ} is positive definite for all126

ζ > 0.127

Proof 1. The proof follows from [37, p. 74].128

A random field is intrinsically stationary if both E[Z(x + h)−Z(x)] = 0129

and Var[Z(x + h) − Z(x)] = 2γ(h) for all x, x + h ∈ Rm are satisfied. An130

intrinsically stationary random field with constant mean E[Z(x)] = µ and131

Cov[Z(x), Z(x + h)] = C(h) is called second-order stationary. Note that132

the covariance function C(·) is a conditionally positive definite function and133

stationary—depending only on the separation vector h and not on spatial134

coordinates x. Second-order stationarity implies intrinsic stationarity and135

the Gaussian assumption, yet the converse is not always true.136

1Throughout the paper, we use the “random field,” “random process,” and “random
function” interchangeably.
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For a second-order stationary random field the correlation function is137

defined by ρ(h) := C(h)/C(0m), where ρ(h) ∈ [−1, 1] with |C(h)|≤ C(0m) =138

Var[Z(x)] and C(0m) = σ2 + τ 2 is the sill of the semivariogram with σ2 the139

partial sill and τ 2 the nugget effect. The partial sill σ2 is a semivariogram140

value where no correlation of data further exists and the nugget τ 2 represents141

the variance of the data measurement error at a given location.142

Given a covariance function C(h) the variogram (1) yields,

2γ(h) = Var[Z(x + h)− Z(x)]

= Var[Z(x + h)] + Var[Z(x)]− 2Cov[Z(x + h), Z(x)]

= C(0m) + C(0m)− 2C(h)

= 2(C(0m)− C(h)). (2)

We cannot always construct the covariance from the variogram, as the var-
iogram may be unbounded. Thus, let us assume that the random field is
ergodic. That is as ‖h‖→ ∞ then C(h)→ 0. In other words, when the dis-
tance between two measurements is very large ‖h‖→ ∞, there is no spatial
correlation C(h)→ 0. The limit of (2) as ‖h‖→ ∞ yields,

C(h) = γ(∞)− γ(h), (3)

where γ(∞) = suph γ(h) <∞ is non-negative.143

When the variogram depends only on the displacement vector norm, i.e.144

2γ(h) = 2γ(‖h‖), then the variogram is isotropic, otherwise it is anisotropic.145

2.2. Problem Formulation146

We consider the problem of inter-vehicle UWA communication of two ve-147

hicles. In Fig. 1, we illustrate two cases of UWA communication between148

two vehicles at range r, with xt the position of the transmitting vehicle and149

xr the position of the receiving vehicle. The first case is shown in Fig. 1-(a)150

where the success of the communication event depends solely on a maxi-151

mum communication range Q. This means that if the vehicle range exceeds152

the communication range r > Q, then the communication cannot be accom-153

plished. In practice, this binary approach is unrealistic, as multiple spatially-154

dependent factors may affect the communication of two vehicles, such as155

scattering, motion-induced Doppler effect, background noise and change of156

environmental conditions. To this end, we propose multi-dimensional com-157

munication performance maps for various ranges as illustrated in Fig. 1-(b).158
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Figure 1: Communication scenarios of two autonomous underwater vehicles (AUVs) at
range r. The transmitting vehicle is located at position xt and the receiving vehicle at
position xr. (a) The communication success relies on a deterministic maximum commu-
nication range Q. (b) The communication performance using signal-to-noise ratio (SNR)
is predicted for specific vehicle ranges.

More specifically, we assess the communication performance of an UWA net-159

work of vehicles for specific ranges by modeling the problem as a spatial160

Gaussian random field with a spatially varying mean. Note that the Gaus-161

sian model is a reasonable assumption, as it has been validated with multiple162

experimental data [38]. For the evaluation of the communication performance163

we employ signal-to-noise-ratio (SNR) measurements.164

Let the SNR measurements be modeled by,

Y (x; v) = µ(x; v) + Z(x; v) + ε(x), (4)

where Y (x; v) ∈ Rn is the measurement vector describing a non-stationary165

random field at spatial coordinates x ∈ R2, µ(x; v) is the deterministic mean166

(or spatial trend), Z(x; v) ∼ N (0,Σ(x; v)) ∈ Rn is a second-order stationary167

random field with Σ(x; v) its covariance matrix, and ε ∼ N (0, τ 2In) is an168

independent and identical distributed (iid) zero-mean Gaussian random field.169

The mean µ is the spatial trend that represents large-scale variability, the170

second-order stationary random field Z captures medium-scale variability,171

and the white noise ε is the small-scale variation of the sensor. The surro-172

gate variable is denoted v and is used to represent model dependence, not173

explicitly accounted for spatial coordinates x. In the Section 2.3, we identify174

the surrogate variable by using an UWA propagation channel model.175

Assumption 1. The deterministic mean is decomposed by a linear com-176
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bination of unknown parameters expressed by µ(x; v) = X(x; v)β, where177

X(x; v) ∈ Rn×p represents the matrix of known basis functions and β ∈ Rp
178

the vector of the unknown regressor coefficients.179

Since the measurements Y are non-stationary, we detrend the measure-180

ments, i.e. remove the mean Y −µ, to obtain a stationary random field. Next,181

with the detrended measurements the covariance matrix Σ is estimated with182

an iterative scheme. After estimating the covariance matrix Σ, we employ the183

original measurements Y to perform predictions. A critical component for184

detrending is the basis functions X, thus we are inspired by the propagation185

model to design X and accurately detrend the measurements.186

Remark 1. The major difference between kriging and Gaussian processes187

(GPs) is that the former computes the covariance function C through the188

semivariogram function γ (3). In a second-order spatial random field, this189

intermediate step provides better estimates for three reasons: i) estimation190

bias [39, pp. 313-320]; ii) boundedness properties [40, pp. 79–84]; and iii)191

trend contamination [35, pp. 70–73]. Since this paper regards a second-order192

spatial random field Z with trend µ, we find kriging more suitable over GPs.193

2.3. Communication Performance194

For communication performance, we use an UWA propagation channel195

model and its statistical characterization, described in [41, 17, 38]. The196

statistical model comprises the physical model of the UWA communication197

channel and random vehicle perturbations which affect the local SNR. Large-198

scale variability of SNR occurs due to large-scale spatial variations in environ-199

mental conditions, evoking local error variations and thus a non-stationary200

random field.201

To approximate the communication performance between two agents we
use the SNR. In principle, the higher the SNR, the more likely is to detect
the signal. In this work we consider fixed signal power, frequency f , and
bandwidth B. Let the power of the transmitted signal be constant, then the
SNR yields,

SNR =
PTG

PN

, (5)

where PT denotes the power of the transmitted signal, G is the channel gain
and PN is the power of noise. The gain G has been shown to follow a log-
normal distribution logG ∼ N (Ḡ, σ2

G), where Ḡ represents the mean of the
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log channel gain and σ2
G its variance [42, 38]. On the decibel scale, the source

level takes the form of Sl(f) = 10 logPT and the noise level yields NL(f, ω) =
10 logPN [17]. If we neglect variations of water pressure with depth, then the
gain on the decibel scale g = 10 logG is a Gaussian distribution, expressed
as,

g(r) = ḡ(r) + ν, (6)

where ν ∼ N (0, σ2
ν) a zero-mean Gaussian random field. The mean follows,

ḡ(r) = g0 − k010 log
r

rref

, (7)

where g0 is a constant gain, rref is reference range (e.g., 1 m in our case),202

and k0 is the path loss exponent, provided by taking ensemble averages [43].203

Ensemble averages is a method to represent the expected value of a waveform.204

Note that (4) has identical structure with the model of the UWA propaga-
tion channel model (6). Thus, using (7) we choose v to be the range between
transmitting and receiving node, i.e. v = r, and the SNR measurements (4)
are expressed,

Y (x; r) = X(x; r)β + Z(x; r) + ε(x). (8)

The specific goal of our UWA performance prediction application is summa-205

rized in Problem 1.206

Problem 1. Predict the communication performance Ŷ and the correspond-207

ing variance Var[Ŷ ] at unvisited locations x0, provided a set of communica-208

tion performance measurements Y at locations x and the vehicle range r.209

3. Training of Gaussian Random Field210

In this section, we formulate basis functions X and use least squares on211

the training data Y to estimate the unknown regressor coefficients β of the212

spatial trend µ. Then, we remove the trend by subtracting the mean µ from213

the measurements Y to retrieve a stationary random field. The detrended214

measurements Y − µ are used to estimate the parameters of multiple vari-215

ogram functions with a maximum likelihood-based method. Next, we select216

the most suitable variogram model, based on the Bayesian information crite-217

rion. With the selected variogram model we construct the covariance matrix218
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Σ and use generalized least squares to improve the accuracy of the spatial219

trend estimator µ. The method iterates until the parameters of the vari-220

ogram function converge.221

3.1. Spatial Trend Modeling222

The random field in (8) is non-stationary due to the spatial trend. Thus,223

the original measurements cannot be used to estimate the parameters of the224

variogram. To this end, we seek basis functions X to model the spatial trend225

µ, detrend the measurements Y − µ, and recover stationarity.226

A precise model of the trend is important for spatial extrapolation, ide-
ally arising from the physics of the system [44]. The obvious choice for the
elements of the basis function X is to employ spatial coordinates as covari-
ates. In spatial statistics, polynomial basis functions of spatial coordinates,
e.g., X(x) = [1, x, y, xy, x2, y2], are often employed [35]. However, polyno-
mial basis functions do not behave well for extrapolation, because they are
radially unbounded, i.e. as ‖x‖→ ∞ then X(x) → ∞. To this end, Gaus-
sian radial basis functions (RBF) are widely used in various applications
[45], as they provide suitable extrapolation results. In addition, surrogate
variables—arising from the physical model of the system—are useful covari-
ates to interpret the behavior of the spatial variation [44]. A Gaussian RBF
is described by,

Xl(x; cl, σ
2
G,l) = exp

(
−(x− cl)2

2σ2
G,l

)
, (9)

where cl is the center of each measurement, e.g., cl = 0 for zero mean mea-
surement error ε (8). The corresponding variance is denoted σ2

G,l, where in
practice is a constant value σ2

G,l = σ2
G for all l measurements. From (7), it

is deduced that the range of the vehicles has a linear-log relationship to the
mean. Hence, our proposed hybrid basis function combines Gaussian RBF
incorporating spatial coordinates (9) and linear-log range,

X(x; r) = [1, exp

(
−(x− cx)2

2σ2
x

)
, exp

(
−(y − cy)2

2σ2
y

)
, r, log r]. (10)

For data detrending, since the covariance function is unknown, the gen-
eralized least squares (GLS) cannot be used. Thus, we initially estimate the
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unknown parameters using ordinary least squares (OLS),

β̂
(1)

OLS = X(x; r)†Y (x; r), (11)

where X† = (XᵀX)−1Xᵀ, X† ∈ Rp×n is the Moore-Penrose pseudoinverse

of X. The estimated unknown parameters β̂
(1)

OLS are not the final estimated

unknown regressor values. Instead, we shall employ β̂
(1)

OLS to detrend the
measurements and assess their behavior with an iterative technique. The
Gaussian residual random field (or detrended data) is expressed,

Ỹ (x; r) = Y (x; r)−X(x; r)β̂
(1)

OLS. (12)

Assumption 2. The random field of the underlying latent process is second-227

order stationary after detrending, i.e. Ỹ is second-order stationary.228

Assumption 3. The variogram function is isotropic after detrending.229

3.2. Experimental Semivariogram and Theoretical Models230

In this section, we present three commonly used semivariograms and an
optimization method to estimate the initial parameters of the semivariogram
function. The Matheron empirical semivariogram [46] is used in the majority
of the literature for the estimation of the unknown parameters,

γ̂(h) =
1

2 card(N(h))

∑
N(h)

|Ỹ (x + h)− Ỹ (h)|2,

where N(h) = {(o, p) | xo − xp = h} is the set of measurements at distance
h and Ỹ is the vector of the residual measurements (12). The main idea is to
compute the experimental semivariogram from the detrended data and then
compare it to theoretical semivariogram models. The Matheron empirical
semivariogram is unbiased, yet it is highly affected by outliers, due to the
squared term. A robust estimator of the experimental semivariogram against
outliers is proposed in [47] as,

γ̂CH(h) =

(∑
N(h)|Ỹ (x+h)−Ỹ (h)|1/2

card(N(h))

)4

0.914 + 0.988
2 card(N(h))

+ 0.090
card(N(h))2

. (13)

11



The robustness relies on a transformation which ensures that the fourth root231

of the transformed distribution produces relatively small skew. Note that232

we cannot interpolate the experimental semivariogram to obtain a semivar-233

iogram, because the conditional negative definiteness property may be vi-234

olated [40]. Instead, we fit the experimental semivariogram to theoretical235

models that ensure the desired properties of a semivariogram function.236

We consider three potential theoretical semivariogram models which are
conditional negative definite. The spherical semivariogram is given by,

γs(h;θ) =

τ
2 + σ2, ‖h‖≥ α,

τ 2 + σ2

(
3‖h‖
2α
− 1

2

(
‖h‖
α

)3
)
, ‖h‖≤ α,

(14)

where the semivariogram parameter vector θ = [τ 2 σ2 α]ᵀ ∈ Θ contains
the nugget, the partial sill, and the semivariogram range with Θ = {θ ∈
R3 | τ 2 ≥ 0, σ2 ≥ 0, α ≥ 0} the parameter space. Second, the exponential
semivariogram function,

γe(h;θ) = τ 2 + σ2
(

1− exp
{
− ‖h‖

α

})
. (15)

Finally, the Matérn semivariogram function [48],

γm(h;θ) = τ 2 + σ2

(
1− (‖h‖/α)κ

2κ−1Γ(κ)
Kκ

(‖h‖
α

))
,

where Γ(·) is the gamma function, Kκ is the Bessel function of order κ, and κ
is the smoothing parameter. The Matérn semivariogram function is a general
model, thus we fix the smoothing parameter at κ = 3/2 to obtain a mixed
polynomial-exponential form,

γpe(h;θ) = τ 2 + σ2
(

1−
(

1 +

√
3‖h‖
α

)
exp

{
−
√

3‖h‖
α

})
. (16)

We will employ all semivariogram functions C = {γs, γe, γpe} and evaluate237

their performance.238

The next step is to formulate an optimization problem to fit the models
C and derive the corresponding parameter vector θ. We utilize a weighted
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least squares (WLS) approach [49] which yields,

θ̂
(0)

CWLS = arg min
θ∈Θ

Ng∑
g=1

card(N(hg))

(
γ̂CH(hg)

γ(hg;θ)
− 1

)2

, (17)

where Ng is the total number of the separation vectors hg.239

The parameter estimation (17) relies on the residual measurements Ỹ240

(12) which incorporate measurement bias. Thus, the estimation is sensitive241

to the bias of the mean value.242

3.3. Unbiased Semivariogram Model Fitting243

In this section, we seek an unbiased estimator for the parameter vector θ244

and a strategy to narrow down the parameter space Θ. Maximum likelihood245

(ML) estimation is used widely in statistics. In spatial statistics, due to246

high correlation of the observations, ML is known to generate unfavorable247

outcomes [50]. In addition, when the observations are limited, then the bias248

of the ML estimation is significant.249

An alternative bias-free approach is the restricted maximum likelihood
(REML) estimation [51, 52], which makes use of error contrasts to remove the
mean dependence from the variance estimates. The main idea is to transform
the residual measurements Ỹ from (12) with a matrix A ∈ Rn×(n−p) such
that, AᵀX = 0(n−p)×p and E[AᵀỸ ] = 0(n−p), where X is the basis function
(10). In other words, each column vector of matrix A = [a1 a2 . . . a(n−p)] is

orthogonal to all columns of X. Let us define the error contrast, W := AᵀỸ
to obtain W ∼ N (0(n−p),A

ᵀΣ(θ)A). Although A is not unique, a matrix
that satisfies the properties is the orthogonal projection onto the kernel of
X, that is, A = In−X(XᵀX)−1Xᵀ. We note that A does not depend on the

estimated mean parameters β̂OLS. Therefore, the log-restricted likelihood
function is defined,

L(θ|W ) = −1

2

(
(n− p) log(2π) + log|XᵀX|− log|Σ(θ)|

− log|XᵀΣ(θ)X|−Ỹ ᵀΠ(θ)Ỹ
)
, (18)

where Π(θ) = Σ(θ)−1 −Σ(θ)−1X(XᵀΣ(θ)−1X)−1XᵀΣ(θ)−1, n is the mea-250

surement vector size, and p is the rank of X. Next, the log-restricted like-251

lihood (18) is maximized with respect to θ ∈ Θ to obtain the estimated252
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parameter vector θ̂. To reduce the search of the parameter space Θ, we use253

the parameter estimate θ̂
(0)

CWLS (17) as a center value of the initial set of pa-254

rameters in the optimization scheme. So far we computed three covariance255

parameter vectors θ̂ corresponding to three candidate models (14), (15), (16).256

A benefit of likelihood-based approaches is that they can be combined with257

statistical model selection tools [53].258

3.4. Statistical Model Selection259

The Bayesian information criterion (BIC) is a statistical model selection
methodology, introduced by Schwarz in [54]. The BIC is given by,

BIC(Mk) = −2 lnL(θ̂k | Ỹ ,Mk) + q lnn, (19)

whereM = {Mk = Σ(θ̂k) | k = 1, . . . , K} is the set of candidate models, θ̂k260

denotes the REML estimates of θk, q = 3 is the dimension of the parameter261

space Θ, L(θ̂k | Ỹ ,Mk) represents the marginal likelihood corresponding262

to the density function f(Ỹ ,Mk | θ̂k), and n is the measurement size of263

the vector Ỹ . In our case K = 3 corresponds to three different candidate264

semivariogram functions (14), (15), and (16). In principle, the semivariogram265

function with the smallest BIC represents the true model, assuming that the266

real model is listed among the candidate covariance models. One of the major267

advantages of the BIC is that it satisfies the property of consistency. That268

is even if the true model is not listed among the candidate models, the BIC269

selects the most parsimonious model closest to the true model, by computing270

the marginal likelihood with Laplace approximation.271

Since the BIC (19) is computed in the log-scale, its evaluation may be
ambiguous. Thus, we employ the posterior probability of the BIC [55] which
is approximated by,

P (Mk | Ỹ ) ≈
exp

(
− 1

2
∆k

)
∑K

k=1 exp
(
− 1

2
∆k

) , (20)

where ∆k = BIC(Mk)−BIC? denotes the BIC difference of a candidate model272

with the minimum BIC candidate model BIC? = minMk∈M BIC(Mk). Essen-273

tially, P (Mk | Ỹ ) is a probability mass function, that provides a probability274

of suitability for each model to the real model.275
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3.5. Nested Semivariogram Model276

So far we assumed that the variation of the underlying process is purely
represented by either a spherical (14), or an exponential (15), or a polynomial-
exponential (16) variogram model. However, in many cases, the spatial vari-
ability is more complex, and thus a combination of semivariogram models
interprets the latent process more precisely. The nested [40] (or composi-
tional [56]) semivariogram function is defined by,

γnest(h; θ̂s,k, θ̂e,k, θ̂pe,k) :=ξ1γs(h; θ̂s,k) + ξ2γe(h; θ̂e,k) + ξ3γpe(h; θ̂pe,k),
(21)

where ξk ∈ (0, 1), and
∑K

k=1 ξk = 1.277

Proposition 1. Any convex combination of semivariograms is a semivari-278

ogram.279

Proof 2. Let γk be a semivariogram and γ−k = {γl}l 6=k a vector of semi-280

variograms other than γk. Since γ : R2 → R≥0 and ξk ∈ (0, 1), then281

γnest =
∑K

k=1 ξkγk > 0 for ‖h‖6= 0. Moreover, exp{−ζγnest} is positive282

definite for all ζ > 0. Hence, from Lemma 1 any convex combination of283

variograms γnest is a variogram.284

The nested semivariogram is similar in spirit to [56], yet the authors used285

directly the BIC. Since the BIC is in the log-scale (19), it does not scale286

well with the nested semivariogram. Alternatively, we employ the posterior287

probabilities of BIC ξk = P (Mk | Ỹ ) that satisfy ξk ∈ (0, 1) and
∑K

k=1 ξk = 1.288

3.6. Iterative Parameter Training289

For the iterative parameter training we utilize the estimated covariance

matrix Σ(θ̂
(1)

). The covariance matrix allows the implementation of the
generalized least squares (GLS) to improve the estimation of the mean. The
GLS mean estimate is described by,

β̂
(2)

GLS =

(
XᵀΣ

(
θ̂

(1)
)−1

X

)−1

XᵀΣ
(
θ̂

(1)
)−1

Y. (22)

Sequentially, the residual measurements (12) yield,

Ỹ (x; r) = Y (x; r)−X(x; r)β̂
(2)

GLS. (23)
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In addition, the GLS mean estimation facilitates a more accurate deter-
mination of the covariance function. To this end, we employ the detrended
measurements (23) and iterate the covariance training. The training is ter-
minated when,

‖θ̂
(s)
− θ̂

(s−1)
‖≤ η (24)

where η ∈ R>0 is a small error threshold. At every iteration we expect lower290

BIC values (19). Essentially, after the second iteration, the change on the291

mean and covariance estimate is insignificant [40, pp. 196–200], [57, 58], and292

usually the training is terminated.293

4. Spatial Prediction294

In this section, we describe universal kriging [35, 59, 33], a spatial pre-
diction technique that predicts values at locations of interest, based on mea-
surements from other locations Y and the estimated covariance matrix Σ.
The main difference from the ordinary kriging lies in the mean value of the
random field, which is not assumed to be constant. More specifically, pro-
vided measurements Y at locations x ∈ R2 the random field is described by
(8). We use a linear unbiased estimator,

Ŷ (x0; r) =
n∑
i=1

ωiY (xi; r) = ωᵀY (x; r), (25)

where x0 ∈ R2 is the location of interest, ω = [ω1 . . . ωn]ᵀ ∈ Rn are the
weights we seek to obtain, and Y (x; r) are the raw measurements, i.e. not
the residuals. The unbiasedness of the predictor is ensured by E[Ŷ (x0; r) −
Y (x0; r)] = 0, that yields a system of equations known as universality condi-
tions, ωᵀX = Xᵀ

0 , where X0 ∈ Rp is the vector of known basis functions at
the location of interest. Next, we formulate the unconstrained minimization
problem of the prediction variance with multiple Lagrange multipliers λ ∈ Rp

to include the universality conditions. The solution is, ωUK = Γ−1
UKγUK,

where ωUK = [ωᵀ λᵀ
UK]ᵀ ∈ Rn+p is a stacked vector that contains the weights

ω and the Lagrange multipliers λUK to minimize the mean square prediction
error. The non-singular matrix ΓUK ∈ R(n+p)×(n+p) captures the redundancy

16



of measurements and is given by,

ΓUK =



γ(x1,x1) . . . γ(x1,xn) 1 X2(x1) . . . Xp(x1)
...

. . .
...

...
...

. . .
...

γ(xn,x1) . . . γ(xn,xn) 1 X2(xn) . . . Xp(xn)
1 . . . 1 0 0 . . . 0

X2(x1) . . . X2(xn) 0 0 . . . 0
...

. . .
...

...
...

. . .
...

Xp(x1) . . . Xp(xn) 0 0 . . . 0


:=

[
Γ X
Xᵀ 0p×p

]
,

The semivariogram vector γUK ∈ R(n+p) considers the closeness of the mea-
surements to the location of interest x0,

γUK =
[
γ(x0,x1) . . . γ(x0,xn) 1 X2(x0) . . . Xp(x0)

]ᵀ
:=

[
γ0

X0

]
.

The decoupled coefficients in terms of the covariance matrix yield,

ωᵀ =
(
c0 + X(XᵀΣ−1X)−1(X0 −XᵀΣ−1c0)

)ᵀ
Σ−1, (26)

with Lagrange multipliers,

λᵀ
UK = −(X0 −XᵀΣ−1c0)ᵀ(XᵀΣ−1X)−1. (27)

Hence, the predictive distribution of UK with a covariance matrix is,

Ŷ | Y,x, r ∼ N
(

[c0Σ−1 + (X0 − c0Σ
−1X)(XᵀΣ−1X)−1XᵀΣ−1]Y,

C(0m)− c0Σ
−1cᵀ

0 + (X0 − c0Σ
−1X)(XᵀΣ−1X)−1(X0 − c0Σ

−1X)ᵀ
)

(28)

5. Model-Based Learning Framework295

In this section, we discuss the structure and the algorithm of the commu-296

nication performance prediction technique.297
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Figure 2: The two-step learning process. The first step is the training of the Gaussian
random field that yields a covariance matrix and the second step the spatial prediction of
the communication performance.

5.1. Learning Structure298

The two-step process is depicted in Fig. 2. We start by collecting299

measurements of communication performance (SNR) along with the vehi-300

cle range. Given those measurements we seek to predict the communication301

performance at unvisited locations. The first step is the training of the Gaus-302

sian random field to obtain a covariance matrix, while the second is spatial303

prediction at unvisited locations with universal kriging. The objective of304

the first step is to determine the most suitable covariance function and its305

parameters characterizing the underlying latent process. The block of the306

covariance matrix is depicted in light red. The goal of the second step is to307

predict the SNR at unvisited locations and its corresponding variance, where308

their blocks are depicted in light red accordingly.309

The training step comprises three modules: i) the data detrending; ii) the310

parameter estimation; and iii) the iterative training. The data detrending in-311

cludes the hybrid basis function formulation (10) and the OLS computation312

(11). Next, the detrended measurements are used to compute the candidate313

semivariogram functions (14), (15), (16). The semivariograms are provided314
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to the estimation module which is also a multistage process. The estima-315

tion module first computes the covariance parameters to be used as initial316

conditions, by employing the Cressie and Hawkins robust experimental semi-317

variogram (13) and a weighted least squares estimation with Cressie weights318

(17). The next stage is the REML estimation that optimizes the objective319

likelihood function (18) and results in three bias-free covariance parameter320

vectors. The last stage of the estimation module considers the selection of321

the most suitable covariance model among the three candidates with the322

posterior BIC (20). Whenever the posterior probability of BIC indicates323

suitability of less than a probability threshold, we compute a nested semi-324

variogram. The last module describes an iterative training for the selection325

of the covariance matrix. Since we have obtained a covariance matrix, the326

mean estimates can be improved by computing the GLS (22). Subsequently,327

we recompute the residual random function and run the estimation module328

to obtain a new covariance matrix. The training iterates until the parame-329

ters of the covariance matrix converge (24). For the numerical experiments330

reported herein, convergence requires no more than two iterations.331

The second step is the spatial prediction. Given the measurements, the332

model-based basis functions, and the covariance matrix from the previous333

step we use the location of interest to solve the universal kriging and obtain334

the kriging weights (26),(27). Finally, we predict the SNR at the location of335

interest and corresponding SNR variance (28).336

5.2. Algorithm337

The main routine of the communication performance predictor is pre-338

sented in Algorithm 1. The initialConditions module assigns initial val-339

ues to the semivariogram parameter vector θ̂
(0)

. More specifically, the partial340

sill σ2 is assumed to be the variance of the residual measurements (12), the341

nugget effect τ 2 and the semivariogram range α are selected according to342

the sensor sensitivity and characteristics respectively. The initial covariance343

matrix estimate Σ(θ̂
(0)

) is set equal to the identity matrix. Next, the algo-344

rithm proceeds to the iterative parameter estimation process. We consider345

three semivariogram functions (14), (15), (16) at each iteration. The basis346

function computes X according to (10). The GLS function implements the347

GLS (22) to estimate the mean regressor parameters β̂
(s)

. Note that in the348

first iteration the initial covariance matrix is the identity matrix, and hence349

the algorithm implements an OLS regression (11). The function detrend is350
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Algorithm 1 Learning of UWA Communication Performance
Input: Y , x, r, x0, n, p, q, γ, ϕ η

Output: Ŷ , Var[Ŷ ]

1: θ̂
(0)
← initialConditions(Y )

2: Σ(θ̂
(0)

)← In; k ← 0;
3: X← basis(x; r);
4: for s = 1 to S do . Start training

5: β̂
(s)
← GLS(Y,X,Σ(θ̂

(s−1)
));

6: Ỹ (s) ← detrend(Y,X, β̂
(s)

); . Non-stationarity
7: for each γ ∈ C do

8: θ̂
(s−1)
k ← CWLS(Ỹ , γ, θ̂

(s−1)
); . Robustness

9: θ̂
(s)

k ← REML(Ỹ ,X, n, p, γ, θ̂
(s−1)
k ); . Unbiasedness

10: Mk ← Σ(θ̂
(s)

k );

11: BICk ← BIC(Ỹ , n, q, θ̂
(s)

k ,Mk);
12: k ← k + 1;
13: end for
14: BIC? ← minMk∈M{BIC(Mk)};
15: for k = 1 to K do
16: ∆k ← diffBIC(BICk,BIC?);
17: end for
18: for k = 1 to K do . Model selection
19: P (Mk | Ỹ )← postBIC(∆k);
20: end for
21: if maxMk∈M{P (Mk | Ỹ )} < ϕ then . Covariance

22: Σ(θ̂
(s)

)← nested(P (Mk | Ỹ ), θ̂
(s)

k );
23: else

24: Σ(θ̂
(s)

)← maxMk∈M{P (Mk | Ỹ )};
25: end if

26: if ‖θ̂
(s)
− θ̂

(s−1)
‖≤ η then . Iteration criterion

27: break;
28: end if
29: end for . End training

30: Ŷ ,Var[Ŷ ]← UK(Y,x, r,X,x0,Σ(θ̂
(s)

)); . Prediction

employed to compute the residual measurements (or detrended data) Ỹ (s) by351

subtracting the estimated spatial trend from the measurements (12). With352

the detrended data, the function CWLS computes initial values for the es-353

timation of the semivariogram parameter vector θ̂
(s−1)

k by solving a WLS354

minimization problem (17). Next, the REML module implements the REML355
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(18) to estimate the semivariogram parameter vector θ̂
(s)

k . The BIC function356

calculates the BIC (19) and the diffBIC computes the difference of each357

candidate with the lowest BIC?. Then, the postBIC calculates the posterior358

BIC (20) that assign probabilities of suitability for each candidate model with359

the underlying latent process. When the highest probability of the posterior360

BIC falls below a threshold ϕ, the nested function computes the covariance361

matrix with a nested semivariogram (21). The iterative training procedure362

is terminated when the semivariogram parameter estimation converges to363

an η-neighborhood (24). Finally, we utilize the estimated covariance matrix364

Σ(θ̂
(s)

) and the measurements to solve the universal kriging and obtain SNR365

prediction Ŷ at the unvisited locations of interest x0 and its corresponding366

variance Var[Ŷ ] (28).367

5.3. Computational Complexity368

The time complexity of the training is O(n3) for computing the inverse369

and determinant of the covariance matrix Σ. These computations are per-370

formed repeatedly in (18) to find the hyperparameters θ that maximize the371

log-restricted likelihood. Next, we store the inverse covariance Σ−1 and n372

measurements, which result inO(n2+mn) space complexity. For small robots373

with limited RAM memory capacity, the space complexity may be more re-374

strictive than the time complexity. The prediction mean and variance (28)375

require O(n) and O(n2) computations respectively.376

6. Simulations and Experiments377

In this section, we provide simulations and experiments to demonstrate378

the efficacy of the proposed methodology.379

6.1. Simulation Environment380

The simulation environment is developed with a well-established, statis-381

tical UWA channel model that incorporates 34 parameters and interprets382

multipath formation, motion-induced Doppler, surface scattering, and large-383

scale variability of the channel geometry [38]. This channel model has been384

exhaustively compared to experimental data from multiple underwater mis-385

sions, which varied in location, season, time duration, weather conditions,386

static nodes, and moving AUVs.387
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The SNR measurements consist of three components as described in (5).388

The channel gain (6) is computed for signal frequency f = 25 kHz, band-389

width B = 5 kHz, surface height 100 m, and vehicle depths z1 = 80 m390

and z2 = 50 m. The navigation depth corresponds to shallow water, where391

the speed of sound can be considered constant [17]. We set the source level392

Sl = 180 dB which is a realistic value for UWA acoustic modems operat-393

ing in such signal frequencies. The large-scale parameters, i.e. path gain394

and propagation delay, are computed using the Bellhop model [60]. The395

Doppler parameters were generated using first-order dynamics. Since the396

vehicles maintain constant velocity, the drifting parameters were neglected.397

Each vehicle depth remained constant during the simulation, yet the depth398

of each vehicle is different.399

In addition, we impose local ambient noise to the synthetic data (denom-400

inator of (5)). The local ambient noise is captured with: i) uniform noise;401

ii) linear noise; iii) single non-zero Gaussian distribution; and iv) two non-402

zero Gaussian distributions. We evaluate the ambient noise over a grid of403

points in the space S := X × Y, where X = [−2000,−1990, . . . , 3000] and404

Y = [0, 10 . . . , 5000] in meters. The ambient noise for the space of interest405

outputs values NL(x) ∈ [7.75, 50] in dB, resulting in both mild and extreme406

environments.407

The evaluation of the predictions is accomplished with two metrics. The408

first metric is the mean square error (MSE), MSE = 1/nu
∑nu

u=1(Ŷ (x0,u; ru)−409

Y (x0,u; ru))
2, where nu is the number of unknown responses at locations410

of interest. Next, the negative log predictive density (NLPD) [61] follows,411

NLPD = −1/nu
∑nu

u=1 log p(yu | x0,u; ru), where the distribution is provided412

by p(yu | x0,u; ru) ∼ N (Ŷ (x0,u; ru), σ
2
UK(x0,u; ru)) (28). The NLPD loss char-413

acterizes not only the error of the mean value, but more importantly the414

uncertainty bound. More specifically, both under- and over-confident predic-415

tions are penalized.416

6.2. Simulation Results417

We compare five prediction techniques: i) the ordinary kriging (OK) with418

exponential semivariogram (15); ii) the OK with Matérn semivariogram (16);419

iii) the universal kriging (UK) with linear trend and exponential semivari-420

ogram (15); iv) the UK with linear trend and Matérn semivariogram (16);421

and v) the proposed model-based learning method with hybrid basis function422

and semivariogram model selected by the posterior BIC or formed as a nested423
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Table 1: Training with Exponential Semivariogram

Cases Exponential Semivariogram Parameters

Training Validation
Bias

OK UK
Set Set σ2, α, τ2 σ2, α, τ2

150
519

−10 93.27, 17822, 0 60.59, 12381, 0
0 92.83, 17738, 0 61.00, 12378, 0

Long-distant +10 92.74, 17722, 0 60.79, 12382, 0

500
169

−10 80.91, 16888, 0 70.66, 14792, 0
0 80.86, 16877, 0 71.51, 14969, 0

Short-distant +10 80.31, 16763, 0 71.15, 14895, 0

OK–Ordinary kriging; UK–Universal kriging.

Table 2: Training with Matérn Semivariogram

Cases Matérn Semivariogram Parameters

Training Validation
Bias

OK UK Model-based UK
Set Set σ2, α, τ2 σ2, α, τ2 σ2, α, τ2

150
519

−10
368.73, 2994, 0.20 364.42, 2994, 0.20 14.42, 711, 0.190

Long-distant +10

500
169

−10
14.13, 548, 0.23

13.78, 548, 0.23 82.04, 1495, 0.260
Short-distant +10 111.17, 1611, 0.26

OK–Ordinary kriging; UK–Universal kriging.

structure. The OK formulation is discussed in [32]. In the first four predic-424

tion techniques, we select the exponential and the Matérn semivariogram425

functions, as they are widely used in the literature. Each agent collects mea-426

surements of communication performance (SNR) and vehicle range r from427

visited locations. Since the global paths are known, the agents are aware428

of their range at the unvisited locations. The geoR package [62] is used to429

implement the geostatistical methodologies.430

6.2.1. Training431

For the evaluation of the robustness in training, we perform 30 simulations432

with added bias on the measurements. We consider one noise profile scenario433

of two non-zero Gaussian distributions. The trajectories of the mobile robots434

as well as the ambient noise distribution are illustrated in the top right image435

of Figure 3. The black solid and dotted line represent the lawnmower paths436

of agent 1 and 2 respectively. We consider two cases: i) the long-distant pre-437

diction; and ii) the short-distant prediction. In the long-distant prediction438
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case, each agent collects 75 measurements while in the short-distant case 250439

measurements of SNR and range. We seek to predict the communication per-440

formance in the long-distant case of 260 and 259 and in the short-distant-case441

of 85 and 84 unvisited locations for agent 1 and 2 respectively. The effect442

of the bias to the semivariogram estimation, i.e. robustness, is investigated443

by adding a systematic error to the measurements. The added biases are:444

i) +10; ii) −10; and iii) no bias. We observe in Tables 1 and 2 that the added445

bias does not affect the training of the proposed technique, resulting in the446

same semivariogram function and semivariogram parameters. In both OK447

and UK methods with exponential semivariogram, the estimated parameters448

are clearly affected by the added bias. In the OK prediction method with449

Matérn semivariogram, the added bias affects only the long-distant case of450

+10 added bias, yet the difference is significant. The UK prediction method451

with Matérn semivariogram is not affected by the added bias. Note that452

the the posterior BIC selected the Matérn semivariogram as the true model.453

Evidently, when a statistical model selection methodology is not employed,454

yet the true semivariogram model is spontaneously selected, then the param-455

eter estimation appears less variation with added bias. However, we can-456

not always rely on heuristic assumptions, ignoring statistical model selection457

methods. In addition, in many cases a single semivariogram function may458

not be adequate to fully describe the underlying latent process. After us-459

ing the posterior BIC to select the true semivariogram function, the REML460

successfully removes the bias from the parameter estimation, regardless of461

the systematic error direction, i.e. sign of the bias. Therefore, the proposed462

methodology constitutes a robust and bias-free alternative of the maximum463

likelihood estimator.464

6.2.2. Prediction465

For the evaluation of the prediction we perform 180 simulations, compris-466

ing 9 training datasets at 4 ambient noise profile scenarios and 5 prediction467

techniques. The size of the training dataset varied proportionally from 10%468

up to 90% of the data. The remainder data act as the validation dataset of469

the learning process. The distant horizon of the extrapolation is associated470

to the proportion of the training data, e.g., 10% of training data correspond471

to the longest distant prediction and 90% to the shortest distant prediction.472

The spatial environmental conditions and the global path of the vehicles are473

shown in the top row of Figure 3. The MSE and NLPD are presented in the474

middle and bottom row of Figure 3 respectively.475
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Figure 3: The color map on the top row depicts the ambient noise distribution that
deteriorates the UWA communication performance. The solid black and dotted black
lines correspond to the lawnmower paths of agent 1 and agent 2 respectively. In all cases
we use 9 proportions of the training data to make predictions. (a) MSE and NLPD values
for the uniform noise distribution case. (b) MSE and NLPD values for the linear noise
distribution case. (c) MSE and NLPD values for the one source of non-zero Gaussian
noise distribution case. (d) MSE and NLPD values for the two non-zero Gaussian noise
distribution case.

In the first noise distribution scenario, i.e. uniform noise, randomness476

arises mostly from the statistical characterization of the UWA channel model477

(see Figure 3-(a)). That is mild ambient noise conditions, which often appear478

in deep ocean. In shallow water environments, uniform ambient noise occur479

when vehicles navigate in areas with no nearby shipping and mild weather480

conditions. Clearly, the proposed method outperforms the rest techniques481

both in terms of prediction accuracy and uncertainty quantification. Es-482

pecially, for long-distant prediction the difference is significant, making our483

model-based approach three orders of magnitude more accurate in terms of484

MSE and the uncertainty bounds almost one order of magnitude more re-485

alistic according to NLPD. As more data are incorporated in the training486

dataset, the rest methods improve their accuracy and uncertainty quantifi-487
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cation metrics. However, only in the shortest distant prediction case, i.e.488

90% training dataset, the rest methods are comparable with our technique.489

The results advocate that for mild ambient noise conditions the proposed490

model-based learning technique vastly outperforms the compared methods491

and can be even used for long-distant extrapolation. Next, we impose lin-492

ear ambient noise distribution to the UWA channel model, as presented in493

Figure 3-(b). Linear ambient noise corresponds to a spatially large source of494

noise that almost equally and progressively deteriorates the communication495

performance of the vehicles. Similarly to the uniform noise case, the results496

show better predictions from all other methods, where after the 40% train-497

ing dataset the predicted values become accurate with almost zero error.498

Yet, the uncertainty of the proposed technique is overconfident, reporting499

similar NLPD values with the rest methods. The results reveal that for500

the linear ambient noise distribution scenario, our methodology outperforms501

the rest techniques and produces accurate predictions for 40% and larger502

training datasets. However, the uncertainty quantification is overconfident503

in all cases.504

A single spatially small and intense source of noise is presented in Fig-505

ure 3-(c). Such noise sources often appear in Nature and they consider to be506

the main reason of conservativeness in long-distant extrapolated predictions.507

Apparently, the spatially small source of noise obscure the UK methods and508

slightly favors the OK techniques. However, the proposed model-based UK509

methodology outperforms the rest techniques by one order of magnitude510

on the mean predictions and quantifies the uncertainty better according to511

NLPD. Thus, our learning method advocates to higher level of robustness for512

unexpected spatially small and intense source of noise. We extend the previ-513

ous case using two spatially small and intense sources of noise with different514

magnitude, as illustrated in Figure 3-(d). The proposed method outperforms515

the rest techniques for the majority of the training dataset cases in terms of516

MSE. The biggest competitor is the most parsimonious form of prediction517

the OK, yet in only three out of nine training datasets the OK produces lower518

communication performance error values. The uncertainty quantification is519

reasonable in all techniques except for long distant predictions of UK with520

linear trend and exponential semivariogram. Although in unexpected noisy521

environments the model-based techniques are expected to be inefficient, our522

method outperforms the other techniques in the vast majority of the cases523

in terms of prediction and quantifies reasonably well the uncertainty.524

In addition to the evaluation of prediction metrics, the effectiveness of525
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Table 3: Posterior BIC-based Selection of Semivariogram Function

Semivariogram-posterior BIC [%]

% of Uniform Linear 1 Gaussian 2 Gaussian
Data Noise Noise Source Noise Source Noise

10 S-33; E-33; M-34 S M M
20 S-31; E-31; M-38 S-51; E-49 M M
30 S-32; E-32; M-36 S M M
40 S-33; E-32; M-35 S M M
50 S-32; E-32; M-36 S M M
60 S-26; E-32; M-42 S M M
70 S-9; E-87; M-4 S M M
80 S-33; E-33; M-34 M M M
90 S-16; E-67; M-17 M M M

S–Spherical; E–Exponential; M–Matérn.

Figure 4: Comparison of nested semivariogram with the three candidate semivariogram
functions for the uniformly distributed noise scenario.

nested semivariogram is illustrated. In Table 3, we list the semivariograms526

as selected by the posterior BIC for all 9 training datasets and 4 ambient527

noise profile scenarios. Interestingly, in the linear noise distribution sce-528

nario the posterior BIC changes the semivariogram function from spherical529

to Matérn at the 80% and 90% training data. This means that even if we530

select one semivariogram model for a specific case, there are no guarantees531

that the same semivariogram will describe the latent process with updated532

training datasets. Moreover, we observe in Table 3 that all semivariograms533

are nested for the uniform noise distribution, thus we focus our attention on534

this scenario. In Figure 4, we compare the MSE and NLPD of the nested535

semivariogram with the three candidate semivariograms. Notably, the mean536

predictions are identical for single and nested semivariograms. Yet, the un-537

certainty quantification for nested functions is consistently better with all538

training datasets. This advocates that the proposed technique with nested539
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Figure 5: The top row depicts the trajectories of the SV and the 690-AUV. The light gray
line corresponds to the SV trajectory during the day, the blue line depicts the trajectory
of the SV for the current mission, and the maroon colored line represents the path of the
690-AUV. The bottom row shows the vehicle range and output SNR of the corresponding
mission.

Figure 6: The Virginia Tech 690-AUV used in the field trials.

semivariogram quantifies more realistically the uncertainty, without compro-540

mising accuracy.541

6.3. Field Trials542

The experimental data were collected from field trials conducted at Clay-543

tor lake near Dublin, VA in December 2019. A manned surface vehicle (SV)544

and the Virginia Tech 690-AUV [63] were used in the field trials. The545

SV is equipped with an omnidirectional acoustic transducer and a Woods546

Hole Oceanographic Institute (WHOI) Micromodem-2 [64]. The AUV (pic-547

tured in Figure 6), can operate at a depth of 500 m for up to 24 hours. It is548

equipped with a suite of navigational sensors, sidescan sonar, and the WHOI549

Micromodem-2.550

The SV transmitted acoustic packets to the AUV every 10 seconds. The551

acoustic transmission each lasted 3.5 seconds and had a carrier frequency of552
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Table 4: Output SNR Values for Four-Waypoint Experiments

Mission
Duration Transmitted SNR SNR

Outliers
[s] Signals Occurrence Success

1 475.44 48 54 48 6
2 498.76 50 52 48 4
3 523.64 53 65 48 17
4 538.36 54 67 58 9

f = 25 kHz and bandwidth of B = 4 kHz. The transponder mounted to553

the SV was submerged at a depth z1 = 1 m while the AUV traveled at a554

depth of z2 = 3.35 m. That is clearly shallow water navigation which makes555

the acoustic communication even more challenging. The maximum depth556

of Claytor lake is 35 m. We conducted four missions whose trajectories are557

illustrated in the top row of Figure 5. The SV trajectory throughout the day558

is shown in light gray, the SV trajectory during each mission is highlighted in559

blue, and the AUV trajectory is demonstrated in maroon. In all missions, the560

AUV traversed identical waypoint paths (waypoints shown in black circles).561

The speed of the AUV was constant at 1.6 m/s. The SV was manned-driven562

with different path for each mission. The missions were conducted in mild563

weather conditions with no nearby shipping. Note that the field tests were564

conducted in December, when no extramural activities take place at the565

lake. Thus, the only obvious source of ambient noise was from the SV. The566

noise arising from the SV was time-varying, as it was driven at different low567

speeds. In missions 1 and 2 the SV used the propulsion system to navigate568

and traversed longer paths. That is to intentionally create ambient noise. In569

missions 3 and 4 the propulsion system of the SV was not used, i.e. the SV570

was floating, which resulted in lower ambient noise. We used GPS for the571

SV position, while the AUV position was estimated by the AUV’s unscented572

Kalman filter (UKF).573

The SNR measurements were collected by the WHOI Micromodem-2 at574

the output of the equalizer. This SNR metric is used in the literature for the575

evaluation of communication performance [65, 66, 67]. The disadvantages of576

the output SNR are: i) averages the SNR for a communication event; and ii)577

provides positive rounded numbers—compromising the SNR measurement578

accuracy. In the bottom row of Figure 5, we present the SNR in blue solid579

line, the corresponding vehicle range in green solid line, and the outliers in580

red squares. Clearly, there exists a coupling of the range and the SNR. More581

specifically, as the range increases the SNR decreases. Note that the default582
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Figure 7: The eMSE and eNLPD metrics for all five prediction methods in four missions.

value of the WHOI modem to report output SNR outliers is −9.99 dB [64],583

yet we plot them at −1.00 dB for scaling purposes. In Table 4, we list the584

statistics of communication events.585

6.4. Experimental Results586

Similarly to Section 6.2, we compare five prediction techniques. However,587

the MSE and NLPD cannot be used, as the true value of the communication588

performance at the location of the measurements is unknown during field589

trials; measurements are corrupted by multiple sources of error. Hence, to590

proceed with our analysis we refer to the metrics as empirical MSE (eMSE)591

and empirical NLPD (eNLPD) accordingly. The eMSE and eNLPD values592

for various proportions of data are presented in Figure 7. The 40% pro-593

portion of data includes at least 20 measurements for the longest distant594

prediction, while the 80% proportion of data corresponds to the shortest dis-595

tant prediction case. In some cases the predicted values report almost zero596

uncertainty, making the eNLPD values very high. At these cases, we con-597

sider that the corresponding method has failed, as uncertainty quantification598

is a key element in communication performance prediction. Since we are599

interested in evaluating low scaled eNLPD values, we set its upper bound600

to be 100. In Figure 8 the prediction mean and standard deviation of three601

techniques: i) OK with exponential semivariogram; ii) UK with linear trend602

and exponential semivariogram; and iii) our method are presented. We select603
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Figure 8: The prediction mean and standard deviation for three methods and three pro-
portions of data in four missions.

the exponential semivariogram for both OK and UK, because they provide604

better predictions in terms of eMSE and eNLPD (see Figure 7). The top row605

of Figure 8 corresponds to 40% proportion of data, the middle row to 59%,606

and the bottom row to 80%.607

In mission 1 the high ambient noise affects the performance of the UK608

techniques. Our method performs similarly to the OK methods for long-609

distant predictions and profoundly better for short-distant predictions. The610

eNLPD values are acceptable in all predictions techniques and cases, except611

one case of UK prediction with Matérn semivariogram. In mission 2 the high612

ambient noise affects the performance of all prediction techniques. Only613

the proposed method quantifies the uncertainty, while all other methods fail614

as shown in Figure 8-(b). Both parsimonious methods of OK report lower615

error values, yet with zero variance. Although the error metrics of the pro-616

posed technique are not satisfactory for this mission, the uncertainty of the617

proposed method is quantified, as indicated by the eNLPD in Figure 7-(b)618

and the prediction plots in Figure 8-(b). Paradoxically, all methods produce619

higher error values as more measurements are collected. In mission 3 and 4,620
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Table 5: Posterior BIC-based Selection of Semivariogram Function

Semivariogram-posterior BIC [%]

% of Mission Mission Mission Mission
Data 1 2 3 4

40 S S-33; E-33; M-34 E S-34; E-32; M-34
51 S S-33;E-33;M-34 E S
59 S S-32; E-33; M-35 E S-33; E-33; M-34
67 S-29; E-37; M-34 S-33; E-32; M-35 E S-33; E-33 ;M-34
80 S-38; E-29; M-33 S-36; E-31; M-33 E S-33; E-33; M-34

S–Spherical; E–Exponential; M–Matérn.

the low ambient noise results in better predictions for our method than the621

rest techniques. Particularly, in mission 3 the error and uncertainty metrics622

of our technique are significantly better from the rest methods as illustrated623

in Figure 8-(c). In mission 4, all techniques provide acceptable results in624

terms of eMSE, yet the proposed method is the most accurate and the only625

one that quantifies the uncertainty. All other methods fail. In addition, even626

though the other techniques provide low eMSE values, their uncertainty is627

overconfident as indicated by the eNLPD values in Figure 7-(d). Realistic628

uncertainty bounds are reported only from the proposed methodology, while629

all other techniques provide predictions with zero variance as presented in630

Figure 8-(d). Note that for higher vehicle depth the ambient noise deterio-631

rates, favoring the proposed methodology, as noise scenarios are similar to632

missions 3 and 4.633

In Table 5, we list the selected semivariograms based on the posterior BIC.634

It is evident that there is no dominant semivariogram function and that the635

nested semivariogram was employed in many cases. This emphasizes the636

importance of nested models and the necessity of statistical model selection637

techniques for field trials in complex environments.638

7. Conclusion and Future Work639

This paper proposes a model-based, data-driven learning technique for640

prediction of underwater acoustic communication performance in AUVs be-641

yond the observation area. In both traditional ordinary kriging (OK) and642

universal kriging (UK) methods the estimated parameters are affected by the643

artificially added bias, leading to different parameter values. We show that644

the proposed model-based learning yields accurate predictions, outperform-645

ing up to three orders of magnitude other kriging methods in simulations.646

32



More specifically, for all ambient noise profile scenarios both OK and UK pre-647

diction methods that used in the comparison produce high error values and648

quantify the uncertainty poorly. Moreover, the nested semivariogram func-649

tion improves drastically the uncertainty quantification. In addition, experi-650

mental results reveal significantly better predictions with our method for low651

and high ambient noise environments. The proposed technique reports real-652

istic uncertainty bounds in all missions, which other mission methods often653

fail to generate. In unpredictable and high ambient noise environments, our654

method outperforms in prediction accuracy the techniques assessed herein.655

A disadvantage of the proposed technique arises from the computational656

requirements of the iterative training. More specifically, the training step657

entails the computation of three candidate covariance functions with corre-658

sponding parameters at every iteration. We found in practice that the recur-659

sive method usually terminates after two iterations, for which the execution660

of the training step requires six times more computations than the traditional661

OK and UK methods with fixed semivariogram functions. Another drawback662

that is subject to all techniques stems from the communication. In particu-663

lar, all agents must communicate their measurements to every other agent in664

multi-robot missions. To this end, our focus in ongoing work is on decentral-665

ized approximate methods to implement kriging in multi-robot systems with666

reduced computational complexity and limited inter-vehicle communication667

[68]. This will allow even large networks with big data to use the proposed668

technique in real-time.669
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