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Abstract—In this paper, we present a motion planning al-
gorithm designed to guide agents, termed as player agents,
optimally through multi-agent 3D urban air environments. The
method integrates a sampling-based path planner, model-free
optimal control, and a cognitive hierarchy model to predict
the motion of other agents. Each player constructs a path
through the environment, which is dynamically re-planned as
the obstacle space of the environment evolves based on its online
observations and the observations of cooperating players. The
cognitive hierarchy model predicts the behavior of each agent in
the environment, while a Gaussian process classification method
estimates an unknown agent’s level of rationality in real-time
by observing each agent’s kinodynamic distance. Once another
agent’s motion planning strategy is inferred, the player agents
construct a predicted obstacle space based on each agent’s
expected motion to avoid potential collisions. Each player then
traverses its planned path using a Q-learning controller. We
validate the effectiveness of the proposed method in numerical
experiments of a 3D urban air environment containing four
and ten agents. We demonstrate that this approach is effective
for reducing distance traveled by agents to reach their goals,
mitigating the risk of collisions, and preventing deadlocks.

Index Terms—Autonomous Vehicles, Control of dynamic sys-
tems, Machine Learning, Motion Planning

I. INTRODUCTION

During the past two decades, significant advancements have
been made in the flight of unmanned aerial vehicles (UAVs).
These UAVs have a wide variety of uses, such as package
delivery, search and rescue, aerial surveying and videography,
and power line inspection among many others that cannot
easily be accomplished on the ground or by larger, less
maneuverable air vehicles. As a result, more consideration has
been given on how to use a multitude of UAVs simultaneously
in an urban air environment, a problem referred to as urban
air mobility (UAM) [1]–[5]. UAM has emerged as a leading
challenge for these drones in recent years, with many diffi-
culties to overcome. For example, obstacle avoidance in real
time and safe motion planning are still considered necessary
developments for robotic motion planning and face numerous
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challenges [6]. In real-world environments, motion planning is
more complex than accurately observing obstacles between a
start and goal location, and then planning a path around them.
Instead, robots may need to overcome various difficulties, such
as dynamic environments where the obstacle space changes
over time and a noisy perception system. To safely plan a
path through dynamic environments, these vehicles must not
only consider the presently observed obstacle space, but also
consider future collisions by preemptively avoiding potential
future and adversarial obstacles. This challenge is exacerbated
by the simultaneous presence of multiple agents in the same
environment, where other agents with unknown destinations
and unknown paths may interfere with an autonomous robot’s
planning. Additionally, these paths may also need to account
for kinodynamic constraints on the robot, which influences
how the robot’s motion based on physical constraints such as
maximum velocity and acceleration [7]. In this work, we seek
a scalable multi-agent motion planning method of decentral-
ized communication networks in dynamic environments. We
consider each previously outlined component of this problem
and address them individually.

Related Work

We begin by considering previous work in motion planning
in dynamic environments. RRTX is introduced in [8] and pro-
vides rapid re-planning in dynamic environments for real-time
implementation. RRTX is also used as the path planning basis
for RRT-QX [9], [10], which additionally includes a model-
free method of finding the optimal control to traverse the
planned path. This model-free control technique is originally
introduced in [11]. The UAM problem is also considered
an instance of a kinodynamic motion problem, detailed in
[7]. Some works, such as [12], present a method to solve
for optimal control in kinodynamic motion problems, but
assume that the system dynamics of the agent navigating the
environment are known. To navigate through a kinodynamic
environment with unknown system dynamics, [13] presents an
alternative solution making use of the kinodynamic distance
(KD), a concept defined as the distance between an agent and
its planned path.

Multi-agent environments, such as an urban airspace, in-
troduce additional challenges in avoiding the motion of other
agents. Many approaches have been taken to navigate through
these environments. For example, in [14], the authors introduce



a UAM motion planning approach that accounts for multiple
potential behaviors for drones in the obstacle space. However,
this work plans paths offline and only makes minimal ad-
justments to avoid other agents. A similar multi-agent motion
planning approach for nonlinear dynamics is shown in [15],
but only with cooperative agents.

We also consider scenarios where an agent does not have
perfect knowledge of the strategies of other agents in the
environment, a concept referred to as bounded rationality [16].
In these cases, agents instead can find more efficient paths
by modelling the behavior of other agents and using their
predicted future states to plan their own path. This method
is often based on specifically human-robot interaction, such
as [17]. Another approach in [18] uses interacting Gaussian
process regression to model human motion and considers
the motion of multiple other agents operating in the same
space. This work also uses Gaussian processes, but instead to
classify motion strategies rather than form a model of motion
with Gaussian process regression. An alternative approach to
multi-agent motion planning using both reinforcement learning
and force-based motion planning (FMP) to avoid collisions is
shown in [19].

In this work, we must also determine the potential strategies
of other autonomous agents rather than predicting human
motion. One method of determining these strategies is by
forming a cognitive hierarchy [20] to describe the levels of
rationality of multiple players in a game. This approach is used
to determine the behavior of cyber-physical systems such as
drones in [21], [22]. In autonomous motion planning, cognitive
hierarchy can be used to identify potential motion planning
strategies used by individual agents, allowing other agents
to plan their motion in response to these strategies to avoid
collisions. For example, this is seen in a racing environment in
[23]. Furthermore, a cognitive hierarchy specific to urban air
mobility is introduced in [24], as well as a method to estimate
the level of rationality expressed by individual agents.

Contribution: The contribution of this paper is three-fold:

‚ We formulate a decentralized motion planning
method with a bounded rationality approach to
navigate environments containing both communicating,
cooperative agents as well as independent agents.

‚ We propose a method to mitigate sensor noise in obstacle
detection to ensure more accurate observation of the
obstacle space as well as observation of independent
agent motion.

‚ We synthesize Distributed RRT-QX, a robust method of
optimal motion planning in a 3D urban air environment
for multi-agent settings.

Previous work and results related to this paper are found
in [24], [25]. This paper expands upon these results by
first combining these previous works into an algorithm that
considers both cooperative and non-cooperative agents, known
as player agents and independent agents respectively, in the
environment. We additionally use observations from player
agents to propose a more sophisticated method of identifying
the levels of rationality of independent agents using distributed
Gaussian process classification. Next, we incorporate distance-

varying noise in observations of the obstacle space to make our
algorithm compatible to heterogeneous sensing capabilities.

Structure: The remainder of the present paper is struc-
tured as follows. In Section II we formulate the urban air
mobility problem, including a brief overview of previous
work. In Section III, we describe a decentralized motion
planning method for communicating player agents to avoid
collisions with one another. Section IV details the cognitive
hierarchy of unknown agents in the environment, and Section
V discusses how we predict an agent’s level of rationality.
In Section VI, we present how we use noisy observations of
the environment to estimate the obstacle space. Section VII
details the combined motion planning framework. Section VIII
presents simulations using this framework and its results, and
Section IX concludes the paper and discusses future work.

Assumptions: To derive our key results, we assume
that the environment contains some number of cooperative
agents capable of observing all obstacles in a neighborhood
around themselves, and that these agents can communicate
these observations to each other. We also assume that non-
communicating agents in the environment are not adversarial
(eg. seeking collisions with other agents) and not attempting
to deceive our method of learning their motion planning strate-
gies. Additionally, for the model-free control, we approximate
vehicles as linear time-invariant systems.

II. PROBLEM FORMULATION

Let us consider an environment X containing S dynamic
agents. The location of each agent i in the environment
at a time t is defined as their current state xiptq, where
i “ 1, . . . , S. Additionally, each agent is assigned an initial
state xi,0 and a goal state xi,g. We consider two kinds of agents
which may be present in the environment: player agents,
which are agents we control and are capable of communicating
with one another, and independent agents, which we do not
control and cannot communicate with. For each player agent
i we also define an obstacle space Xobs,iptq Ă X . We seek to
generate a high-level path to guide each player agent i through
the environment X from xi,0 to xi,g with no collision, where
a collision is defined as xiptq P Xobs,iptq for any time t ě 0.

To avoid collision with obstacles and reach their goal state,
each player agent implements RRTX [8] to construct a graph
Gi “ pVi, Eiq, where Vi is the set of nodes and Ei is the
set of edges. The edges of this graph are used in turn to
construct a collision-free path πipxi,0, xi,g; tq P R2pKiˆnq for
k “ 1, ...,Ki of two-point boundary value problems (BVPs),
where Ki P N is the number of BVPs in its path. These series
of BVPs connect the player agent’s initial state to its final
goal state, and each BVP k is represented by a tuple of points
ă xi,0,k, xi,g,k ą, where xi,0,k and xi,g,k are the initial and
goal states of the BVP, respectively. We choose this algorithm
as the obstacle space of our environment may change over
time and RRTX can quickly refine its graph Gi in real-time and
generate new waypoints of collision-free paths. Additionally,
it is shown to be asymptotically globally optimal.

To traverse the path, we define a distance function between
two states x1, x2 as

Dpx1, x2q :“ ||x1 ´ x2||. (1)



The agent seeks to decrease Dpxiptq, xi,g,kq until
Dpxiptq, xi,g,kq ă ρDpxi,0,k, xi,g,kq where ρ ă 1 is a
user-defined constant. Upon reaching this neighborhood,
the agent defines its location as xi,0,k`1 and begins to
travel to the next goal state xi,g,k`1 in accordance with the
planned path.

Next, we consider the optimal control problem for each
player agent to reach the goal state with completely unknown
system dynamics. Each agent i can be described as a linear
time-invariant system,

9xiptq “ Axiptq ` Buiptq, xip0q “ xi,0, t ě 0 (2)

where xiptq P X Ď Rn and uiptq P U Ď Rm are the state
and control input vectors, respectively, for agent i “ 1, . . . , S,
and A P Rnˆn and B P Rnˆm as the respective plant and
input matrices. We alternatively define a “goal difference” state
x̄iptq “ Dpxiptq, xi,gq, where xi,g is agent i’s current goal
state, and additionally the system dynamics,

9̄xiptq “ Ax̄iptq ` Buiptq, t ě 0. (3)

As the origin of the environment is arbitrary, this transfor-
mation still describes an identical system to Equation (2). We
employ a finite horizon linear-quadratic regulator to drive the
player agent to its goal state at a finite horizon time T . Let us
consider for each agent i in the environment a minimization
of the finite-horizon cost function,

Jipx̄i,0, ui; t0, T q “ ϕipT q `
1

2

ż T

t0

x̄⊺
i Mx̄i ` u⊺

i Rui dτ, (4)

where ϕipT q :“ p1{2qx̄⊺
i pT qPipT qx̄ipT q is the terminal cost,

PipT q P Rnˆn ą 0 is the final Riccati matrix, and M P

Rnˆn ľ 0, R P Rmˆm ą 0 are penalty matrices for the goal
difference state and control input, respectively.

Assumption 1. The matrix pair (A, B) is controllable and the
matrix pair (M1{2, A) is detectable for all values i. l

To minimize the cost function, each player agent seeks
an optimal control u‹

i px̄, tq such that Jipx̄i,0;u
‹
i ; t0, T q ď

Jipx̄i,0;ui; t0, T q,@x̄i. We alternatively express this problem
as the value function,

Vipx̄iq “ min
uiPUi

#

ϕipT q `
1

2

ż T

t0

x̄⊺
i Mx̄i ` u⊺

i Rui dτ

+

. (5)

We find this optimal control using a model-free actor-critic
structure, as seen in previous work [26].

To mitigate the risk of collisions due to kinodynamic
constraints and optimal performance constraints, we construct
a “buffer” in between the obstacle space and the free space.
More formally, let us define the kinodynamic distance (KD)
of each agent as,

Drob,ipx̄iq :“
|x̄i,0,k ˆ x̄i|

Dpxi,0,k, xi,g,kq
, (6)

where x̄i,0,k ˆ x̄i is the cross-product of the vectors x̄i,0,k, x̄i,
and Drob,i is a measure of the distance between player agent
i’s location and the line segment represented by the current
BVP ă xi,0,k, xi,g,k ą. As agent i travels, we record and

update its maximum KD Dmax
rob,i. Then, each agent i uses

Dmax
rob,i to form an augmented obstacle space, defined as the

Minkowski sum

X aug
obs,i :“ Xobs,i ‘ Xkin,i (7)

where Xkin,i is a compact set bounded by a sphere with
a radius of Dmax

rob,i. This effectively adds a “buffer” to the
obstacle space and defines Xobsptq. We now prove a theorem
first introduced in [25].

Theorem 1. If an agent i expands all obstacles by the set
Xkin,i and plans its path around these augmented obstacles,
then the agent is guaranteed to avoid collisions.

Proof. We prove this theorem by contradiction. Consider a
collision between the agent i and its obstacle space Xobs,i. This
collision requires that at time t, Dpxiptq, xoptqq ă dcol, where
dcol is a “collision radius” indicating how close the agent is
allowed to pass by obstacles. However, RRTX seeks to avoid
the augmented obstacle space X aug

obs,i which expands obstacles
in all directions by a distance Drob,i. This subsequently
implies the agent’s planned path will not travel within a
distance pDkin

rob,i ` dcolq of obstacles. The agent can deviate
from its path by a maximum distance Dmax

rob,i, but this still will
not bring the distance between an agent and the obstacle space
below dcol. Therefore, there are no possible states xiptq where,

min
xoPXobs,iptq

tDpxiptq, xoptqqu ă dcol, (8)

and the theorem is true by contradiction.

In this work, we also presume that an agent’s perception
system for observing the obstacle space is affected by noise.
Let us consider an obstacle point observed by the agent to
follow x̃obs “ xobs ` dvar, where xobs P Xobs,iptq is a point
inside the true obstacle space and dvar “ N p0, σ2pxqInq P

Rn represents a random noise in the detected location of the
obstacle, dependent on the distance between the agent and
the obstacle. To ensure safety, we must account for this noise
similarly to how we account for imperfect motion planning
caused by kinodynamic distance constraints Drob,i.

We seek to find the mean location of the obstacle and
minimize the effects of the variance due to noise by using
repeated measurements from the agent. In addition, we sup-
plement each player agent’s observations with observations
from neighboring player agents in the environment to further
mitigate the effects of noise in obstacle sensing and promote
safety. To do so, we allow each player agent in the environment
to distinguish between obstacles, and allow two player agents
to recognize when they observe the same obstacle as one
another.

In the urban air mobility problem, the environment will also
be populated by other player agents and independent agents
traversing paths towards their own destinations. In the case of
cooperative player agents, we introduce a framework for these
player agents to safely form paths around one another. For
player agents to effectively plan a path around the motion of
independent agents, player agents require the ability to predict
their motion. We assume that independent agents are similarly
driven towards an individual goal state while minimizing



(a) Top-down view (b) Isometric view

Fig. 1: A 3D example of an urban airspace populated with
numerous drones.

a finite-horizon cost function (4). We structure the multi-
agent planning problem as a game where each agent i in the
environment is a player seeking an individual optimal control
u‹
i . As the agents in the environment do not directly impact

one another’s optimal control, we consider the game as non-
cooperative and non-zero-sum. To predict how independent
agents plan their motion in a non-cooperative game, we use a
level-k cognitive hierarchy framework to formulate potential
strategies that independent agents use to plan motion around
other agents, and use the framework to predict the motion
of these independent agents. These motion predictions allow
the player agents to avoid future collisions with independent
agents.

Definition 1. Level-k rationality is a model of game strategies
using cognitive hierarchy, where a player with a level-k strat-
egy (or level of rationality) assumes all other players employ
a level-(k ´ 1) strategy and chooses its actions accordingly to
minimize its own cost. l

For example, an independent agent with a level of rationality
of 1 will assume that all other agents have a level of rationality
of 0, a level-2 agent will assume all others are level-1, etc. The
level-k strategies, and the likely resulting motion, are defined
a priori. After predicting the strategies used by independent
agents, player agents construct a predicted obstacle space
X̂obs,i to pre-emptively avoid the future states of independent
agents. The total obstacle space then used by RRTX for the
agent i is thus defined as the union of the augmented obstacle
space (7) as well as X̂obs,i,

X tot
obs,i “ X aug

obs,i Y X̂obs,i. (9)

We define the strategy used by our player agents to adapt
to the motion of independent agents as level-8.

We now state the problem of motion planning in a 3D urban
air environment.

Problem 1. Urban air mobility problem: Consider multiple
communicating agents, known as the “player agents,” in a 3D
environment representing an urban area, possibly populated
with static obstacles and independent agents. Given an initial
state and goal state for each player agent, we seek a method
to guide the player agents to their goal state both safely and
optimally with respect to energy. Visual descriptions of the
problem are shown in Figure 1. l

In previous work, we described the approach used to
construct a path from an initial state to the goal state. We
then modeled the dynamics of agents in the environment as a
continuous-time linear system and define a finite-horizon cost
function that drives the system optimally to its goal state. We
also presented the kinodynamic constraints in the environment
and mitigate the risk of collision. In this work, we consider
the motion of other agents in the environment and construct
strategies for collision avoidance with both cooperative and
independent agents. We follow this by also considering uncer-
tainty in the obstacle space based on inaccurate observations.

III. DECENTRALIZED MOTION PLANNING

In this section, we propose a framework for individual
player agents aware of each other’s motion to avoid collisions
with each other and prove Theorems originally presented in
[25]. Consider two different player agents i, j with radii ri, rj
respectively. Each agent is aware of the other’s position xi, xj ,
and the goal state of their current BVP xi,g, xj,g. The obstacle
space of i is continually updated to include an obstacle located
at xj with a radius rj to avoid immediate collision. In addition,
an obstacle Xobs,i,j is defined with a radius rj , and is added
to the obstacle space of agent i along the path between xj

and xj,g to represent the current path of agent j. The obstacle
representing the agent’s predicted path is continuously updated
as agent j approaches its current goal, and is updated to the
next BVP along the path πj when agent j begins along its
next planned BVP. By defining an obstacle along the path
of agent j, we can ensure that agent i does not plan a path
that will cross in front of agent j and risk a collision. Agent
j undergoes a similar process with the current location and
planned path of the agent i. To ensure that the planned paths
of both i and j are safe in a kinodynamic environment, the
generated obstacles representing their paths are expanded as,

X aug
obs,i,j :“ Xobs,i,j ‘ Xkin,i,j , (10)

where Xkin,i,j is the space of a compact set bounded by a
sphere with a radius of Drob,i ` Drob,j .

Theorem 2. Consider agents i, j that are familiar with
maximum KDs Drob,i, Drob,j respectively. By expanding the
obstacles representing one another by the space Xkin,i,j , the
agents can guarantee avoiding a collision.

Proof. Consider a collision between the agent i and agent j.
The collision requires that at time t, Dpxiptq, xjptqq ă dcol.
However, each agent’s path-planning seeks to avoid the ex-
panded obstacle X̂obs,i,j which adds a radius Drob,i. This
means both agents will never plan to travel within a distance
Drob,i ` Drob,j of each other. Agent j can deviate from
its path by a maximum distance Drob,j , i.e., the minimum
distance between the path πi and state xj is Drob,i. Vice versa
is true for agent j, such that the minimum distance between
the path πj and state xi is Drob,j . By Theorem 1, both of these
agents still successfully avoid a collision with each other. Thus,
the theorem is true by contradiction.

By Theorem 2, we ensure that the two player agents are not
at risk of collision even when their motion is influenced by
kinodynamic constraints.



In cluttered environments containing numerous player
agents, this process can create situations where an individual
player agent cannot find a viable path towards its goal state
without intersecting another agent’s path, and therefore cannot
move. This deadlock is referred to as the “freezing robot
problem” [27] (FRP). To address the FRP, each agent measures
the distance it has traversed over time. If the player agent i
does not exit a neighborhood with a user-chosen radius rf
over a certain time-frame, then that agent may be currently
“frozen” in place by obstacles. If this occurs, the agent can
communicate with other nearby player agents to force them
to re-plan their own paths. It does so by temporarily changing
the broadcasted KD to other agents to be a value d ą rf . The
increased KD in turn motivates other agents to re-plan paths
to avoid the area of the frozen player agent.

Theorem 3. Consider a frozen agent i “trapped” in a neigh-
borhood of radius rf and blocked at least partially by another
agent j. By increasing its broadcasted maximum KD Drob,i

by a distance l greater than rf , agent i can guarantee that it
can plan a path out of this neighborhood.

Proof. Consider an agent i still trapped after increasing the
Drob,i. This implies that agent j is close enough for the
obstacle X̂ aug

obs,i,j to intersect with the neighborhood agent
i is trapped in. This in turn implies that the agent j is
within a distance Drob,i ` Drob,j ` rf , or the sum of KDs
as well as the radius of the neighborhood, of the center
of the neighborhood. Therefore, the corresponding obstacle
created by i that j seeks to avoid, X̂ aug

obs,j,i, has a maximum
augmentation distance of Drob,i ` Drob,j ` rf . However, as
the broadcasted KD was increased by a value l larger than rf ,
the obstacle that j seeks to avoid is augmented by a value,

Drob,i ` Drob,j ` l ą Drob,i ` Drob,j ` rf , (11)

and the agent j is not allowed within this distance by its path-
planning algorithm, considering Theorem 2. Thus, the theorem
is true by contradiction.

Following Theorem 3, agent i can successfully create a path
out of the neighborhood fi by increasing its KD.

IV. COGNITIVE HIERARCHY

In this section, we briefly detail the cognitive hierarchy
used by independent agents in the urban air environment, and
then employ the cognitive hierarchy to determine the behavior
of our player agents. The hierarchy we use is originally
derived and detailed in [24], and includes two major levels
of rationality, as higher levels of rationality result in a loop in
strategies: level-0 rationality, and level-1 rationality. We then
use the defined cognitive hierarchy to determine a strategy for
our player agents to respond appropriately to each possible
level of rationality, resulting in both safe and optimal planning
in a diverse environment containing multiple strategies. We
refer to the final player agent strategy as the level-8 strategy.

In the cognitive hierarchy for urban air mobility, a level-
0 agent i ignores all other agents in the environment, and

construct the obstacle space Xobs,i using solely perceived non-
agent obstacles, i.e., the predicted obstacle space X̂obs,i “

t∅u.
Next, we consider a level-1 agent. Similarly to a level-

0 agent, a level-1 agent j drives to its goal state by con-
structing its obstacle space Xobs,j and seeks an optimal path
π‹pxi,0, xi,gq. However, level-1 agents additionally attempt to
predict the motion of other agents in the environment, and use
this to construct a predicted obstacle space X̂obs,jptq to form
a total obstacle space X tot

obs,j . In this case, the level-1 agent j
anticipates level-0 behavior from all other agents. The agent
thus avoids collision by avoiding the reachable set over a set
time-frame ts, which is proven to be safe in Theorem 4.

Definition 2. The reachable set of an agent i at a time t and
over a time frame ts is a set of all states xi,f where there
exists a control ui such that xpt ` tsq “ xi,f . l

Theorem 4. Consider a level-1 agent j that is familiar with
the kinodynamic constraints of a different agent i and can
observe that agent’s current state and velocity vector. Then,
agent j can plan a motion that is guaranteed to avoid a
collision with agent i over a time frame ts.

Proof. This theorem is proven in [24].

The level-1 motion planning strategy is also effective for
avoiding the reachable set of a dynamic obstacle with no
predictable rationality. As a result, any dynamic obstacles in
the environment can also be interpreted as level-0 agents for
higher level motion planning strategies.

After defining the cognitive hierarchy, we now consider the
level-8 strategy. While formulating the cognitive hierarchy,
we find a loop in strategies. This means that the optimal
strategy is to imitate a level-1 strategy when navigating around
level-0 agents, and to imitate a level-0 strategy while navigat-
ing around level-1 agents. This ensures safety by avoiding
collisions with level-0 agents, while also ensuring optimality
by not excessively replanning to avoid level-1 agents. This
approach is shown in Figure 2. Now that we have considered
the player’s response to each level of rationality, we attempt
to determine the motion planning of the player agent by
predicting the levels of rationality of each other agent in
the environment and how to respond to each agent with the
appropriate strategy.

V. LEVEL OF RATIONALITY PREDICTION

In this section, we formulate a method to predict the
levels of rationality of other agents using distributed Gaussian
process classification (GPC). We first detail how GPC is used
to predict the level of rationality of an agent by observing
their motion over time. We then formulate a distributed GPC
framework across multiple player agents to increase the accu-
racy of the level of rationality predictions. Next, we describe
how the strategy predictions of other agents are used to further
augment each player agent’s obstacle space.

A Gaussian process classifier, as described in [28], [29] is a
binary classification method where a Gaussian process model
is used to predict whether an input w belongs to a given class.
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Fig. 2: The optimal path π‹
q px8,0, x8,gq of a level-8 agent

(shown in green).

In this work, we choose to use a Gaussian process classifier
as it returns not only a binary classification, but a probability
that the classification is accurate. This is useful as it allows
player agents to gauge the certainty of their predictions, which
is important for distributing the classification task as seen later
in this section. As we consider two levels of rationality in this
work, we treat predicting the levels of rationality of each agent
as a binary classification problem that we solve with GPC by
observing the motion of the agent over time. To do so, we must
consider how each strategy of the cognitive hierarchy affects
the agent motion. In the case of level-1 rationality, we expect
the agent to be conservative in its motion, steering away from
both dynamic obstacles and their current trajectories. In the
context of the planned path π of level-1 agents, this results
in numerous BVPs being cut short, as well as increased KDs
as agents rapidly replan and correct their course. Conversely,
level-0 agents do not share this obstacle avoidance behavior.
This results in longer BVPs in general that are not cut short,
and lower KDs as the agent’s trajectory will rarely change.

To learn our Gaussian process classifier, we run offline
simulations of both level-0 and level-1 agents moving through
an urban air environment and keep a record of the calculated
paths and when they change over the course of the simulation.
For each BVP along an agent’s path, we take note of both the
BVP length and the maximum KD along it to use as inputs for
the classifier, along with user-supplied tags of y “ 1 for “re-
planned” and y “ ´1 for “non-re-planned” BVPs. Numerous
simulations are executed with agents of different rationality
levels to create the training set D used to train the Gaussian
process model. Next, we use the trained model to estimate
the probability that a given input w was planned by a level-1
agent, and we define this probability as ppwq.

To improve the accuracy of classifications of each agent’s
level of rationality, and to allow player agents to classify in-
dependent agents that they cannot directly observe, we utilize
a distributed form of classification called Distributed GPC.
Distributed GPC [30] is a method of using numerous trained
“expert” models, each trained individually with a subset of
the total training set, to reduce the computations necessary
for classification. We now consider an independent agent i
of an unknown level of rationality. Consider an environment

Algorithm 1 rBCM
Input: F - set of learned posterior modes; Y - outputs; k - covariance
function; K - covariance matrix; ppY|fq - likelihood function; w‹ -
test input
Output: ppf‹

|W,Y, w‹
q - Level-1 probability

1: for f P F do
2: Wl Ð ´∇∇ log ppY|fq Ź Hessian
3: Ll Ð CholpI ` W

1{2
l KW

1{2
l q Ź Cholesky Decomposition

4: f̄‹
Ð kpw,w‹

q
⊺∇ log ppY|fq

5: v Ð LlzpW
1{2
l kpw,w‹

qq

6: Vlrf
‹
s Ð kpw‹, w‹

q ´ v⊺v
7: plpw

‹
q Ð

ş

σpzqN pz|f̄‹,Vlrf
‹
sqdz

8: βl “ 1
2

plog σ2
´ logVlrf

‹
sq

9: end for
10: ppf‹

|W,Y, w‹
q “

śL
l“1 p

βl
l

pf‹|Wl,Yl,x
‹q

p´1`
ř

l βl pf‹|w‹q

11: return ppf‹
|W,Y, w‹

q

containing some number L ą 1 of level-8 player agents
capable of observing independent agent i, and each player
agent has its own model fl, l “ 1, . . . , L for predicting the
likelihood that a BVP was re-planned. Each model fl is trained
with a unique subset of the total training data pWl,Ylq. As
agent i traverses its path πi and begins along a new BVP,
each player uses its model to estimate the likelihood that the
previous BVP was re-planned. Each of models’ prediction, in
turn, will be incorporated into the final distributed prediction.

We employ a distributed classification method named the
robust Bayesian Committee Machine (rBCM), which assigns
weights to each expert’s prediction based on its output vari-
ance. The assigned weights help to alleviate concerns of sparse
data in each model by placing more weight on models with
training data that more closely resembles the current input.
Let us assign each player agent as an “expert” for rBCM,
where each expert has previously learned a model fl and a
likelihood function ppY|flq. For a given test input w‹, we then
calculate the predictive distribution of rBCM ppf‹|W,Y, w‹q

using each expert’s predictions as shown in Algorithm 1.

Remark 1. Note that rBCM is a method of distributed classi-
fication that relies on a central server. A decentralized variant
of rBCM is discussed in [31]. Although rBCM is distributed,
the proposed motion planner remains decentralized and does
not require a central server.

As an independent agent i navigates the environment, the
player agents monitor its motion over time, and observe when
it begins a new BVP. Then, each BVP along its path is
provided as a test case w‹

i “ pℓBVP,KDBVPq for each
player agent, which is subsequently used by rBCM to create
an estimate of the level of rationality of the given agent
LoRi “ ppf‹|W,Y, w‹

i q P r0, 1s. A higher value of LoRi

indicates stronger likelihood that the agent is following a level-
1 motion planning strategy.

We now consider how to alter the obstacle space of player
agents in response to estimated levels of rationality and ensure
optimal motion planning. In the previous section, we discussed
how a level-1 agent computes the reachable set during a time
frame ts of the other agents in the environment, and how
conversely a level-0 agent does not respond to other agents.
In addition, player agents desire to mimic either one of these



levels of rationality, depending on the strategies of other agents
in the environment. This presents us with a relatively simple
way to alter the obstacle space depending not only on the
perceived level of rationality of another agent, but also on the
likelihood that this prediction is accurate.

For each independent agent in the environment i, we add
their estimated reachable set Xrs,i over a time frame ts,i to the
player agents’ obstacle space, where ts,i P r0, ts,maxs is a value
chosen depending on the agent’s estimated level of rationality
LoRi between 0 and a maximum value ts,max. Specifically,
we choose a value ts,i inversely proportional to LoRi,

ts,i “ ts,maxp1 ´ LoRiq. (12)

In practice, this means that the player agents aim to avoid
a reachable set of agent i. The size of ts,i is related to the
reachable set and is proportional to the likelihood that agent
i is level-0. The impact on the obstacle space of the agent is
conversely decreased if it is more likely to be a level-1 agent,
down to a minimum time frame of ts,i “ 0. In this case, the
reachable set only consists of the current location of the agent,
although in practice this value of ts,max will not be reached
as agent levels will never be known for certain. This results in
player agents being more cautious of level-0 agents to ensure
safe planning, while also being less cautious of level-1 agents
to ensure no unnecessary loss in optimality while planning a
path.

VI. OBSTACLE UNCERTAINTY

In this section, we formulate how a method of using
repeated observations by multiple player agents to construct
a shared obstacle space which will ensure that other player
agents are familiar with obstacles which they cannot currently
detect. We again consider some number L cooperating player
agents in the environment capable of repeatedly observing an
obstacle located at xobs. Each observation of the obstacle made
by a given agent l P L is written as

x̃obs,l,o “ xobs ` dobs,l,o, o P Ol, (13)

where dobs,l,o P Rn is a noise vector composed of normal
random variables centered on 0. Using their own observations,
each agent compiles the average perceived location of the
obstacle,

x̃avg
obs,l “

řOl

o“1 x̃obs,l,o

Ol
, (14)

where each value x̃obs,l,i correlates with a unique observation
made by agent l. We then use the average location of each
player agent to create a final estimate of the obstacle location
xobs, as discussed in Theorem 5.

Assumption 2. The standard deviation of the noise in an
agent’s observations of a given obstacle is proportional to
distance from the obstacle and can be modeled as σobs,l “

cDpxl, x̃
avg
obs,lq where c is an identical constant for each player

agent. l

Theorem 5. Given Assumption 2, the effects of noise on the
final estimate of an obstacle’s location can be minimized by
taking the final estimate to be

xobs “

řL
l“1 Dpxl, x̃

avg
obs,lq

´2x̃avg
obs,l

řL
l“1 Dpxl, x̃

avg
obs,lq

´2
. (15)

Proof. It can be shown that for any number of independent
observations yi with standard deviations σi, the variance of
the weighted sum of observations Y is minimized by taking
the inverse-variance weighted average

Y “

ř

i“1 σ
´2
i yi

ř

i“1 σ
´2
i

. (16)

By using this property while also substituting the standard
deviation with the equation in Assumption 2, we can then
minimize the variance of the final estimate of an obstacle’s
location with the equation

xobs “

řL
l“1 c

´2Dpxl, x̃
avg
obs,lq

´2x̃avg
obs,l

řL
l“1 c

´2Dpxl, x̃
avg
obs,lq

´2
, (17)

where the constant c´2 can be removed from both the numer-
ator and denominator to result in Equation (15).

This approach requires a limited number of samples to
accurately estimate the location of an obstacle, and forming the
estimated obstacle location is not computationally intensive.
As a result, this approach requires minimal increase in the
computational capabilities of player agents.

VII. MOTION PLANNING FRAMEWORK

The motion planning structure of a given player agent i
consists of five stages that are repeated throughout a player
agent’s motion: (i) dynamic planning with RRTX ; (ii) Q-
learning control; (iii) terminal state evaluation; (iv) obstacle
space computation and augmentation, and (v) level of ratio-
nality estimation with distributed GPC. We term our method
as Distributed RRT-QX. The pseudo-algorithm is shown in
Algorithm 2. Each player agent plans its own path according
to this framework, based on observations and trained GPC
model, as well as the observations and models of other agents
as specified in the algorithm.

Extension from Previous Work: The proposed method
builds our previous work [24], [25], but is superior in
several key aspects. First, by combining predicting levels
of rationality and distributed motion planning, we present
an algorithm capable of planning safe and optimal motion
through environments containing both cooperative and
independent agents. We further improve predicting the
level of rationality of independent agents by combining
the observations of numerous player agents, weighing their
predictions based on their certainty, and making changes to
the predicted obstacle space. The predicted obstacle space
is a function of the rationality likelihood (i.e., level-0 or
level-1), rather than using a simple binary prediction of
an agent’s strategy. Lastly, this work is first to incorporate
distance-varying noise into agent’s observations of both other



Framework Ge [14] Semnani [19] Chen [15] Dist. RRT-QX

Optimality Energy Time No Energy
Agents Both Indep. Coop. Both
Scalability Offline Online Online Online
Dynamics Known Learned Known Learned
Disturbances No No No Yes

TABLE I: Comparison of several multi-agent motion planning
algorithms.

agents and of obstacles in the environment, and successfully
mitigates this noise through agent cooperation.

Qualitative Comparison: We present a qualitative compar-
ison between our proposed framework and other works in
Table I. For this comparison we consider prior work most
similar to our own, dealing with multi-agent motion planning
in dynamic environments. We compare these frameworks on
the following aspects: 1) Optimality of the agent’s control;
2) Cooperative nature of other agents in the environment, i.e.,
cooperative, independent, or both; 3) Computational scalability
of path planning algorithm, i.e., offline or online; 4) Knowl-
edge of system dynamics, i.e., known, approximated a priori,
or learned in real-time; 5) Disturbances in agent’s observations
from the environment. As shown, the frameworks proposed in
[19] and [15] deal with independent and cooperative agents,
respectively. Distributed RRT-QX is capable of navigating
around both efficiently to minimize the replanning necessary
and the risk of collision depending on the situation. The
framework shown in [14] also acommodates both kinds of
agents, but plans a path offline and only makes minimal
adjustments to this path to avoid collision, which is unreliable
if an environment becomes congested after initial planning.
Additionally, Distributed RRT-QX does not require system
dynamics a priori unlike most other proposed frameworks,
and is the only one to consider and to mitigate noise in
observations of the environment.

VIII. SIMULATIONS

To test our classification approach, we use simulations of
a variety of three-dimensional urban environments, populated
with a variety of static obstacle spaces Xobs. Each simulation
involves several agents given a random initial and goal state,
and operating individually with either level-0 or level-1 ratio-
nality. Each agent in the simulation follows (3), with dynamics
and user-defined cost matrices identical to those in [25].

In each simulation, the agents are given a random initial
and goal state and calculate their optimal path to the goal
using RRT-QX and the proposed path planning methodology
for their respective level of rationality. After each case, the
BVPs calculated by each agent are saved and flagged if they
were the result of re-planning to avoid obstacles. The saved
BVPs comprise the training data for several GP expert models,
each of which are provided with a subset of the data.

Additional simulations are conducted containing player
agents with these trained expert models, and each agent in
the environment observes the location of all other agents,
accompanied with distance-varying noise. The observations
of each agent are used to create an estimate of each agent’s

Algorithm 2 Distributed RRT-QX

Input: T - finite horizon; ∆t - resolution; M , R - cost weight
matrices; P pT q -fixed Riccati matrix; ρ - admissible window; xgoal

- goal state; xstart - start state; L - Set of player agents; n - Set
of independent agents; wi - BVP of agent i; Xobs,l - obstacle space
of agent l P L; Xa - states of other agents; X - state space; L -
level of rationality; ts - agent range time-frame; tf - freezing check
time-frame; rf - freezing radius
Output: û - control

1: αa, αc Ð StabilitypM,Rq; Ź Initialization
2: Xobs Ð ObstacleEstimationpXobs,lq, l P L;
3: X aug

obs Ð Xobs;
4: Drob, D

kin
rob Ð 0; k Ð 1;

5: for i P n do
6: LoRi “ 0;
7: end for
8: while xgoal ‰ x do
9: G, π Ð RRTX

pX ,X aug
obs , xstart, xgoalq; Ź Dynamic planning

10: Ŵc Ð Critic(M,R,∆t, αc, x̄, û); Ź Q-learning
11: Q̂i Ð EstimateQ(Ŵc, x̄, û);
12: Ŵa Ð Actor(Q̂i, αa, x̄);
13: û Ð Control(Ŵa, x̄);
14: return û;
15: D0 Ð Distance(x0,k, xg,k) (1);
16: D Ð Distance(xk, xg,k);
17: if D ď ρD0 then Ź Terminal state evaluation
18: x0,k Ð xptq;
19: k Ð k ` 1;
20: break;
21: end if
22: X̂obs Ð PotentialStatespXa, L, ts,LoRiq;
23: X tot

obs Ð Xobs ` X̂obs Ź Predictive obstacle avoidance
24: if t ă T then
25: Drob Ð KinodynamicDist(x0,k, x̄, D0) (6);
26: if Norm(xptq ´ xpt ´ tf qq ă rf then
27: Drob Ð Expand(Drob) Ź Freezing check
28: end if
29: if Drob ą Dkin

rob then Ź Obstacle augmentation
30: Dkin

rob Ð Drob;
31: end if
32: X aug

obs Ð Augment(X tot
obs , D

kin
rob) (7);

33: end if
34: for i P n do
35: LoRi “rBCMpppwiqlq, l P L Ź LoR Estimation
36: end for
37: end while

location over time. We repeat the process of observing in-
dependent agent motion to estimate their BVPs and generate
noisy testing data for our GPC models. The results of the noisy
classification tests are shown in Table III, and demonstrate
that GPC reliably identifies the replanned paths of level-1
agents even in noisy environments. The predictions are then
factored into the simulations to lessen the size of obstacles
if they are predicted to be more likely to be level-1 agents,
allowing level-8 player agents to plan more optimal paths
while still being safe. A large simulation demonstrating the
complete implementation is shown in Figure 3, and includes
level-1, level-0, and level-8 agents. In this simulation, both
level-1 and level-8 agents successfully planned safe motion
to their goals, and the level-8 agents were found to plan
shorter paths than the level-1 agents by correctly identifying,
and minimizing replanning around, level-1 agents. A separate



Level of Rationality Level-1 Level-8

Avg. Instances of Replanning 14.3 10.7
Avg. Potential Kinodynamic Collisions 3.6 1.7
Deadlock Rate 40% 10%

TABLE II: Comparison of the performance of 10 level-1
agents and 10 level-8 agents across several simulations of
a densely populated environment.

simulation demonstrating the methodology for avoiding the
freezing robot problem is shown in Figure 4. In the deadlock
simulation, a single agent that is unable to find a path to its
goal state successfully creates a path by using its broadcasted
kinodynamic distance to drive other agents away from it. This
result was verified in repeated simulations with a minimal risk
of deadlocks, where no path could be found for an agent. In
Table II, we compare the performance of these level-8 agents
with an identical simulation where all agents instead exhibit
level-1 rationality. This alternative simulation was found to
result in significantly more replanning, a much higher risk
of collisions due to kinodynamic constraints, and frequent
deadlocks where no valid path is found for at least one
agent. Videos of these simulations can be found at:

‚ https://youtu.be/5OZ-4UsUKGE
‚ https://youtu.be/rhEZwF9WjoE

(a) Top View (b) Side View

Fig. 3: A test simulation containing 10 agents. Level-0 agents
(shown in black) travel to their goal state while ignoring other
agents. Also present are level-1 agents (shown in blue) and
level-8 agents (shown in red). In this simulation, the level-8
agents to take a shorter path with less replanning.

IX. CONCLUSION

This paper proposes a motion planning framework for con-
gested urban air environments using distributed classification,
termed as Distributed RRT-QX. The proposed method clas-
sifies independent agent’s levels of rationality in accordance
with a pre-constructed cognitive hierarchy and implements
safe kinodynamic motion planning to avoid independent agents
and their predicted motion. Distributed RRT-QX also allows
for cooperating player agents to plan safe paths while also
preventing deadlocks. Repeated simulations show that this
approach significantly reduces deadlocks and the frequency
of online replanning compared to a naive strategy that avoids
all potential future motion of other agents. As a result, the
proposed planner reduces the risk of collisions between agents
and obstacles. For the kinodynamic motion planning, we inte-
grate a dynamic path planning algorithm to navigate through

(a) Top View (b) Side View

Fig. 4: A test simulation containing 10 level-8 agents. One
agent (shown in red) cannot find a path forward through the
other agents, and becomes “frozen.” As a result, it increases
its broadcasted kinodynamic distance to drive other agents
(shown in blue) away from its current location, allowing it
to find a path to its goal state by driving away other agents.

Type of BVP Original Path Re-planned Path

Model 1 ppwq 0.36 0.71
Model 2 ppwq 0.22 0.68
Model 3 ppwq 0.38 0.71
Model 4 ppwq 0.18 0.64

TABLE III: The average likelihood ppwq of a replanned path
predicted by four different GPC models for various BVPs,
categorized as either BVPs along the agent’s original path or
re-planned BVPs.

these environments with a Q-learning controller to learn the
optimal control policies and execute waypoint navigation. This
structure yields scalable computations suitable for real-time
deployment. In addition, we introduce a method to estimate
obstacle locations that accounts for potential sensor noise.
The results indicate safe and efficient motion planning for all
agents, even in realistic environments with sensor noise.

While this work presents a motion planning methodology
in the context of UAVs operating in an urban air environ-
ment, the framework is applicable to a wide range of multi-
agent environments. The generalized nature of the model-free
control algorithm, the RRT-QX path planning algorithm, the
cognitive hierarchy model, and the level of rationality learning
strategy enable Distributed RRT-QX to operate effectively in
environments with controllable cooperative player agents, any
number of observable independent agents, and an observable
dynamic obstacle space. Future work will focus on executing
optimal timed transitions between waypoints while predicting
agent’s motions. This will ensure temporal task specifications
in an experimental platform. In addition, we will explore the
optimization of actor-critic learning parameters to accelerate
convergence to optimal solutions.
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