
Kinodynamic Motion Planning with Continuous-Time Q-Learning:
An Online, Model-Free, and Safe Navigation Framework

George P. Kontoudis 1, Student Member, IEEE, Kyriakos G. Vamvoudakis 2, Senior Member, IEEE

Abstract—This paper presents an online kinodynamic motion
planning algorithmic framework using RRT? and continuous-
time Q-learning, which we term as RRT-Q?. We formulate a
model-free Q-based advantage function and we utilize integral
reinforcement learning to develop tuning laws for the online
approximation of the optimal cost and the optimal policy of
continuous-time linear systems. Moreover, we provide rigorous
Lyapunov-based proofs for the stability of the equilibrium point,
that results to asymptotic convergence properties. A terminal
state evaluation procedure is introduced to facilitate the online
implementation. We propose a static obstacle augmentation and
a local re-planning framework, that is based on topological
connectedness, to locally re-compute the robot’s path and en-
sure collision-free navigation. We perform simulations and a
qualitative comparison to evaluate the efficacy of the proposed
methodology.

Index Terms—Q-learning, online motion planning, actor/critic
network, asymptotic optimality.

I. INTRODUCTION

The field of motion planning has become a significant
research area [1]–[4], towards achieving autonomous naviga-
tion of various dynamical systems in structured environments.
Unambiguously, the overall complexity of the kinodynamic
motion planning [5], and the computational requirements
constitute a challenging problem, especially for a real-time
implementation [6]–[8]. Optimality requires extensive offline
computation and complete knowledge of the system dynamics
[9]. Yet, the dynamics are often difficult to derive and when ob-
tained they are unreliable and inaccurate, because disturbances
and parameter uncertainties may affect the physics of the
system [10]. Also, the mathematical derivation of the system
dynamics varies for every robot. To deal with such problems,
a solution is to employ simplified dynamical models, but
still compute the optimal solution offline. Such an approach,
may lead to unexpected, and inadequate performance. Un-
doubtedly, dynamical systems in practice propagate to the
continuous-time domain. Moreover, feedback from sensors
may output in high frequency, which dictates continuous-
time implementation to capture full information from mea-
surements. As a result, the vast majority of physical control
tasks in robotics necessitate continuous-time action space [11],
[12]. The objective of this work is to provide an online
and safe kinodynamic motion planning algorithmic framework

1G. P. Kontoudis is with the Kevin T. Crofton Department of Aerospace
and Ocean Engineering, Virginia Tech, Blacksburg, VA 24060, USA, email:
gpkont@vt.edu.

2K. G. Vamvoudakis is with the Daniel Guggenheim School of
Aerospace Engineering, Georgia Tech, Atlanta, GA 30332, USA, email:
kyriakos@gatech.edu.

This work was supported in part by an NSF CAREER under grant No.
CPS-1851588, in part by NATO under grant No. SPS G5176, and in part by
ONR Minerva under grant No. N00014-18-1-2160.

with completely unknown/uncertain linear dynamics, based on
continuous-time Q-learning.

Related work

The problem of motion planning in high-dimensional sys-
tems has been tackled with incremental sampling algorithms,
such as probabilistic road-maps (PRM) [1] and rapidly-
exploring random trees (RRT) [2], which are probabilistically
complete. The work of [4] proposed a asymptotically optimal
approach, namely RRT?. The aforementioned approaches can
be applied to systems with simple dynamics as they cannot
deal with differential constraints.

On the other hand, the authors in [13] introduced the
kinodynamic RRT, yet the control has been obtained either
by taking many actions and selecting the best, or by ran-
domly picking an action. LQR-trees have been developed for
kinodynamic motion planning in [3]. This approach offers a
feedback motion planning algorithm by employing the sum
of squares decomposition. More specifically, they employ
Lyapunov functions to generate appropriate funnels, that are
based on a region of attraction. However, LQR-trees require
full information of the system dynamics to solve the Riccati
equation, that dictates extensive offline computation. In [14],
the authors proposed the model-based LQR-RRT? that solves
a free final state, infinite horizon optimal control problem
with minimum energy cost and derives a heuristic extension
of the RRT?. The work of [15] employed a finite horizon
optimal control approach to measure and extend the RRT?.
The focus was on systems with known nonlinear dynamics and
the solution was obtained offline. The authors of [16] presented
the kinodynamic RRT? that performs asymptotically optimal
motion planning for systems with known linear dynamics.
This technique formulates the finite horizon optimal control
problem, with fixed final state, and free final time for a two
point boundary value problem (TPBVP). In order to find a
closed-form solution to the optimal control problem they used
a minimum fuel-time performance, yet this approach yields
an open-loop controller. Also, the derivation of the continuous
reachability Gramian enforces significant offline computation.
The authors in [17] proposed a near optimal kinodynamic
motion planning technique, that is named NoD-RRT. The
methodology utilizes neural network approximation and RRT.
NoD-RRT achieved reduced computational complexity and
enhanced performance for nonlinear systems, comparing to
RRT and kinodynamic RRT?. Yet, their framework is model-
based and requires offline computation.

A real-time kinodynamic motion planning was presented
in [6]. The methodology consists of: an offline sampling-based
motion planning; an offline machine learning technique to

pre-compute the optimal solutions of the TPBVP with direct
optimization; and an online execution of the motion planner.
The framework achieves fast response, but it requires complete
information about the physics of the system. In [8], a kino-
dynamic planning without the need of trajectory optimization
was presented and named RRT-CoLearn. The work of [18]
employed motion primitives to develop a funnel library for
LQR-trees. Such a methodology allows for online kinody-
namic motion planning, after extensive offline computation.

Safe navigation considers the system’s differential con-
straints to design collision-free paths, that compensate for
the motion of an agent. In [19], the authors proposed a
motion planning framework, which they term as FaSTrack.
Their methodology tracks a trajectory by solving offline a
pursuit-evasion game to find the largest relative distance.
They employed the system dynamics to produce a safe area
around the agent by using reachable sets, and then performed
collision-free motion planning. The authors in [20] proposed
an asymptotically optimal sampling-based motion planning
algorithm that can be applied either in static or in dynamic
environments, that they name as RRTX. The latter consists of
a local re-planning framework that refines the initial graph,
but it requires the system dynamics for motion planning.

Optimal control [9] along with adaptive control [21] can be
efficiently connected by employing the principles of reinforce-
ment learning [22], [23], and actor/critic network structures
[24]–[27]. More specifically, the critic evaluates the cost and
the actor performs a policy improvement. In [28], a discrete-
time Q-learning formulation was used to solve controlled
Markovian systems. A hierarchical method for motion plan-
ning that combines sampling-based path planning and discrete
reinforcement learning was proposed in [29]. However, the
majority of real engineered systems require a continuous-time
approach. Yet, for continuous-time systems the problem is
nontrivial. In [30], a relation of Q-learning with nonlinear
control was established, based on the observation that the
Q-function is related to the Hamiltonian that appears in the
minimum principle. The work of [31] presented a policy
iteration approach to find online the adaptive optimal controller
in a similar fashion with a Q-learning structure. The authors
in [32] introduced a partially model-free algorithm based on
policy iteration, that managed to solve the optimal control
problem online. In [33], a Q-learning approach for solving
the model-free infinite horizon optimal control for continuous-
time systems was presented. The latter approach, composed of
an advantage function with respect to the Hamiltonian and the
optimal value function.

Contributions: The contribution of this paper is fourfold.
First, we formulate the model-free finite horizon optimal con-
trol problem with free final state by employing a continuous-
time Q-learning framework. We employ the global path, that
is computed by the RRT?, to apply the kinodynamic motion
planning algorithm RRT-Q?. The kinodynamic algorithmic
framework RRT-Q? learns the optimal policy without any
information of the system dynamics by using an actor/critic
network, at every TPBVP. Since the kinodynamic algorithmic
framework RRT-Q? does not require the solution of the
differential Riccati equation, it is computationally feasible to

be performed online. Next, we provide rigorous Lyapunov-
based proofs for global asymptotic stability of the equilibrium
point. Thus, our proposed framework can find online the
optimal policy with asymptotic convergence properties and
with completely unknown physics of the system. We also
introduce a terminal state evaluation framework to further
reduce the computational effort of the algorithmic framework
and facilitate the online implementation. Finally, we propose
a local static obstacle augmentation and a local re-planning
framework, that is based on topological connectedness, to
guarantee safe kinodynamic motion planning.

The remainder of this paper is organized as follows. Sec-
tion II focuses on the problem formulation. In section III, we
discuss the optimal control TPBVP. Section IV provides a
model-free formulation based on Q-learning, and section V
presents the structure and the algorithmic framework of the
RRT-Q?. Section VI shows the efficacy of our approach
through simulations and with a qualitative comparison. Sec-
tion VII discusses the computational complexity, the imple-
mentation details, and the limitations of the methodology,
while section VIII concludes the paper.

Notation: The notation here is standard. The R denotes
the set of real numbers, R+ is the set of all positive real
numbers, Rn×m is the set of n × m real matrices, and N
is the set of natural numbers. The (·)ᵀ and (·)−1 denote the
transpose and inverse operator respectively. The In or I is the
n × n identity matrix. The superscript ? denotes the optimal
solutions of a minimization problem. The λ(A) and the λ(A)
are the minimum and the maximum eigenvalues of the matrix
A respectively. The K, the |K|, and the ∂K denote the closure,
the cardinality, and the limit points of the set K respectively.
We denote ‖·‖p as the p-norm of a vector. The vech(A),
the vec(A), and the mat(A) are the half-vectorization, the
vectorization, and the matrization of a matrix A respectively.
The U ⊗ V denotes the Kronecker product of two vectors.
The ∧ denotes the “logical and” operation, and the ⊕ is the
Minkowski sum of two sets.

II. PROBLEM FORMULATION

Consider the following linear time-invariant continuous-
time system of an agent performing motion forward in time,

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0,

where x(t) ∈ X ⊆ Rn is a measurable kinodynamic state
vector, u(t) ∈ Rm is the control input, and A ∈ Rn×n, B ∈
Rn×m are the unknown plant and input matrix respectively.

For driving our system from an initial state x0 to a final
state x(T) = xr, we define the difference between the state
x(t) and the state xr, as our new state x̄(t) := x(t)− xr. The
final time is denoted by T ∈ R+. Similarly, we define our
new control as, ū(t) := u(t) − ur, with ur = u(T). The new
system becomes,

˙̄x(t) = ẋ(t)− ẋr

= Ax̄(t) +Bū(t), x̄0 = x0 − xr, t ≥ 0. (1)

Remark 1: The system (1) can be either time-varying or
time-invariant. For simplicity in this paper, we have removed

the dependence on time, but our framework can be applicable
to time-varying systems with minor modifications.

We define an energy cost functional,

J(x̄; ū; t0, T) = φ(T) +
1

2

∫ T

t0

(x̄ᵀMx̄+ ūᵀRū) dτ, ∀t0, (2)

where φ(T) := 1
2 x̄

ᵀ(T)P (T)x̄(T) is the terminal cost with
P (T) := PT ∈ Rn×n � 0 the final Riccati matrix, M ∈
Rn×n � 0 and R ∈ Rm×m � 0 user defined matrices that
penalize the states and the control input respectively.

Assumption 1: We assume that the unknown pairs (A,B)
and (

√
M , A) are controllable and detectable respectively.

We are interested in finding an optimal control ū? such
that, J(x̄; ū?; t0, T) ≤ J(x̄; ū; t0, T), ∀x̄, ū, which can be
described by the minimization problem J(x̄; ū?; t0, T) =
minu J(x̄; ū; t0, T) subject to (1). In other words, we want
to obtain the optimal value function V ? that is defined by,

V ?(x̄; t0, T) := min
ū

(
φ(T) +

1

2

∫ T

t0

(x̄ᵀMx̄+ ūᵀRū) dτ
)
, (3)

but without any information about the system dynamics.

Consider the closed obstacle space Xobs ⊂ X . The free
space is defined as the relative complement of the obsta-
cle space in the state space, Xfree := (Xobs)

{ = X\Xobs,
which is an open set [34]. The output of an algorithm is
designed to efficiently search non-convex, high-dimensional
spaces by randomly building a space-filling tree (e.g., RRT?)
that will produce the global path π(x0,i, xr,i) ∈ R2(k×n),
for i = 1, . . . , k with i ∈ N. The global path π(x0,i, xr,i)
will include the initial states X0 = x0,i for all i, with
X0 ∈ Rk×n ⊂ Xfree, and the final states XG = xr,i for all
i, with XG ∈ Rk×n ⊂ Xfree. The algorithm will also provide
an initial graph G = (V,E), where V is the initial set of nodes,
VG = |V | its cardinality, and E the initial set of edges. With
a slight abuse of notation, we will refer to the nodes v ∈ V as
states x ∈ X . A direct relation of the global path π in the initial
graph is given by the tree T = (VT , ET) ⊆ G. Furthermore,
the augmented obstacle space X aug

obs = f(t;Drob) will change
through time depending on the kinodynamic distance Drob of
the robot motion at every i-TPBVP. Similarly, the diminished
open free space is defined as X dim

free := (X aug
obs){ = X\X aug

obs .

Since we are solving a finite horizon optimal control prob-
lem with a free final state, and we are also setting a new state
x̄(t), as the difference of the current state x(t) with the desired
state xr, we can make the following approximation x(T) ≈ xr.
This means that the final state x(T) may not obtain the exact
desired state xr value. Yet, the system may be fast enough to
approximate the desired state, and stay there, until the end of
the fixed finite horizon T . To address this problem we define
the initial distance as the n-norm of the initial state x0 and
the desired state xr,

D0(x̄0) := ‖x̄0‖n, ∀x̄0. (4)

We shall then measure the relative distance at time t ≥ 0 with
the n-norm of the current state x(t) and the desired state xr,

D(x̄; t) := ‖x̄(t)‖n, ∀x, t. (5)

Let us also define the distance error of (4) and (5) as,

ed(x̄0, x̄; t) := |D0(x̄0)−D(x̄, t)|. (6)

Our work will formulate an online implementation framework
of safe kinodynamic motion planning, given the global path
and the initially randomly-sampled graph, with completely
unknown dynamics as described in (1).

III. FINITE HORIZON OPTIMAL CONTROL

Define the Hamiltonian with respect to (1), and (3) as,

H(x̄; ū;λ) =
1

2
(x̄ᵀMx̄+ ūᵀRū) + λᵀ(Ax̄+Bū), ∀x̄, ū, λ.

In order to solve the finite horizon optimal control problem
(3), by using the sweep method [35] and λ = ∂V ?

∂x̄ , we derive
the Hamilton-Jacobi-Bellman (HJB) equation,

−∂V
?

∂t
=

1

2
(x̄ᵀMx̄+ ū?ᵀRū?) +

∂V ?

∂x̄

ᵀ

(Ax̄+Bū?), ∀x̄.

Since our system (1) is linear, we can write the value function
in a quadratic in the state x̄ form as,

V ?(x̄; t) =
1

2
x̄ᵀP (t)x̄, ∀x̄, t ≥ t0, (7)

where P (t) ∈ Rn×n � 0 solves the Riccati equation,

− Ṗ (t) = M + P (t)A+AᵀP (t)− P (t)BR−1BᵀP (t). (8)

Hence, the optimal control is,

ū?(x̄; t) = −R−1BᵀP (t)x̄, ∀x̄, t. (9)

Theorem 1: Suppose that there exists a P (t) that satisfies
the Riccati equation (8) with a final condition given by PT,
and the control obtained by,

ū(x̄; t) = −R−1BᵀP (t)x̄. (10)

Then, the control input (10) minimizes the cost given in (3),
and the origin is a globally uniformly asymptotically stable
equilibrium point of the closed-loop system.

Proof: The closed-loop system becomes,

˙̄x(cl) := Ax̄−BR−1BᵀP (t)x̄. (11)

We choose the V(x̄; t) = 1
2 x̄

ᵀP (t)x̄, as a Lyapunov candidate
with V : Rn ×D → R, and D = {P ∈ Rn×n | P � 0}. The
orbital derivative yields for t ≥ 0,

V̇(x̄; t) =
∂V
∂t

+
∂V
∂x̄

˙̄x

=
1

2
x̄ᵀṖ x̄+ x̄ᵀP ˙̄x.

By using (8) and (11) we obtain,

V̇(x̄; t) =
1

2
x̄ᵀ(−M − P (t)A−AᵀP (t) + P (t)BR−1BᵀP (t))x̄

+ x̄ᵀP (t)(Ax̄−BR−1BᵀP (t)x̄)

=− 1

2
x̄ᵀ(M + P (t)BR−1BᵀP (t))x̄

=− x̄ᵀN(t)x̄

=−W3(x̄; t)

≤− λ(N(t))‖x̄‖2, ∀x̄, t. (12)

Note that, since P (t)BR−1BᵀP (t) � 0, M � 0, and thus
N(t) � 0 is positive definite. We have proved that V̇(x̄; t) is
non-positive for all x̄ and t ≥ t0.

Let us now consider, W1(x̄; t) = W2(x̄; t) = 1
2 x̄

ᵀP (t)x̄ >
0. Obviously, we have W1(x̄; t) ≤ V(x̄; t) ≤ W2(x̄; t), and
thus, we can conclude that the origin is uniformly stable.
Since V(x̄; t) is lower-bounded, and non-increasing, the in-
equality (12) is also bounded, which implies that V(x̄; t) is
uniformly continuous. According to Barbalat’s Lemma [36],
V(x̄; t) → 0 as t → ∞. The function W3(x̄; t) =
λ(N(t))‖x̄‖2 is positive definite, hence asymptotic stability
of the equilibrium point (origin) holds from the Lyapunov
stability theorem. Moreover, W1(x̄; t) is radially unbounded
with respect to ‖x̄‖ and global properties also hold. Therefore,
the equilibrium at the origin x̄e := 0 is globally uniformly
asymptotically stable.

IV. MODEL-FREE TPBVP FORMULATION

Let us now define the following advantage function,

Q(x̄; ū; t) := V ?(x̄; t) +H(x̄; ū;
∂V ?

∂t
,
∂V ?

∂x̄
)

=V ?(x̄; t) +
1

2
x̄ᵀMx̄+

1

2
ūᵀRū

+ x̄ᵀP (t)(Ax̄+Bū) +
1

2
x̄ᵀṖ (t)x̄, ∀x̄, ū, t, (13)

where Q(x̄; ū; t) ∈ R+ is an action-dependent value.
Next, we define U := [x̄ᵀ ūᵀ]ᵀ ∈ R(n+m) to express the

Q-function (13) in a compact form as,

Q(x̄; ū; t) =
1

2
Uᵀ
[
Qxx(t) Qxu(t)
Qux(t) Quu

]
U :=

1

2
UᵀQ̄(t)U, (14)

where Qxx(t) = Ṗ (t) + P (t) + M + P (t)A + AᵀP (t) +
P (t)B, Qxu(t) = Qᵀ

ux(t) = P (t)B, and Quu = R, with Q :
Rn+m × R(n+m)×(n+m) → R+. Note that, since the Riccati
matrix is symmetric, x̄ᵀP (t)Ax̄ = 1

2 x̄
ᵀ(P (t)A + AᵀP (t))x̄,

and x̄ᵀP (t)Bū = 1
2 x̄

ᵀ(P (t)B +BᵀP (t))ū [9].
We can find a model-free formulation of ū? given in (9) by

using the stationarity condition ∂Q(x̄;ū;t)
∂ū = 0, to obtain,

ū?(x̄; t) = arg min
ū
Q(x̄; ū; t) = −Q−1

uu Qux(t)x̄. (15)

Lemma 1: The value of the minimization Q?(x̄; ū?; t) :=
minūQ(x̄; ū; t) is the same with the optimal value V ? in (7)
of the minimization problem (3), where P (t) � 0 is the Riccati
matrix found from (8).

Proof: Substitute the optimal control ū? in the Q-
function (13) to get (8), which yields 0 = Ṗ (t) + M +
P (t)A + AᵀP (t) + P (t)B − P (t)BR−1BᵀP (t). Therefore,
Q?(x̄; ū?; t) = V ?(x̄; t).

A. Actor/Critic Network Structure
We design a critic approximator to approximate the Q-

function in (14) as,

Q?(x̄; ū?; t) =
1

2
UᵀQ̄(t) := U

1

2
vech(Q̄(t))ᵀ(U ⊗ U),

where vech(Q̄(t)) ∈ R
(n+m)(n+m+1)

2 . This structure exploits
the symmetric properties of the Q̄ matrix to reduce the
computational complexity.

Remark 2: We can employ the half-vectorization operation
vech(Q̄(t)), because Q̄(t) is symmetric.

Then, by using ν(t)ᵀWc := 1
2 vech(Q̄(t)) we have,

Q?(x̄; ū?; t) = W ᵀ
c ν(t)(U ⊗ U),

where Wc ∈ R
(n+m)(n+m+1)

2 are the critic weight estimates,
and ν(t) ∈ R

(n+m)(n+m+1)
2 × (n+m)(n+m+1)

2 is a radial basis
function of appropriate dimensions that depends explicitly on
time.

Since the ideal weight estimates are unknown, we employ an
adaptive estimation technique [21] by using current weights.
Thus we have,

Q̂(x̄; ū; t) = Ŵ ᵀ
c ν(t)(U ⊗ U), (16)

where Ŵcν(t) := 1
2 vech(ˆ̄Q(t)).

By using a similar way of thinking for the actor we will
assign µ(t)ᵀWa := −Q−1

uu Qux(t) to write,

ū?(x̄; t) = W ᵀ
a µ(t)x̄,

where Wa ∈ Rn×m are the actor weight estimates, µ(t) ∈
Rn×n is a radial basis function of appropriate dimensions that
depends explicitly on time.

The actor by using current weight estimates is,

ˆ̄u(x̄; t) = Ŵ ᵀ
a µ(t)x̄. (17)

Fact 1: The radial basis functions µ(t), ν(t) are bounded.

Remark 3: The critic and the actor approximators described
in (16) and (17) respectively, do not include any approximation
errors. Therefore, we use the whole space and not just a
compact set. With this structure, the approximations will
converge to the optimal policies, and hence the superscript ?,
that denotes the ideal values of the adaptive weight estimation,
render similarly with the optimal solutions.

We adopt the integral reinforcement learning approach from
[27] that will express the Bellman equation as,

V ?(x̄(t); t) =V ?(x̄(t−∆t); t−∆t)

− 1

2

∫ t

t−∆t

(x̄ᵀMx̄+ ˆ̄uᵀRˆ̄u) dτ, (18)

V ?(x̄(T);T) =
1

2
x̄ᵀ(T)P (T)x̄(T), (19)

where ∆t ∈ R+ is a small fixed value.

By following Lemma 1, where we have proved that
Q?(x̄; ˆ̄u?; t) = V ?(x̄; t), we can write (18) and (19) as,

Q?(x̄(t); ˆ̄u?(t); t) =Q?(x̄(t−∆t); ˆ̄u?(t−∆t); t−∆t)

− 1

2

∫ t

t−∆t

(x̄ᵀMx̄+ ˆ̄uᵀRˆ̄u) dτ,

Q?(x̄(T);T) =
1

2
x̄ᵀ(T)P (T)x̄(T).

Next, we select the errors ec1 , ec2 ∈ R, that we would like
to drive to zero by appropriately tuning the critic weights of

(16). Define the first critic error ec1 as,

ec1 :=Q̂(x̄(t); ˆ̄u(t); t)− Q̂(x̄(t−∆t); ˆ̄u(t−∆t); t−∆t)

+
1

2

∫ t

t−∆t

(x̄ᵀMx̄+ ˆ̄uᵀRˆ̄u) dτ

=Ŵ ᵀ
c ν(t)

(
(Û(t)⊗ Û(t))− (Û(t−∆t)⊗ Û(t−∆t)

)
+

1

2

∫ t

t−∆t

(x̄ᵀMx̄+ ˆ̄uᵀRˆ̄u) dτ,

with Û = [x̄ᵀ ˆ̄uᵀ]ᵀ the augmented state that is comprised
from the measurable full state vector, and the estimated control
action. Next, we define the second critic error as,

ec2 :=
1

2
x̄ᵀ(T)P (T)x̄(T)− Ŵ ᵀ

c ν(T)(Û(T)⊗ Û(T)).

The actor approximator error ea ∈ Rm is defined by,

ea := Ŵ ᵀ
a µ(t)x̄+ Q̂−1

uu Q̂ux(t)x̄,

where Q̂uu, Q̂ux will be obtained from the critic weight matrix
estimation Ŵc. By employing adaptive control techniques [21],
we define the squared-norm of errors as,

K1(Ŵc, Ŵc(T)) =
1

2
‖ec1‖2+

1

2
‖ec2‖2, (20)

K2(Ŵa) =
1

2
‖ea‖2. (21)

B. Learning Framework

The weights of the critic estimation matrix are obtained by
applying a normalized gradient descent algorithm in (20),

˙̂
Wc =− αc

∂K1

∂Ŵc

=− αc

(1

(1 + σᵀσ)2
σec1 +

1

(1 + σᵀ
f σf)2

σfec2

)
, (22)

where σ(t) := ν(t)
(
Û(t)⊗ Û(t)− Û(t−∆t)⊗ Û(t−∆t)

)
,

σf(T) = ν(T)
(
U(T)⊗ U(T)

)
, and αc ∈ R+ is a constant

gain that specifies the convergence rate. The critic tuning (22)
guarantees that as ec1 → 0 and ec2 → 0 then Ŵc → Wc and
Ŵc(T)→Wc(T).

Similarly, the weights of the actor estimation matrix Ŵa by
applying a gradient descent algorithm in (21) yield,

˙̂
Wa = −αa

∂K2

∂Ŵa
= −αax̄e

ᵀ
a , (23)

where αa ∈ R+ is a constant gain that specifies the conver-
gence rate. The actor estimation algorithm (23) guarantees that
as ea → 0 then Ŵa →Wa.

For the theoretical analysis we introduce the weight esti-
mation error for the critic W̃c := Wc − Ŵc and for the actor
W̃a := Wa − Ŵa, with W̃c ∈ R

(n+m)(n+m+1)
2 , W̃a ∈ Rn×m.

The estimation error dynamics of the critic yields,

˙̃Wc =
(∂Wc

∂ec1

dec1

dt
+
∂Wc

∂ec2

dec2

dt

)
−
(∂Ŵc

∂ec1

dec1

dt
+
∂Ŵc

∂ec2

dec2

dt

)
=
∂Wc

∂ec1

dec1

dt
− ∂Ŵc

∂ec1

dec1

dt
= −αc

1

(1 + σᵀσ)2
σσᵀW̃c,

and the estimation error dynamics of the actor becomes,

˙̃Wa = −αax̄x̄
ᵀµ(t)ᵀW̃a − αax̄x̄

ᵀ µ(t)Q̃xuR
−1

‖1 + µ(t)ᵀµ(t)‖2
, (24)

where Q̃xu := mat(W̃c[
n(n+1)

2 + 1 : n(n+1)
2 + nm]).

Lemma 2: For any given control input u(t) ∈ U the esti-
mation error dynamics of the critic (24) have an exponentially
stable equilibrium point at the origin as follows,

‖W̃c‖≤ ‖W̃c(t0)‖κ1e−κ2(t−t0),

where κ1, κ2 ∈ R+. In order to establish exponential sta-
bility, we require the signal ∆(t) := σ(t)

1+σ(t)ᵀσ(t)) to be
persistently exciting (PE) at [t, t + TPE], where TPE ∈ R+

the excitation period, if there exists a β ∈ R+ such that
βI ≤

∫ t+TPE
t

∆(τ)∆ᵀ(τ)dτ , where I is an identity matrix
of appropriate dimensions.

Proof: The proof follows from [33].

Next, we provide the main stability Theorem for the pro-
posed Q-learning framework.

Theorem 2: Consider the linear time-invariant continuous-
time system (1), the critic, and the actor approximators
given by (16), and (17) respectively. The weights of the
critic, and the actor estimators are tuned by (22), and (23)
respectively. The origin with state ψ = [x̄ᵀ W̃ ᵀ

c W̃ ᵀ
a]ᵀ is

a globally uniformly asymptotically stable equilibrium point
of the closed-loop system and for all initial conditions ψ(0),
given that the critic gain αc is sufficiently larger than the actor
gain αa and the following inequality holds,

0 < αa <
λ(M +QxuR

−1Qᵀ
xu)− λ(QxuQ

ᵀ
xu)

δλ
(

µ(t)R−1

‖1+µ(t)ᵀµ(t)‖2

) , (25)

with δ a constant of unity order.

Proof: Let us consider the following Lyapunov function,

L(ψ; t) = V ?(x̄; t) +
1

2
‖W̃c‖2+

1

2
tr{W̃ ᵀ

a W̃a} > 0,

for all t ≥ 0, where ψ = [x̄ᵀ W̃ ᵀ
c W̃ ᵀ

a]ᵀ is the augmented
state, and L : Rn×R

(n+m)(n+m+1)
2 ×Rn×m → R. The orbital

derivative for the closed-loop dynamics by using û yields,

L̇(ψ; t) =
∂V ?

∂t
+
∂V ?

∂x̄

ᵀ
˙̄x+ W̃ ᵀ

c
˙̃Wc + tr{W̃ ᵀ

a
˙̃Wa}

=
1

2
x̄ᵀṖ (t)x̄+ x̄ᵀP (t)(Ax̄+B ˆ̄u)

− αcW̃
ᵀ
c

1

(1 + σᵀσ)2
σσᵀW̃c

− αatr
{
W̃ ᵀ

a x̄x̄
ᵀµ(t)ᵀW̃a − W̃ ᵀ

a x̄x̄
ᵀ µ(t)Q̃xuR

−1

‖1 + µ(t)ᵀµ(t)‖2
}
.

(26)

We can rewrite (26) as L̇ = T1 + T2 + T3, where,

T1 =
1

2
x̄ᵀṖ (t)x̄+ x̄ᵀP (t)(Ax̄+B ˆ̄u), (27)

T2 = −αcW̃
ᵀ
c

1

(1 + σᵀσ)2
σσᵀW̃c,

T3 = −αatr
{
W̃ ᵀ

a x̄x̄
ᵀµ(t)ᵀW̃a + W̃ ᵀ

a x̄x̄
ᵀ µ(t)Q̃xuR

−1

‖1 + µ(t)ᵀµ(t)‖2
}
.

We use Lemma 2 and PE to obtain,

T2 ≤ −
αc

4
‖W̃c‖2, (28)

and,

T3 ≤ −
αa

2
‖x̄
√T
µ(t)

ᵀ
W̃a‖2+

αaδ

2
λ
(µ(t)R−1

‖1 + µ(t)ᵀµ(t)‖2
)
‖x̄‖2.

(29)
The estimated control action ˆ̄u can be written as,

ˆ̄u = Ŵ ᵀ
a µ(t)x̄

= −(QxuQ
−1
uu + µ(t)ᵀW̃a)

ᵀx̄

= −Q−1
uu Quxx̄− W̃ ᵀ

a µ(t)x̄

= ˆ̄u? − W̃ ᵀ
a µ(t)x̄. (30)

Using the Riccati equation (8), and the estimated control
input (30), then the (27) takes the form of,

T1 = −1

2
x̄ᵀ(M +QxuR

−1Qᵀ
xu)x̄,

which after using Young’s inequality becomes,

T1 ≤−
1

2

(
λ(M +QxuR

−1Qᵀ
xu)− 1

2
λ(QxuQ

ᵀ
xu)
)
‖x̄‖2. (31)

Next, from (28), (29), and (31) we obtain,

L̇(ψ; t) ≤ −
(1

2
λ(M +QxuR

−1Qᵀ
xu)− 1

2
λ(QxuQ

ᵀ
xu)

− αaδ

2
λ
(µ(t)R−1

‖1 + µ(t)ᵀµ(t)‖2
))
‖x̄‖2

− αc

4
‖W̃c‖2−

αa

2
‖x̄
√T
µ(t)

ᵀ
W̃a‖2. (32)

By taking into account the inequality in (25) then L̇(ψ; t) is
non-positive for all ψ and t ≥ t0. Consider now W1(ψ; t) =
W2(ψ; t) = V ?(x̄; t) + 1

2‖W̃c‖2+ 1
2 tr{W̃ ᵀ

a W̃a} > 0, then we
have W1(ψ; t) ≤ L(ψ; t) ≤ W2(ψ; t). In this way, we can
conclude that the origin ψe := 0 is uniformly stable according
to the Lyapunov stability theorem. Since L(ψ; t) is lower-
bounded and non-increasing, inequality (32) is also bounded,
which implies that L(ψ; t) is uniformly continuous. According
to Barbalat’s lemma, L(ψ; t) → 0 as t → ∞. Next, the
function W3(ψ; t) = (1

2λ(M +QxuR
−1Qᵀ

xu)− 1
2λ(QxuQ

ᵀ
xu)−

αaδ
2 λ(µ(t)R−1

‖1+µ(t)ᵀµ(t)‖2))‖x̄‖2+αc
4 ‖W̃c‖2−αa

2 ‖x
√T
µ(t)

ᵀ
W̃a‖2

needs to be positive definite. Thus, we obtain,

0 <
1

2
λ(M +QxuR

−1Qᵀ
xu)− 1

2
λ(QxuQ

ᵀ
xu)

− αaδ

2
λ(

µ(t)R−1

‖1 + µ(t)ᵀµ(t)‖2
)

αa <
λ(M +QxuR

−1Qᵀ
xu)− λ(QxuQ

ᵀ
xu)

δλ
(

µ(t)R−1

‖1+µ(t)ᵀµ(t)‖2

) , (33)

and,

αa > 0. (34)

The inequalities (33), (34) form (25) and thus the W3(ψ; t) >
0 is positive definite, so asymptotic stability of the equilibrium

point holds from the Lyapunov stability theorem. Moreover,
W1(ψ; t) is radially unbounded with respect to ‖x̄‖, ‖W̃c‖,
‖W̃a‖, and global properties also hold. Therefore, the equilib-
rium at the origin ψe = 0 is globally uniformly asymptotically
stable [36].

V. RRT-Q? ALGORITHMIC FRAMEWORK

In this section, we discuss the structure of the proposed
model-free, online motion planning algorithm with Q-learning
and optimal sampling-based path-planners. We also present the
algorithmic framework of the proposed RRT-Q?.

A. RRT-Q? Structure

The structure of the proposed motion planning RRT-Q? is
presented in Figure 1. The RRT-Q? consists of an offline
global RRT? computation; an online actor/critic structure;
an online terminal state evaluation; an online static obstacle
augmentation; and an online local re-planning.

First, we compute offline the global path π(x0,i, xr,i) by
using the RRT? algorithm. Then, we continue with the online
model-free learning of the optimal policy. More specifically,
the policy evaluation is assessed by the critic and the policy
improvement is performed by the actor. The actor is an
inner-loop feedback controller that drives the system with ˆ̄u
according to (17), where Ŵa are the actor parameters that can
be found online by (23). The critic’s objective is to estimate the
Q-function, which according to Lemma 1 is the value function
that follows from the Bellman equations (18), (19). The critic
approximates the Q̂ by using (16), where Ŵc are the critic
parameters that can be computed online by (22). The critic’s
parameters include intrinsic dynamics, which can be obtained
by computing the time derivative that yields,

ṗ =x̄ᵀ(t)Mx̄(t)− x̄ᵀ(t−∆t)Mx̄(t−∆t) + ˆ̄uᵀ(t)Rˆ̄u(t)

− ˆ̄uᵀ(t−∆t)Rˆ̄u(t−∆t). (35)

A distance metric will be used to evaluate the terminal
condition xr. The initial distance D0(x̄0) is computed by (4).
Next, the relative distance D(x̄; t) is obtained online at every
iteration ∆t by (5). In case that the distance error (6) decreases
below an admissible value of the initial distance ed ≤ βD0,
β ∈ B = {β ∈ R | 0 ≤ β ≤ 1}, we continue to the next
i-TPBVP of the RRT?, by assigning the current state value
as the new initial state x0,i+1 = x(t). It is to be noted that
the i-TPBVP is specified by the i-set of the initial and the
final states x0, xr, which were initially provided by the global
planning with RRT?.

The RRT? algorithm is proved to compute the optimal path,
which most of the times passes very close to the obstacles,
that is potentially unsafe. Inherently, in kinodynamic motion
planning we cannot track straight lines due to the kinodynamic
constraints imposed by the physics of the system. Therefore,
when the robot navigates close to the obstacle, and deviates
from the given RRT? path, then a collision may occur with
the obstacle. To address this problem, we propose a static
augmentation of the obstacle space and a local re-planning
strategy.

Online

Terminal State Evaluation

Online

Actor/Critic Network Structure

xr

x

ed

Q
^

Actor

Critic

x0

Online

Static Obstacle Augmentation

Drob

Online

Local Re-Planning

Vfree

Condition

Vnew

Tnew

Yes

Global Planning

V0

-

u-̂

ur

Condition

+ -

Yes
System

xr
Obstacle

Augmentation

Condition
Yes

Offline

Discard

Nodes

RRT*

Re-Planning

Re-Planning

Nodes

Initial

Distance

Current

Distance

Kinodynamic

Distance

RRT*

X obs
aug

Fig. 1. The motion planning RRT-Q? structure. The RRT-Q? incorporates five stages, 1) the offline global RRT? computation, 2) the online actor/critic
network structure, 3) the online terminal state evaluation, 4) the static obstacle augmentation, and 5) the online local RRT? re-planning.

For the static obstacle augmentation, we compute the max-
imum deviation of the robot from the straight line at every
TPBVP, that we term as kinodynamic distance Drob(x̄0, x̄).
The kinodynamic distance is computed by,

Drob(x̄0, x̄) =
|x̄0 × x̄|
D0

. (36)

Next, if the kinodynamic distance is greater than the
previously measured deviations of motion Drob,i >
max{Drob,1, . . . , Drob,i−1}, we compute the augmented obsta-
cle space,

X aug
obs = Xobs ⊕Xrob,

where Xrob ∈ R2 is the kinodynamic distance space that is
constructed as a rectangle with sides δ = 2Drob. That is a
conservative approach, as we limit the navigation considering
the maximum kinodynamic distance. Since we tackle the
model-free problem, the model of the system is unknown, and
hence we cannot perform offline computations. Therefore, the
agent may deviate from the optimal path, yet the proposed
method ensures collision-free navigation.

We continue on the local re-planning stage that will provide
a safe path in the open diminished free space X dim

free :=
(X aug

obs){ = X\X aug
obs . We start by evaluating whether the global

path π(x0,i, xr,i) collides with the augmented obstacle space
X aug

obs . Then, if a collision occurs, we prune the graph G(V,E)
by discarding the nodes in the augmented obstacle space
Vaug = V ∈ X aug

obs from the initial set of nodes, Vnew = V \Vaug.
Since the proposed algorithm operates online we cannot afford
computationally to perform the RRT? even in the diminished
free state-space X dim

free . Therefore, a significantly reduced free
state-space needs to be specified.

The underlying principle to narrow down the local path
planning problem exploits the precomputed nodes V and the
initial global path π, towards defining a new local free state

space X loc
free. First, we search for the two closest states of the

initial global path π outside the area of collision with the
augmented obstacle space X aug

obs . These two states will serve
as the local start state xloc

start and the local goal state xloc
goal, while

the rest path will not be affected. If any states of the path π
are located in the augmented obstacle space X aug

obs we discard
them from the updated set of nodes Vnew. Next, we establish
a circle with center point at Oloc = (xloc

start + xloc
goal)/2 and

radius rloc = ‖xloc
start−xloc

goal‖, that forms the local circular space
X loc

circle := {x ∈ X | ‖x−Oloc‖2≤ r2
loc}, as shown in Figure 2.

Then, the local candidate path planning space is defined as the
relative complement of the augmented obstacle space in the
local circular space, X loc

cand = X loc
circle\X

aug
obs . To assess the local

candidate space X loc
cand we introduce the following definitions

[34].
Definition 1: If A is a subset of a metric space X , and if

∂A denotes the set of all its limit points, then A said to be
closure of A if A = A ∪ ∂A.

Definition 2: Two subsets A and B of a metric space X are
separated if both A ∩B = ∅ and A ∩B = ∅ hold.

Definition 3: A set A is connected if it is not the union of
two separated sets.

We analyze whether the local candidate path planning space
X loc

cand has separated subspaces, as this notion can be handled
easier than the connected space. According to the structure
of the environment (i.e., obstacle space and free state space)
the local candidate path planning space X loc

cand may result to be
separated, with one space that contain the local goal state xloc

goal
and another space with the local start state xloc

start, as depicted
in Figure 3.

Lemma 3: For a given set of states in the diminished free
space X dim

free , the local start state xloc
start, and the local goal

state xloc
goal, if there exists a sufficient, connected, and closed

local free space X loc
free that forms a ring, based on the fixed

x

xXcircle
loc X obs

X obs
aug

xstart
loc

xgoal
loc

Fig. 2. The construction of the local circular space X loc
circle. We employ the

two closest states xloc
start, x

loc
goal of the initial global path π that do not collide

with the augmented obstacle space X aug
obs,i, to construct a circle at center Oloc

and with radius rloc.

incremental distance ε of the RRT?, then we can obtain a
collision-free path with the local re-planning framework.

Proof: For the justification of the connected space, we
assume that there exists two separated subspaces, one that
contains the local start state xloc

start and another with the local
goal state xloc

goal. According to Definition 1 the closure of a
set is related with its boundaries. Since we defined the local
candidate space in a circular geometry, we can exploit the
circular boundaries with center at Oloc and radius rloc. To
algorithmically evaluate the boundaries let us mesh the circle
with finite many points l ∈ N and employ the equations that
govern the semicircle ytest,l = ±

√
r2

loc − (xtest,l − xc)2 + yc,
where Oloc = (xc, yc). If any point lies on the circumference
of the semicircle (xtest,l, ytest,l) ∈ ∂X loc

cand, and it is not in
the local candidate free space (xtest,l, ytest,l) /∈ X loc

cand for both
directions, then according to the Definitions 2, and 3 the local
candidate free space X loc

cand is indeed separated. Otherwise, by
contradiction the local candidate free space is connected.

However, to guarantee feasible local re-planning we need
also to consider the nature of the RRT?. More specifically, the
RRT? employs a fixed incremental distance ε which cannot
follow circular paths, but only straight lines. As a result, we
need to ensure that not only the local candidate free space
X loc

cand is connected, but also that there exists a sufficiently large
ring space to accommodate the fixed incremental distance ε,
as presented in Figure 4. Let as consider the fixed incremental
distance as the length of a chord c = ε. Then, the sagitta
(height of an arc) is h = rloc−

√
rloc

2 − c2

4 , and the radius of
the internal circle, rint

loc = rloc − h. Similarly, we evaluate the
separation of the local internal space X loc

int := {x ∈ X | ‖x −
Oloc‖2≤ rint

loc
2}. If both the local candidate space and the local

internal space are connected then we assign, X loc
free = X loc

cand.
Remark 4: The determination of a significantly small local

free space X loc
free that is connected, and guarantees the existence

of a local path πloc from the local initial state xloc
start to the

local goal state xloc
goal is a challenging problem. This difficulty

lies in the unknown kinodynamic distances Drob due to the
model-free approach that augments the obstacle space, the
unknown number of states that will be discarded from the
initial global path π, and the requirements for a reduced
computational effort that will allow the online implementation
of the algorithm. In this paper, we assess the local candidate
path planning space X loc

cand, and we discuss the case of a
connected space.

Since we obtained a relatively small local free space X loc
free

(a) (b)

x

x
X circle
loc

X obs
aug

xstart
loc

xgoal
loc

X cand
loc

xstart
loc

xgoal
loc

xgoal
loc

xstart
loc

xgoal
loc

xstart
loc

Xcircle
loc

X obs
aug

X obs
aug

x

x

Fig. 3. The proposed procedure to extract the local candidate free space
X loc

cand. (a) A connected local candidate free space, that contains the local start
state xloc

start and the local goal state xloc
goal. (b) Separated local candidate free

subspaces.

that is guaranteed to contain the local start state xloc
start, the local

goal state xloc
goal, and sufficient space for the implementation of

the path planning with incremental distance ε, we can move
on the next step, that is the local re-planning with RRT?. We
locate the free re-planning nodes from the updated set of nodes
Vnew that lie in the local free space X loc

free, which we term as
Vfree = Vnew ∈ X loc

free. The coordinates of the free re-planning
nodes Vfree will further reduce the computational effort, as no
random sampling is required in the local free space X loc

free. The
output is a local path πloc that connects the local start state xloc

start
with the local goal state xloc

goal, which along with the previously
computed global path π produces the new tree Tnew.

B. RRT-Q? Algorithm

The algorithmic framework of the RRT-Q? consists of five
phases, the offline computation of the global path planning;
the online motion planning with Q-learning; a terminal state
evaluation framework; the computation of the augmented
obstacle space; and the local re-planning procedure.

The RRT-Q? is presented in Algorithm 1 and its subroutines
in Algorithms 6 and 7. The “standard” routines of the RRT?

are presented in Algorithms 2 to 5. The global graph G(V,E)
is obtained offline by the RRT* as shown in Algorithms 2
to 4. Next, we continue with the online implementation. The
function NoCollision monitors if there exists a collision in
the entire augmented obstacle space X aug

obs with the global path
π through the whole procedure and returns a binary value.
The function InitialDistance calculates the distance of
the initial and the final state according to (4). Then, follows
the online approximation of the optimal policy with full state
feedback (lines 8-12). The function Critic estimates the
critic parameters from (22). This includes internal dynamics
as given in (35). The function EstimateQ estimates the
parameters of the Q̂ from (16). The Actor calculates the
actor parameters from (23), that lead the function Control
to produce the control action ˆ̄u from (17). Next, we per-
form the terminal state evaluation (lines 13-18). The function
KinodynamicDistance returns the deviation of the agent
from the straight line that connects the the initial and final
states, by employing (36). The distance error is calculated
by the function DistanceError, which allow the termi-
nal state evaluation to proceed to the next i-TPBVP. The
primitive Augment inflates the obstacle space by comparing
the maximum distance of the previously obtained deviations

xstart
loc

xgoal
loc

X int
loc

Fig. 4. The local internal space X loc
int is illustrated in gray. The internal circle

is constructed based on the sagitta h, and the chord c. The chord is related
with the incremental distance of the RRT?, that is c = ε. The ring space
is shown in purple and ensures that the local path planning algorithm has a
feasible solution.

max{Drob,1, . . . , Drob,i−1}, with the current kinodynamic dis-
tance Drob,i.

When a collision of the path π occurs with the augmented
obstacle space, then the algorithm continues to the next phase
of the online local re-planning. A critical aspect for the
feasibility of the online implementation, is to perform the re-
planning procedure sufficiently fast. To this end, we narrow
down the local free space with LocalNodes, that provides
the free nodes Vfree according to the fixed incremental ε of the
RRT? for feasible local re-planning. Then, the RRT* provides
the local graph Gnew, with a given set of nodes Vfree that reduce
the computational effort even further, as no random sampling
is required. Lastly, the primitive Connect employs the global
graph G and the locally graph Gnew to find a safe tree Tnew with
respect to the kinodynamic constraints.

The RRT* either runs the “standard” RRT? routine for the
global planning or refers to ReplanningRRT* for the local
re-planning as presented in Algorithm 5. Algorithm 2 is similar
to RRT?, yet with the addition of a condition on line 1 and
lines 15, and 16. Algorithm 5 is also similar to RRT?, but
with the variation on line 2 given a precomputed set of nodes
from the global planning. The new features in Algorithms 2
to 5 are emphasized with a green font. The Sample returns
independent uniformly distributed random samples in the state
space xrand. The function Nearest provides the closest state
xnearest in the set of nodes V . The function Steer provides
a new state xnew that is closer to the starting state xnearest.
The function Near produces a set of states Xnear according
to Xnear = {xnear ∈ V | ‖xnew − xnear‖≤ γRRT?(logN

N)1/n},
where γRRT? ∈ R+, N is the number of samples, and n is the
state space dimension. The function Line connects two states
with a straight line. The Parent provides a parent state xmin
and a cost-to-go cmin to the random state xrand through the set
Xnear as presented in Algorithm 3. The algorithm Rewire
finds the path with the minimum cost by creating and/or
discarding edges from the graph, as described in Algorithm 4.
In Algorithm 3 the framework for finding the parent with the
least cost is described. The function Cost computes the cost-
to-go to a node v, and the c(·) finds the cost of two nodes that
form a straight line. The rewiring process is described in the
Algorithm 4. In Algorithm 6, the function Circle establishes
a local candidate space X cand

loc based on a circle with radius

Algorithm 1 RRT Q*(T,∆t,M,R, P (T), αc, αa, β,Xobs,G(V,E))
1: Vfree ← ∅; X aug

obs ← Xobs;
2: G, π(x0, xr)← RRT*(G, N, Vfree);
3: Dkin

rob ← ∅;
4: while NoCollision(π) do
5: for i = 1 to k do
6: D0 ←InitialDistance(x0);
7: for t ∈ T do
8: Ŵc ← Critic(x̄, ū, αc,M,R,∆t, P (T));
9: Q̂ ← EstimateQ(x̄, ū, Ŵc);

10: Ŵa ← Actor(x̄, ū, Q̂, αa);
11: ˆ̄u← Control(x̄, ū, Ŵa);
12: Return ˆ̄u;
13: Drob ← KinodynamicDistance(x̄, D0);
14: ed ← DistanceError(x̄, D0);
15: if ed ≤ βD0 then
16: x0,i+1 ← x(t);
17: break;
18: end if
19: end for
20: if Drob > Dkin

rob then
21: X aug

obs ← Augment(Xobs); Dkin
rob ← Drob;

22: end if
23: end for
24: end while
25: Vfree ← LocalNodes(π,X aug

obs , ε);
26: Gnew ← RRT*(Vfree);
27: Tnew ← Connect(G,Gnew);
28: Return Tnew;

Algorithm 2 RRT* (G,N ,Gfree,Vfree)
1: if Vfree ← ∅ then
2: V ← xstart; E ← ∅;
3: for n = 1 to N do
4: xrand ← Sample(Xfree, N);
5: xnearest ← Nearest(V, xrand); xnew ← Steer(xnearest, xrand);
6: if NoCollision(xnearest, xnew) then
7: Xnear ← Near(V, xnew); η ← Line(xnearest, xnew);
8: (xmin, cmin) ← Parent(xrand, Xnear, xnew, η);
9: V ← V ∪ {xnew};

10: E ← E ∪ {(xmin, xnew)}; G ← Rewire(G, Xnear, xnew);
11: end if
12: end for
13: Return G;
14: else
15: Gnew ← ReplanningRRT*(Gfree(Vfree, Efree));
16: Return Gnew;
17: end if

rloc and at center Oloc. The function SemiCircle attempts
to evaluate the connectedness of the X cand

loc with respect to the
fixed incremental distance ε of the RRT?. The Edge returns
the closest states to the area of collision that we set as the
local start state xloc

start and the local goal state xloc
goal.

VI. SIMULATIONS

In this section, we present simulations to demonstrate the ef-
ficacy of the proposed online motion planning framework. We
study an aircraft model with the proposed online, model-free
approximation of the optimal policy in a single TPBVP. Next,
we perform motion planning simulations in various obstacle
environments using the RRT-Q? algorithm, while also altering
the dynamics at every TPBVP. Furthermore, we validate the
efficiency of the terminal state evaluation by providing a
comparison study. Lastly, we perform a qualitative comparison
of the RRT-Q? with other motion planning algorithms.

Algorithm 3 Parent (xrand, Xnear, xnew, η)
1: xmin ← xnearest; cmin ← Cost(xnearest)+c(η);
2: for xnear ∈ Xnear do
3: η ← Line(xnear, xnew);
4: if NoCollision(η)∧Cost(xnear)+c(η)< cmin then
5: cmin ← Cost(xnear)+c(η); xmin ← xnear;
6: end if
7: end for
8: Return (xmin, cmin)

Algorithm 4 Rewire (G, Xnear, xnew)
1: for xnear ∈ Xnear do
2: η ← Line(xnear, xnew);
3: if NoCollision(η)∧Cost(xnew)+c(η)<Cost(xnear) then
4: xparent ← Parent(xnear);
5: E0 ← (E0\{(xparent, xnear)})∪{(xnew, xnear)};
6: end if
7: end for
8: Return G;

Algorithm 5 ReplanningRRT* (Gfree(Vfree, Efree))
1: Efree ← ∅;
2: for each v ∈ Vfree do
3: xnearest ← Nearest(Vfree, v); xnew ← Steer(xnearest, v);
4: if NoCollision(xnearest, xnew) then
5: Xnear ← Near(Vfree, xnew); η ← Line(xnearest, xnew);
6: (xmin, cmin) ← Parent(xrand, Xnear, xnew, η);
7: Vfree ← Vfree ∪ {xnew};
8: Efree ← Efree ∪ {(xmin, xnew)}
9: Gnew ← Rewire(Gfree, Xnear, xnew);

10: end if
11: end for
12: Return Gnew;

A. An Aircraft Example

Consider the linear time invariant continuous-time F16
aircraft system as in [37], which has the form of,

ẋ =

[
−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

]
x+

[
0
0
1

]
u. (37)

We set the user-defined M = I3, and R = 0.1. The finite
horizon is T = 45 s. The initial and final states of the TPBVP
are x0 = [1 5 1]ᵀ, xr = [2 7 3]ᵀ. The final Riccati matrix is
P (T) = 0.5I3 and the final control action is u(T) = 0.001.
We select the weights of the gradient descent method αc = 90,
and αa = 2.5. The small fixed value of the internal dynamics
is ∆t = 0.05 s. The initial values of Ŵc, and Ŵa are randomly
selected, except of the last element of Ŵc that needs to be other
than zero. This elements is related with the Quu value that is
inverted in (15). We apply the Algorithm 1 (Lines 7-12) of the
RRT-Q? for a single run K = 1, which guarantees asymptotic
convergence according to Theorem 2. The evolution of the
states is presented in Figure 5. It is to be noted that the optimal
solution was obtained after solving the (8) backwards in time
with the aforementioned final state, and then we applied the
solution to (9) as described in [9].

B. Motion Planning RRT-Q? Simulations

Consider now the system with dynamics including a double
integrator system adopted from [16] along with the Maxwell-
slip model [38]. The robot slips on a frictioned flat surface and
its mass drifts similarly to [39] at every i-TPBVP. While the

Algorithm 6 LocalNodes (π,X aug
obs , ε)

1: Vnew ← V − {v ∈ X aug
obs };

2: (xloc
start, x

loc
goal) ← Edge(X aug

obs , π);
3: (Oloc, rloc,X cand

loc) ← Circle(xloc
start, x

loc
goal);

4: for j = 1 to l do
5: xtest ← SemiCircle(Oloc, rloc, ε)
6: if xtest ∈ X aug

obs then
7: Vfree ← ∅;
8: else
9: Vfree ← Vnew;

10: end if
11: end for
12: Return Vfree;

Algorithm 7 Edge (π,X aug
obs)

1: for i = 1 to k do
2: if x0 ∈ X aug

obs then
3: xloc

start ← xfree
0 ; break;

4: end if
5: x0 ← xfree

0 ;
6: end for
7: for i = 1 to k do
8: if xr ∈ X aug

obs then
9: xloc

goal ← xfree
r ;

10: end if
11: xr ← xfree

r ;
12: end for
13: Return (xloc

start, x
loc
goal);

mass m is translating along the x-axis and the y-axis direction,
a spring-damper system models the friction with coefficients
kx, cx, and ky, cy respectively. The system is described by,

ẋ1

ẏ1

ẋ2

ẏ2

 = A


x1

y1

x2

y2

+B

[
f1

f2

]
, (38)

A =

 0 0 1 0
0 0 0 1

− kx
m(i)

0 − cx
m(i)

0

0 − ky
m(i)

0 − cy
m(i)

, B =


0 0
0 0
1

m(i) 0

0 1
m(i)

 ,
where x1, y1 are the translations, ẋ1 = x2, ẏ1 = y2 are
the velocities, and ẍ1 = ẋ2, ÿ1 = ẏ2 are the accelerations
along the x and y axes respectively. The vector

[
f1 f2

]ᵀ
is

the input force. The mass decreases at every i-TPBVP due to
fuel consumption. The drift mass model is described as,

m(i) = mfe−αi +mn. (39)

where mf is the fuel mass that is consumed at every i-step,
mn is the net mass of the robot without fuel, and α is the
fuel decay rate. We set the finite horizon T = 10 s for every
run and the admissible window β = 5%. The user-defined
matrices are M = I4, and R = 0.1I2. The final Riccati matrix
is P (T) = 0.5I4 and the final control action is u(T) = 0.001.
We set αc = 50, and αa = 2.5 by following the Theorem 2.
The small fixed value of the internal dynamics is ∆t = 0.05 s.
The initial values of Ŵc, and Ŵa are randomly selected, except
of the last three elements of Ŵc that need to be other than zero.
These elements are related with the Quu values that are inverted
in (15). Note that there are three elements, because the user

Fig. 5. The evolution of the states for a TPBVP of an F16 aircraft system
using RRT-Q?. The states asymptotically converge to the optimal solution as
described in Theorem 2.

defined matrix R is symmetric and we are also employing the
half-vectorization in (16). The initial and the final states X0,
XG are given by the RRT?. The stiffness, and the damping
coefficients are kx = ky = 20 N/m, and cx = cy = 45 kg/s
respectively. The net mass of the robot is mn = 10 kg, the fuel
mass at the beginning of the problem mf = 30 kg, and the
consumption rate α = 0.05. The state space is described by
the Cartesian space X ∈ [0, 100]× [0, 100] ⊂ R2. We consider
exact knowledge of the obstacle space, we require full state
feedback, and we compute offline the global path with RRT?.

We perform three sets of simulations. First, we evaluate the
efficacy of the proposed methodology, yet without performing
the static obstacle augmentation, and the local re-planning
steps. Next, we assess the full framework of the RRT-Q?

for the linear-time varying case, by simulating the dynamics
given in (38) and the mass drift model in (39). Lastly,
we demonstrate the ability of the algorithm to perform in
challenging obstacle environments.

For the first case, the proposed framework is depicted in
Figure 6, without the static obstacle augmentation and the local
re-planning phases. The motion of the robot is illustrated with
a blue solid line, the start state xstart with a green circle, the
goal state xgoal with a red circle, and the global path π with a
dashed black line. The motion of the robot equipped with the
partially proposed framework efficiently performs waypoint
tracking, yet a collision with the obstacle in occurred. This
reveals that only in an obstacle-free environment the RRT-
Q? can operate without the need of implementing the static
obstacle augmentation and the local re-planning framework.

Next, we demonstrate the ability of the Algorithm 1 to
perform in obstacle environments, even when a variation in
the system occurs. We gather full state feedback from the
system described in (38), yet with a drift mass at every i-
TPBVP as in (39). The total mass reduction according to the
selected parameters is 75% and the robot motion is depicted
in Figure 7. The red crosses represent the discarded nodes
Vaug that are located in the augmented obstacle space X aug

obs .
The inflated space is drawn with light purple. The local start
state xloc

start and the local goal state xloc
goal are presented with red

rectangles, while the local graph Gnew is shown with solid light
orange lines. The feasible local path πloc is illustrated with a

Fig. 6. The partially RRT-Q? framework is equipped with only the online
policy estimation and the terminal state evaluation and not the static obstacle
augmentation, and the local re-planning phases.

TABLE I
TERMINAL STATE EVALUATION

Factor β (%) Iterations Reduction (%)
10 2, 010 59.8
5 2, 420 51.6
1 3, 380 32.4
0 5, 000 0

red dashed line. Moreover, we demonstrate the evolution of all
25 TPBVP in Figure 9. The solid blue line and the solid pink
line illustrate the propagation of states on x-axis and y-axis
respectively. The dashed red line and the dashed green line
represent the reference coordinates xr and yr respectively. The
vertical dashed line depicts the final time according to the
terminal state evaluation framework for admissible window
factor β = 5%. The motion of the robot, equipped with
the proposed algorithmic framework RRT-Q?, safely navigates
from the start state xstart to the goal state xgoal by avoiding
collision with the obstacle, even when online re-planning in
two areas is required. Also, the RRT-Q? efficiently handles
the system variations in mass. This reveals that the governing
dynamics do not affect the performance of our proposed
motion planning technique. We select such variations (i.e.
75%) to demonstrate the efficacy in extreme case scenarios,
yet this basically means that we drop 3% of the mass fuel after
every i-step and not during each i-TPBVP. Such applications
may include robotic manipulators after picking or dropping
objects. As a result the proposed framework is a uniform
model-free approach and can be applied to systems that even
alter their dynamics after every i-step. Figure 8 presents an
agent equipped with our proposed algorithmic framework that
avoids collision in a challenging obstacle environment.

In Table I a comparison study of the terminal state evalua-
tion for the problem depicted in Figures 7 and 9 is presented.
The terminal state evaluation employs an admissible window
factor β and the initial state distance D0. For various factors
β = 1%, β = 5%, and β = 10% the iteration number is
being reduced by 59.8%, 51.6%, and 32.4% respectively. The
total number of iterations (5, 000) follows from the K = 25

Fig. 7. The motion of a robot with the proposed algorithmic framework
RRT-Q? that performs efficiently online re-planning in a small free space and
avoids the collision with the obstacle. The change in dynamics is due to a
sequential 75% reduction of the mass. The proposed RRT-Q? can efficiently
address such variations in dynamics, while being optimal.

TPBVP, the finite horizon T = 10 s, and the internal dynamics
time ∆t = 0.05 s. The terminal state evaluation facilitates the
online implementation, contributing to an important reduction
of the computational effort.

C. Qualitative Comparison

In Table II we provide a qualitative comparison of the
proposed technique with other kinodynamic motion planning
techniques. We consider four specifications, the optimality; the
online implementation; the robustness; and knowledge about
the system dynamics.

We select optimality as a basis of this comparison. Al-
though, some approaches evaluate different performance cri-
teria and other time constraints. More specifically, LQR-
Trees and our approach solve the minimum-energy problem
in a finite horizon as given in (2). LQR-RRT? assesses a
minimum energy performance, yet in an infinite horizon. Kin-
odynamic RRT? evaluates a minimum time-fuel performance
in a finite horizon. Regarding the optimization performance,
minimum energy problems penalize the control and the states
simultaneously, while minimum time-fuel problems penalize
only the control. Thus, minimizing the energy provides a
variety of control design choices that corresponds to better
performance [9]. Indeed, time horizon constraints are also
important. More specifically, finite horizon ensures optimal
performance at a specific time, while infinite horizon does not
consider any time constraints for optimality. Technically, finite
horizon induces the differential Riccati equation, rather than
the algebraic Riccati equation of infinite horizon problems.
This time dependence makes the solution of the problem
more challenging. But in practice, most motion planning
applications require the completion of a mission at a specific
time. Hence, for the motion planning paradigm, the finite
horizon approach is crucial. It is to be noted that our analysis
provides Theorem 2, which guarantees closed-loop stability of
the equilibrium point, and thus optimality is guaranteed with
asymptotic convergence properties.

Online implementation can be only achieved with the
proposed framework, as it requires the computation of two
simple gradient descent laws given by (22), (23), and the local

Fig. 8. The online kinodynamic motion planning RRT-Q? with completely un-
known dynamics in a complex obstacle environment. The algorithm performs
local re-planning at eight areas according to the static obstacle augmentation.

TABLE II
KINODYNAMIC MOTION PLANNING COMPARISON

LQR- LQR- Kinodynamic RRT-Q?

Trees [3] RRT? [14] RRT? [16]
Optimality 3 3 3 3
Horizon Finite Infinite Finite Finite
Performance Energy Energy Fuel-Time Energy
Online 7 7 7 3
Feedback 3 3 7 3
Model-Free 7 7 7 3
Robustness Bounded Bounded 7 3

re-planning at a relatively small free space without any re-
sampling. The other works need to solve the Riccati equation
that inherits extensive offline computation and comprises the
model of the system. The proposed framework is model-
free, as we approximate the optimal policy in (16) without
any information of the system dynamics. The other works
require the system’s model for their calculations. To this
end, our technique is suitable for any unmanned vehicle with
linear dynamics that satisfy the Assumtpion 1. We compare
robustness of controllers in model uncertainties. The structure
of LQR-Trees, and LQR-RRT? provide some level of robust-
ness, i.e. structured uncertainties with certain limits [40]. Yet,
if these limits are exceeded, the system becomes unstable.
Kinodynamic RRT? employs an open-loop controller which
has precomputed offline the policies, and hence uncertainties
cannot be transcended. Our methodology does not employ
the dynamics of the system, and thus no model uncertainties
appear.

VII. DISCUSSION

In this section we discuss the computational complexity of
the proposed algorithm. Furthermore, we provide instructions
for the implementation of the algorithmic framework in real
world scenarios and we list its limitations.

A. Computational Complexity

The computational complexity of the offline process de-
pends purely on the RRT?. The required time to build the
graph G = (V,E), with VG = |V |, is Θ(VG log VG) [4], where
Θ(·) is the tight bound.

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

S
ta

te

1

0 5 10
0

50

100

0 5 10
0

50

100

S
ta

te

6

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

S
ta

te

11

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

S
ta

te

16

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10

Time [s]

0

50

100

S
ta

te

21

0 5 10

Time [s]

0

50

100

0 5 10

Time [s]

0

50

100

0 5 10

Time [s]

0

50

100

0 5 10

Time [s]

0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

0 5 10
0

50

100

Fig. 9. Evolution of the states for 25 problems. That is equivalent with the problem depicted in Figure 7, but shows the evolution of each TPBVP and the
effect of the terminal state evaluation framework.

The time complexity of the rest algorithm has to be sig-
nificantly lower to allow for the online implementation of
the RRT-Q?. For the Q-function estimation the complexity is
determined by (16), (22). More specifically, the critic network
grows quadratic with the size of the augmented state Û ∈
Rn+m, that is O((n+m)2). Similarly, the control estimation
is determined by (17), (23), where the time complexity yields
O(n2). Essentially, the computational requirements rely on the
gradient descent estimation algorithms as described in [41].
The re-planning phase is based on the RRT? and thus the
time complexity is Θ(Vfree log Vfree). For the connectedness
assessment of the local space, the time complexity is given
as O(l), with l the number of checking points on the circle
circumference.

The overall time complexity of the online phase is
O(Vfree log Vfree+(n+m)2). However, in the proposed method-
ology the local free space is significantly reduced X loc

free, so that
the impact of the free re-planning nodes Vfree is negligible.
Also, the local re-planning phase is activated only when a
collision of the global is occurred. To this end, during most of
the navigation time the overall time complexity of the online
phase further reduces to O((n+m)2).

B. Implementation Details

The proposed framework requires standard treatment for
its implementation. First, the exact map of the environment
need to be given a priori. The exact knowledge of the map is
mandatory for the RRT?, so this requirement applies to every
methodology that employs such algorithms. For the online,
model-free control of the robot, an accurate full state and

input feedback need to be given to the system as described
in Figure 1. That is also common to any control strategy that
employs linear dynamics with full state feedback. Moreover,
according to Assumption 1 the system is detectable, which
ensures that we can compute the state from knowledge of
the output. Next, the actuation scheme need to produce rich
enough signals to satisfy the persistency of excitation condition
as described in Lemma 2. Likewise, most system identification
techniques or adaptive control schemes need to satisfy such a
condition.

C. Limitations of RRT-Q?

The limitations associated with the proposed methodology
are important for the applicability to various cases. The RRT-
Q? can be employed for unknown continuous-time linear
systems with the Assumption 1. Now, if a nonlinear system
can be linearized about an equilibrium point, and as long
as the unknown linearized plant and input matrix satisfy the
Assumption 1, then the methodology is valid. Yet, it is to
be noted that the proposed scheme, as well as the stability
analysis does not concern the nonlinear case. Moreover, the
proposed framework is robust to model uncertainties, but not
to any kind of disturbances, such as external disturbances
or measurement noise. Also, the persistency of excitation
condition is often challenging to be satisfied, and thus, for
these cases, relaxed persistency of excitation approaches [42],
[43] may be more applicable. Another limitation of RRT-Q?

lies in the structure of the environment. It is to be noted
that our approach employs static obstacles, but this does not
necessary dictates a static environment. More specifically, the

obstacles cannot rotate and translate, yet they are augmented
for the re-planning phase. Thus, the environment is dynamic,
as the shape of the obstacles increases through time depending
on the kinodynamic distance. That is the inauguration of our
work towards online, model-free autonomous navigation with
continuous-time Q-learning in dynamic environments with
moving obstacles.

VIII. CONCLUSION

This paper proposed an online motion planning algorith-
mic framework RRT-Q?. More precisely, we employed Q-
learning to approximate the optimal policy of a continuous
linear time-invariant system and navigate in the free space
given TPBVP from the RRT?. We discussed the mathematical
formulation that guarantees asymptotic stability and optimality
of kinodynamic motion planning of systems with completely
unknown/uncertain dynamics. We presented the algorithmic
framework of the RRT-Q? and we proposed a terminal state
evaluation that reduces significantly the computational effort
and facilitates online implementation. We also discussed a
static obstacle augmentation along with a local re-planning
framework that facilitates the online and collision-free imple-
mentation. We provided simulation examples that validate the
efficacy of the proposed RRT-Q?.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp. 995–1001.

[3] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
Trees: Feedback motion planning via sums-of-squares verification,”
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[5] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[6] R. Allen and M. Pavone, “A real-time framework for kinodynamic
planning with application to quadrotor obstacle avoidance,” in AIAA
Guidance, Navigation, and Control Conference, 2016, p. 1374.

[7] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” International Journal of Robotics Re-
search, vol. 35, no. 5, pp. 528–564, 2016.

[8] W. Wolfslag, M. Bharatheesha, T. M. Moerland, and M. Wisse, “RRT-
Colearn: Towards kinodynamic planning without numerical trajectory
optimization,” IEEE Robotics and Automation Letters, 2018.

[9] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos, Optimal Control, 3rd ed.
John Wiley & Sons,, 2012.

[10] F. Berkenkamp and A. P. Schoellig, “Safe and robust learning control
with Gaussian processes,” in European Control Conference, 2015, pp.
2496–2501.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[12] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems.

[13] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
2001.

[14] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“LQR-RRT?: Optimal sampling-based motion planning with automat-
ically derived extension heuristics,” in IEEE International Conference
on Robotics and Automation, 2012, pp. 2537–2542.

[15] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in IEEE
International Conference on Robotics and Automation, 2013, pp. 2429–
2436.

[16] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in IEEE
International Conference on Robotics and Automation, 2013, pp. 5054–
5061.

[17] Y. Li, R. Cui, Z. Li, and D. Xu, “Neural network approximation-based
near-optimal motion planning with kinodynamic constraints using RRT,”
IEEE Transactions on Industrial Electronics, 2018.

[18] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” International Journal of Robotics Research,
vol. 36, no. 8, pp. 947–982, 2017.

[19] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac, and C. J. Tomlin,
“FaSTrack: A modular framework for fast and guaranteed safe motion
planning,” in IEEE Conference on Decision and Control, 2017, pp.
1517–1522.

[20] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” International
Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.

[21] P. A. Ioannou and J. Sun, Robust Adaptive Control. Courier Corpora-
tion, 2012.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[23] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal
and autonomous control using reinforcement learning: A survey,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 6,
pp. 2042–2062, 2018.

[24] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[25] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforce-
ment learning and dynamic programming using function approximators.
CRC press, 2010, vol. 39.

[26] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Systems, vol. 32, no. 6, pp.
76–105, 2012.

[27] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal adaptive
control and differential games by reinforcement learning principles.
IET, 2013, vol. 2.

[28] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[29] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson,
and L. Tapia, “PRM-RL: Long-range robotic navigation tasks by com-
bining reinforcement learning and sampling-based planning,” in IEEE
International Conference on Robotics and Automation, 2018.

[30] P. Mehta and S. Meyn, “Q-learning and pontryagin’s minimum princi-
ple,” in IEEE Conf. on Decision and Control, 2009, pp. 3598–3605.

[31] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.

[32] D. Vrabie, O. Pastravanu, M. Abu-Khalaf, and F. L. Lewis, “Adaptive
optimal control for continuous-time linear systems based on policy
iteration,” Automatica, vol. 45, no. 2, pp. 477–484, 2009.

[33] K. G. Vamvoudakis, “Q-learning for continuous-time linear systems:
A model-free infinite horizon optimal control approach,” Systems &
Control Letters, vol. 100, pp. 14–20, 2017.

[34] W. Rudin, Principles of mathematical analysis. McGraw-hill New York,
1964, vol. 3.

[35] A. Bryson and Y.-C. Ho, “Applied optimal control: Optimization, esti-
mation, and control (revised edition),” Levittown, Pennsylvania: Taylor
& Francis, 1975.

[36] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[37] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and

simulation: Dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[38] F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized Maxwell-
slip model: A novel model for friction simulation and compensation,”
IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1883–
1887, 2005.

[39] J. R. Forbes and C. J. Damaren, “Passive linear time-varying systems:
State-space realizations, stability in feedback, and controller synthesis,”
in American Control Conference, 2010, pp. 1097–1104.

[40] J. Doyle and G. Stein, “Multivariable feedback design: Concepts for a
classical/modern synthesis,” IEEE Transactions on Automatic Control,
vol. 26, no. 1, pp. 4–16, 1981.

[41] P. Baldi, “Gradient descent learning algorithm overview: A general
dynamical systems perspective,” IEEE Transactions on Neural Networks,
vol. 6, no. 1, pp. 182–195, 1995.

[42] K. G. Vamvoudakis, M. F. Miranda, and J. P. Hespanha, “Asymptotically
stable adaptive-optimal control algorithm with saturating actuators and

relaxed persistence of excitation.” IEEE Transactions Neural Networks
and Learning Systems, vol. 27, no. 11, pp. 2386–2398, 2016.

[43] G. Chowdhary and E. Johnson, “Concurrent learning for convergence in
adaptive control without persistency of excitation,” in IEEE Conference
on Decision and Control, 2010, pp. 3674–3679.

	Introduction
	Problem Formulation
	Finite Horizon Optimal Control
	Model-Free TPBVP Formulation
	Actor/Critic Network Structure
	Learning Framework

	RRT-Q^ Algorithmic Framework
	RRT-Q^ Structure
	RRT-Q^ Algorithm

	Simulations
	An Aircraft Example
	Motion Planning RRT-Q^ Simulations
	Qualitative Comparison

	Discussion
	Computational Complexity
	Implementation Details
	Limitations of RRT-Q^

	Conclusion
	References

