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ABSTRACT
Mobile underwater communication network nodes, such as au-

tonomous underwater vehicles, can use estimates of underwater

acoustic communication performance to anticipate where they are

likely to be connected to the communication network. In this paper,

we consider the challenge of estimating a spatial field that repre-

sents underwater acoustic communication performance from a set

of measurements. Kriging, which is widely used in geostatistics, has

been previously used to estimate the communication performance

at unknown locations, by performing spatial extrapolation. We

compare kriging to cokriging where the latter is a bivariate estima-

tion method. The methodology yields estimates of communication

performance at desired locations based on measurements acquired

at other locations. Moreover, a variance measure is provided that

characterizes the uncertainty of the estimation. We present the

structure of the proposed estimation technique and its computa-

tional complexity. We evaluate the efficacy of the technique by

considering an approximate linear-log model of the communica-

tion performance, environmental noise, and a direct comparison of

kriging and cokriging results. We provide two sets of simulations in

which the proposed multivariate cokriging framework outperforms

the univariate kriging in the estimation process.
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1 INTRODUCTION
Coordination of multiple autonomous agents requires effective com-

munication. For agents that operate underwater, inter-vehicle com-

munication is usually accomplished using acoustic signals. The per-

formance of communication does not depend only to the range of

the vehicles, but also to the environment. For example, autonomous

underwater vehicles (AUV) may operate to highly varying envi-

ronments that include variability in depth, water density, sea state,

shipping noise, and turbulence [15]. Efficient communication can

be used to improve navigation accuracy and localization [17]. Ac-

curate estimates of anticipated communication performance can

be exploited to plan better utilization of communication resources

and conserve energy. Our focus in this work is on investigating

stochastic acoustic communication performance estimation for ap-

plications with mobile communication nodes, such as autonomous

underwater vehicles. Our general approach may be applicable to

other domains, including aerial and ground communication using

radio frequency signals.

Related work: Underwater communications is usually achieved

with acoustic signals. A survey of prospects and problems in under-

water acoustic communications is documented in [11]. A distributed

kriging methodology was used in [19] to estimate coverage holes

in large-scale wireless sensor networks. Horner et al. [8], proposed
a methodology, based partially on kriging, to generate local and

global acoustic communication performance maps. The authors in

[23] developed a cooperative robust algorithm to compose a spatial

map of underwater acoustic communication signals and channel

parameters, using an H∞ filter and kriging. In [18], the acoustic

communication performance of micro autonomous underwater

vehicles was assessed with an experimental process. The results

reveal that for non-stationary transmission, i.e. moving vehicle,

several factors reduce the communication performance, including

multi-path effect of acoustic transmission, path hopping, and the

Doppler effect. In [16], a methodology that combines kriging and

compressive sensing methods [2], namely kriged compressive sens-

ing (KCS), was utilized to reconstruct acoustic intensity fields. More

specifically, KCS uses ordinary kriging to estimate the acoustic in-

tensity field in unsampled locations and its variance to weigh the

importance of the estimated values. Then, by using compressive

sensing, the authors construct the spatial map with sparse data.

However, kriging is a univariate spatial estimation technique, i.e.

employs one variable, and ignores other variables that may improve

the estimation accuracy.

The inverse problem of estimating the acoustic communication

performance at a given location is the estimation of location given

the communication performance. For the case of WiFi in air, the

objective is to estimate the location of a vehicle based on wireless

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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received signal strength. In [7], the authors employed Gaussian pro-

cesses to determine a likelihood model of received signal strength

and estimate the location of robots. This approach demands a train-

ing set of received signal strength observations compared with a

ground truth map, that is computationally expensive for large maps.

Therefore, the authors in [6] proposed a Gaussian process latent

variable model to generate wireless signal strength maps and solve

the WiFi SLAM. The Gaussian process framework is closely related

with kriging [22], yet kriging is restricted to small variable spaces.

Contributions: The contribution of this paper is twofold. First,

we formulate an approximate communication performance model

that takes into account the environmental conditions. We use this

model to motivate our specific approach to kriging, and to generate

numerical simulations of communication performance that were

used to exercise our framework. Next, we propose a bivariate ap-

proach to estimate the communication performance between two

vehicles in a time-varying environment, by using cokriging.

Notation: The notation here is standard. The set of real numbers

is denoted R, the set of all positive real numbers R+, the set of

all positive real numbers including zero R≥0, the set of n ×m real

matrices Rn×m , and the set of natural numbers N. The transpose
and inverse operators are denoted (·)⊺ and (·)−1 respectively. The

|K | denotes the cardinality of the set K . The p-norm of a vector is

denoted ∥ · ∥p and the power summation ⊕.

Structure: The remainder of this paper is structured as follows.

Section 2 formulates the problem, Section 3 focuses on the spatial

estimation techniques, Section 4 presents the estimation framework,

Section 5 presents the results and the simulations, and Section 6

concludes the paper and provides future directions.

2 PROBLEM FORMULATION
In this section we present the measurement model of the vehicles

and we discuss the physical process of the environment. We also

assess the acoustic communication performance with a signal-to-

noise ratio (SNR) model of the sonar.

2.1 Communication Performance
The measurement model of all agents is identical and described by,

Yi (x; t) = Z (x; t) + ϵ, (1)

where Yi (x; t) is the measurement of communication performance

of agent i at spatial locations x = [x y]⊺ ∈ R2, Z (x; t) represents
the random field, and ϵ ∼ (0,σ 2

Y
) is a zero-mean Gaussian noise.

We seek a simple model of underwater acoustic communication

performance. We employ the passive sonar equation that models

direct communication between the transmitter and the receiver

[5, 9]. Unlike an active sonar model, we do not consider interaction

with a target system e.g., reverberation noise. Since we are inter-

ested in applications with relatively slow-moving AUVs, we ignore

frequency shifting and spreading that are due to motion-induced

Doppler effect.

To approximate the communication performance between two

agents we use the SNR. In principle, the higher the SNR, the more

likely is to detect the transmitted signal. The passive sonar equation

is expressed,

SNR = SL − TL − NL + DI, (2)

r
xr

xt

Figure 1: An acoustic communication scenario of two under-
water vehicles at range r . The transmitting vehicle is located
at position xt and the receiving vehicle at position xr.

where SL is the source level, TL is the transmission loss, NL is the

noise level, and DI is the directivity index. In practice, the source

level is provided by the manufacturer of the transmitter and we

assume that the effect of the directivity index is negligible, similarly

to [13]. The transmission loss can be computed as,

TL(r ) = TL
sph

(r ) − TLa(r ), (3)

where TL
sph

is the spherical spreading loss, TLa is the attenuation,

and r = ∥xr − xt∥2 is the range of two vehicles. In Fig. 1 we illus-

trate the case of acoustic communication between two underwater

vehicles at range r , with xt the position of the transmitting vehicle

and xr the position of the receiving vehicle. Spherical spreading loss
is proportional to the log of range, TL

sph
(r ) = 20 log r . Attenuation

depends on the signal frequency due to the process of transferring

the acoustic energy into heat. More specifically, for a signal fre-

quency of f = 25 kHz the absorption coefficient is a = 5.56 dB/km

[1]. Thus, (3) results in a linear-log relationship,

TL(r ) = 20 log r − 0.00556r . (4)

2.2 Environmental Conditions
In our simplified communication model, we capture various en-

vironmental effects, such as multi-path, density gradients, etc, as

simply noise that reduces the SNR. The noise comprises of ambient

noise, transient noise, and self-noise [5].

Sources of ambient noise include the shipping and sea state.

Ambient noise is approximated by the Wenz curves [21],

NL
amb
= NL

ship
⊕ NLSS, (5)

where NL
ship

is the shipping noise and NLSS is the sea state noise.

The power summation operator forLk elements, withk = 1, . . . ,Nk ,

is given by ⊕ = 10 log

∑Nk
k=1 10

Lk /10. For a signal frequency of

f = 25 kHz the shipping noise is almost zero, as NLSS ≫ NL
ship

.

To this end, (5) simplifies to NL
amb
= NLSS.

Subsequently, if we neglect the transient noise (e.g, biological

organisms) and self-noise the communication performance yields,

SNR = SL − 20 log r + 0.00556r − NLSS. (6)

Remark 1. Since the communication signal transmits in high
frequency (f = 25 kHz), the transient noise can be neglected. Similarly,
the cavitation noise of the propeller vanishes. However, the flow noise—
which is produced by the propeller—may affect the source level of the
transmitted signal and/or the received signal strength. In fact, this
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will lead to anisotropic SNR, depending not only on the position but
also on the orientation of the vehicle. In this work, we do not consider
anisotropic sensing.

3 MULTIVARIATE SPATIAL ESTIMATION
In this section, we introduce kriging, a spatial estimation technique

that estimates values at locations of interest, based on measure-

ments from other locations. First, we discuss the ordinary kriging

(OK) and then we present the multivariate kriging, namely cokrig-

ing (COK).

Let us first introduce some basic notions of the random fields.

A comprehensive discussion on the topic can be found in [4]. Let

Z (x) be a random field with a positive-definite covariance matrix

Cov(Z (x1),Z (x2)) ≻ 0 for all x ∈ R2. The semivariogram with

constant mean E{Z (x)} = µ is defined,

γ (x1,x2) B
1

2

E{(Z (x1) − Z (x2))2}. (7)

The random field is intrinsically stationary if Cov(Z (x1),Z (x2)) =
C(x1−x2) for all x ∈ R2 and the functionC(·) is called covariogram.

An intrinsically stationary random field with a constant mean is

called second-order stationary. Moreover, if C(x1 − x2) is only a

function of the Euclidean norm ∥x1 − x2∥2, then the covariogram

is isotropic. The correlogram is defined,

ρ(x) B
C(x)
C(0)
, (8)

where C(0) = Var{Z (x)} is the sill and the data is normalized so

that it has zero mean an unit variance (see (37)). For a second-

order stationary random field with normalized measurements and

∥x1 − x2∥2 = h, the semivariogram is the mirror image of the

covariance, resulting,

γ (h) = 1 −C(h). (9)

Next, we present fundamental notions of the multivariate case

[20]. In multivariate statistics the covariance comprises of direct

and cross-covariance functions. The joint second-order hypothesis
assumes a constant mean for every variable,

E{Z j (x)} = µ j , (10)

and a cross-covariance function in the form,

E{(Z j (x1) − µi )(Zl (x2) − µl )} = Cjl (h). (11)

The cross-covariance function Cjl captures the variation of vari-

ables over distance. The joint intrinsic model imposes the cross-

variogram structure,

γjl (x1,x2) =
1

2

E{(Z j (x1) − Z j (x2))(Zl (x1) − Z j (x2))}. (12)

That is, the cross-variogram measures the difference of variances

over distance. Furthermore, the cross-correlogram, by assuming

the intrinsic correlation model, is expressed,

ρ jl (h) =
Cjl (h)

Cj (0)Cl (0)
, (13)

where Cj (0) = Var{Z j (x)}, Cl (0) = Var{Zl (x)} are the sills where
for normalized measurements Cj (0) = Cl (0) = 1.

3.1 Ordinary Kriging
Let us now describe the ordinary kriging technique. We consider

multiple measurements at locations xj ∈ R2, j = 1, . . . ,M with

M ∈ N. In ordinary kriging the measurements are modeled as,

Z (x) = µ + ν (x), (14)

where Z (x) ∈ R is a second-order stationary random field, µ ∈

R is the unknown constant mean that represents the large scale

variation, and ν (x) is the zero-mean Gaussian field that captures

the small scale variability. We are interested in estimating the mean

value of the random field at an unmeasured location x0, based on

the measured data Z (x). We use a linear unbiased estimator,

Ẑ (x0) =
Nj∑
j=1

βjZ (xj ) + (1 −
Nj∑
j=1

βj )µ

= β⊺Z(x), (15)

where β = [β1 . . . βNj ]
⊺ ∈ RNj

are the weights we seek to ob-

tain. The unbiasedness of the estimator

∑Nj
j=1 βj = 1 relaxes the

assumption of a known global mean µ. As a result, we can perform

kriging with the measurements and not its residuals, Z (xj ) − µ.
Next, we formulate the unconstrained minimization problem with

a Lagrange multiplier λOK to include the unbiasedness constraint.

The solution to the minimization problem results in,

β
OK
= Γ−1

OK
γ
OK
, (16)

where β
OK
= [β⊺ λOK]

⊺ ∈ RNj+1
is a vector that contains the

weights β and the Lagrange multiplier λOK. The non-singular ma-

trix ΓOK ∈ R(Nj+1)×(Nj+1)
considers the redundancy of measure-

ments and is given by,

ΓOK =


γ (x1, x1) . . . γ (x1, xN ) 1

.

.

.
. . .

.

.

.
.
.
.

γ (xN , x1) . . . γ (xN , xN ) 1

1 . . . 1 0

 B
[
Γ 1
1⊺ 0

]
, (17)

where 1 ∈ RNj
is a vector of ones. The vector γ

OK
∈ R(Nj+1)

takes

into account the closeness of the measurements to the location of

interest x0 and yields,

γ
OK
=


γ (x0,x1)
...

γ (x0,xN )

1


B

[
γ
0

1

]
. (18)

The unique solution of (16) yields the vector of unknown weights,

β = Γ−1
(
γ
0
− 1λOK

)
, (19)

and the Lagrange multiplier,

λOK =
1⊺Γ−1γ

0
− 1

1⊺Γ−11
, (20)

Sequentially, the weights β and the Lagrange multiplier λOK can

be used for the computation of the ordinary kriging variance as,

σ 2

OK
(Z (x0)) = VarOK{Z (x0)} = β⊺γ

0
+ λOK. (21)

In terms of the covariance matrix for normalized measurements,

we use (9) and the solution follows accordingly.
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3.2 Multicollocated Ordinary Cokriging
In this section we shall describe the multicollocated ordinary cok-

riging (MCOK). We observe in (6) that our simplified model of

communication performance is a linear-log function of the range

of the vehicles. Moreover, the range measurements are acquired

simultaneously with the SNR. Interestingly, there exists a spatial

correlation of these two variables. For instance, when we seek to

estimate the communication performance at a specific location, the

range of the vehicles is critical. In case that the vehicles navigate in

close proximity, then the communication performance is expected

be high. On the contrary, in case that the vehicles have large range,

then the communication signal will be degraded and corrupted by

noise. Therefore, we want to estimate the communication perfor-

mance at a specific location for a given range.

Cokriging is the multivariate kriging that augments the esti-

mation process with the covariances and cross-covariances of the

variables involved in the process [20]. The key idea underlying this

work is to use the range of the vehicles as a secondary variable

in cokriging in order to improve the SNR estimation. Thus, we in-

corporate two variables: i) the communication performance as the

primary variable and ii) the range of the vehicles as the secondary

variable. The ordinary cokriging estimator for two variables yields,

Ẑ (x0) =
Nj∑
j=1

βj,1Z1(xj ) +
Nl∑
l=1

βl,2Z2(xl )

= β
⊺
COK,1

Z1(x) + β
⊺
COK,2

Z2(x), (22)

where β
COK,1 = [β1,1, . . . , βNj ,1]

⊺
, β

COK,2 = [β1,2, . . . , βNl ,2]
⊺

are the stacked vectors of the unknown weights of two variables,

Z1 ∈ RNj
and Z2 ∈ RNl with Nl > Nj are the stacked vectors of

the measurements of the two variables at locations Xpr = {xj }
Nj
j=1

and Xsec = {xl }
Nl
l=1 respectively. The unbiasedness of the estima-

tor for the primary variable 1⊺β
COK,1 = 1 and for the secondary

variable 1⊺β
COK,2 = 0, relaxes the assumption of known global

means. Therefore, we implement cokriging with the measurements

and not its residuals. Then, we formulate the unconstrained min-

imization problem with two Lagrange multipliers to account for

the unbiasedness constraints λCOK,1, λCOK,2. The solution to the

minimization problem results in the system of linear equations,

β
COK
= Γ−1

COK
γ
COK
, (23)

where β
COK

= [β
⊺
COK,1

β
⊺
COK,2

λCOK,1 λCOK,2]
⊺ ∈ RNj+Nl+2 is

the unknown vector we seek to obtain. The non-singular matrix

ΓCOK ∈ R(Nj+Nl+2)×(Nj+Nl+2) captures the measurement redun-

dancy and has the form of,

ΓCOK =


Γ1 Γ12 1 0
Γ21 Γ2 0 1
1⊺ 0⊺ 0 0

0⊺ 1⊺ 0 0

 . (24)

The vector γ
COK

∈ R(Nj+Nl+2) considers the closeness of the mea-

surements to the location of interest and leads to,

γ
COK
=


γ0,1
γ0,12
1

0

 . (25)

Figure 2: The multicollocated setup. The primary variable
measurements Z1(x) are shown in blue x-marks, the collo-
cated secondary variable measurements Z2(x) are depicted
with red solid circles, the secondary variable measurement
at the location of interest Z2(x0) is shown in red dash-dotted
line, and the location of interest x0 is presented with a green
rectangular. The dashed red circle represent the orphan sec-
ondary variable measurements Xorp that are not used in the
multicollocated cokriging.

In general, the practical challenges with cokriging are: i) the

modeling of all covariances and cross-covariances, ii) all covariances

and cross covariances jointly need to be positive definite, and iii)

the solution generates very large linear systems, i.e. (Nj + Nl +

2)-equations. For these reasons, we employ the multicollocated

cokriging which accounts for: i) all primary variable measurements,

ii) all secondary variable measurements at the locations of the

primary variable measurements, and iii) the secondary variable

measurement at the location of interest, as shown in Fig. 2. The

orphan secondary variable measurements Xorp = Xpr\Xsec, i.e. not

collocated with primary variable measurements, are not used in this

framework. The multicollocated cokriging model (or Markov Model

2) has been proven to be necessary and sufficient for cokriging in the

stationary case [10, 12]. Next, we introduce the Markov screening

and the Bayesian updating assumptions.

Assumption 1 (Markov Screening). The primary variableZ1 at
any location x1 depends conditionally only on the secondary variable
Z2 at location x1, screening out the influence of the secondary variable
Z2 at any other location x2, which yields,

E{Z1(x1) | Z2(x1),Z2(x2)} = E{Z1(x1) | Z2(x1)}. (26)

Assumption 2 (Bayesian Updating). The primary and the sec-
ondary variables are linearly related through the correlation coefficient
ρ12(0) at any location, which yields,

E{Z1(x) | Z2(x)} = ρ12(0)Z2(x). (27)

From Assumption 1 and Assumption 2 the cross-correlogram

takes the form,

ρ12(h) = ρ12(0)ρ2(h), (28)

which in terms of covariogram yields,

γ12(h) = pγ2(h), (29)

where p = ρ12(0)σ1/σ2 is the slope of the linear regression with σ1,
σ2 the standard deviations of the primary and secondary variables

respectively. Note that if the measurements are normalized with

respect to the variance, then p = ρ12 and subsequently σ1 = σ2 = 1.
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Next, we consider a regression model of the primary variable on

the secondary variable in the form,

Z1(x) = pZ2(x) + R(x), (30)

where R(x) is the orthogonal residual which can also be considered

as R(x) = Z1(x) − pZ2(x). Note that since Z1(x) and Z2(x) are
Gaussian, R(x) is also Gaussian.

Assumption 3 (Residual Independence). The residual R(x) is
an independent random function of the secondary variable at any
location, which yields,

Cov(R(x),Z2(x)) = 0. (31)

Due to Assumption 3, the linear regression (30) maintains the

homoscedasticity properties of kriging, i.e. the variance of the pri-

mary variable can be computed at locations of interest, without

actual measurement of the primary variable at this location.

The orthogonal residual can be computed with the ordinary krig-

ing as discussed in Subsection 3.1 with a linear unbiased estimator

in the form,

R̂(x0) = β
⊺
R
R(x), (32)

where β
R
are the residual corresponding weights of the ordinary

kriging. Note that the domain of measurements for the ordinary

kriging of the orthogonal residual, does not include the location of

interestDx = Xpr∪Xsec = x0. Then, we use the residual variogram
function γR to construct the covariance of the primary variable as,

γ1(h) = p
2γ2(h) + γR(h). (33)

The rest elements of the non-singular matrix ΓMCOK result from

(29) and the experimental variogram of the secondary variable.

The multicollocated ordinary cokriging estimator for two variables

yields,

Ẑ1(x0) = pZ2(x0) + R̂(x0)

=

Nj∑
j=1

βR, jZ1, j + p

(
Z2(x0) −

Nl−1∑
l=1

β
R,lZ2,l

)
. (34)

where Z2(x0) is the measurement of the secondary variable mea-

surement at the location of interest and Nj = |Dx |. The correspond-

ing variance yields,

σ 2

MCOK
(Z1(x0)) = VarMCOK{Z1(x0)} = E{R̂(x0) − R(x0)}. (35)

Remark 2. The multicollocated cokriging estimation (34) does not
require the cross-covariance function and also results in a significantly
smaller system of equations. To this end, we just need to compute the
ordinary kriging of the residual R that comprises of (Nj +1)-equations
and retain the same properties of solving the ordinary cokriging that
consists of (Nj + Nl + 2)-equations, with Nl > Nj . This constitutes
a significant reduction in the computational effort of the proposed
technique.

Remark 3. In Assumption 2 we considered a linear relation of the
primary with the secondary variable. However, according to (6) the
communication performance is linear-logarithmically related with
the range of the vehicles. Therefore, we expect smoother estimation
results than the ground truth values.

Measurements Normalization Correlation & Residual

Unknown Location Estimation Kriging

SNR
Measurements

Range
Measurements

Location of 
Interest

Range at Location 
of Interest

Normalized 
SNR

Normalized
Range

Correlation
Coefficient

Residual

Redundancy
Variogram

Closeness
Variogram

Kriging
Weights

SNR
Estimation

Figure 3: The structure of the communication performance
estimator with multicollocated ordinary cokriging. The se-
quence operates clockwise, starting from themeasurements.
The structure incorporates six stages: 1) collection of mea-
surements, 2) normalization of measurements, 3) computa-
tion of the correlation coefficient and the orthogonal resid-
ual, 4) ordinary kriging of the residual, and 5) the unknown
location to 6) estimate the communication performance.

4 SPATIAL ESTIMATION FRAMEWORK
In this section, we discuss the structure of the proposed communi-

cation performance estimation with multicollocated cokriging and

the computational complexity of both kriging and cokriging.

4.1 Estimation Structure
The multicollocated ordinary cokriging is shown in Fig. 3. The

structure consists of collecting the measurements; normalizing the

measurements; computing the correlation factor and the orthogonal

residual; kriging the residual; and estimating the communication

performance at the unknown location.

We start by collecting measurements of communication perfor-

mance (SNR) and the range of the vehicles. SNR is the primary

variable Z1 and range the secondary Z2. Then, we normalize the

measurements with respect to the variance,

Z̃δ, j =
Zδ, j − µδ√
Var{Zδ }

, (36)

where we assume there are j = 1, . . . ,Nj measurements. Primary

measurements correspond to δ = 1, secondary measurements cor-

respond to δ = 2, and µδ = (1/Nj )
∑Nj
j=1 Zδ, j is the mean of the

corresponding δ variable. This normalization results in a zero mean

µ̃δ = 0 and a variance Var{Z̃δ } = 1 for both primary and secondary

variable measurements. Thus, the slope of the linear regression in

(29) matches the correlation coefficient, p = ρ12(0). Next, we com-

pute the correlation coefficient ρ12(0) and the residual R as in (30).

Then, we perform ordinary kriging to the residual to obtain the

residual weights β
R
as in (19). An important aspect of kriging is
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Figure 4: The environmental conditions and the global path
of the vehicles. (a) The spatial environmental conditions are
modeled with a 2D Gaussian where higher mean values rep-
resent more corrupted SNR with noise. (b) The path of the
first vehicle is shown with a black solid line and of the sec-
ond vehicle with a blue solid line.

the variogram which in our case is modeled as a spherical function,
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whereα is the kriging range andh the distance of themeasurements.

The kriging range represents the maximum distance of correlation

between measurements. Thus, beyond the kriging range the mea-

surements are considered uncorrelated. Finally, we employ the

orthogonal residual weights, the normalized SNR measurements,

the normalized range measurements, and the correlation coefficient

to estimate the SNR at the location of interest and its variance as in

(34), (35) respectively.

Remark 4. The kriging range, the sill, and the nugget are user
defined in our simulation environment, yet in practice should be
experimentally identified. A robust methodology to fit variogram
models with experimental data is discussed in [3].

4.2 Computational Complexity
We discussed that ordinary cokriging can be reduced to ordinary

kriging of the orthogonal residual in a multicollocated setup. Thus,

instead of O(Nj +Nl )
3
computations for Γ−1 of ordinary cokriging

(24), the proposed methodology requires O(Nj )
3
computations of

ordinary kriging (17), where usually Nl > Nj . Next, if we consider

the points of interest P = [x0,1, . . . ,x0,P ] ∈ R2×P to be approxi-

mately equal with the primary variable measurements Nj = P , then

the multicollocated kriging results in complexity O(Nj )
4
, while for

the ordinary cokriging wewould needO(Nj+Nl )
4
operations. Even

though the multicollocated cokriging reduces the computational ef-

fort, it still remains intractable for online implementation with large

number of measurements. To alleviate the online implementation,

acceleration methods [14] may be used.

5 SIMULATIONS AND RESULTS
In this section, we provide simulations to compare the efficacy of

the ordinary kriging to the proposed cokriging technique. We also

present the communication performance between vehicles in a

time-varying underwater environment.

5.1 Simulation Environment
The simulation environment captures the time-varying water con-

ditions of the ambient noise with a 2D Gaussian. This is a com-

mon practice for the ambient noise, yet the mean of the Gaussian

should not be zero [15]. Thus, the mean follows µ
amb

(x) = 0.3 +

1.2e−∥x−[0.5 1]⊺ ∥2+e−∥x−[1.5 1.5]⊺ ∥2
. We evaluated themean over a

grid of points in the spaceS B X×Y, whereX = {−2,−1.95, . . . , 4}

and Y = {−2,−1.95, . . . , 3.95, 4}. The spatial environmental con-

ditions as well as the global path of the vehicles are shown in

Fig. 4. Based on the Wenz curves [21], typical ambient noise ranges

NL
amb

∈ [25, 45] dB, for signal frequency f = 25 kHz. The resulting

mean for the space of interest outputs values µ
amb

(x) ∈ [0.50, 2.12].

Thus, we assign ambient noise values to every cell, following a

linear relation. For example, a cell with mean value µ
amb

(x) = 1.00

results in ambient noise level,

NL
amb

(x) = NL
max

amb
− NL

min

amb

(
µ
amb

(x) − µmin

amb

µmax

amb
− µmin

amb

)
= 45 − 25

(
1.00 − 0.50

2.12 − 0.50

)
= 37.28 dB.

The Wenz curves indicate ambient noise NL
amb
= 25 dB for wind

speed of less then 1 knot and NL
amb
= 45 dB for wind speed of 28

to 33 knots. Therefore, the environment shown in Subfig. 4(a) is

an extreme environment with high variations in wind speed that

corrupt the SNR. The source level is chosen to be SL = 181 dB.

For the simulated measurements we need to evaluate the com-

munication performance in the intermediate locations of the two

vehicles. Thus, we introduce the evaluation path which is the

straight line that connects the transmitting vehicle and the re-

ceiving vehicle. Next, we search for grid cells which accommodate

the evaluation path and compute the average mean to assign an

SNR value. Let the accommodating grid cells of the evaluation path

to be Sx = {µ
amb

(x1), . . . , µamb
(xM )} ⊂ S. Then, the resulting

ambient noise is computed as NL
amb

(x) = (1/M)
∑M
m=1 µamb

(xm ).

To this end, we not only consider the environmental conditions at

the location of the transmitting xt and the receiving vehicle xr, but
also we acknowledge the environmental conditions of the path that

the SNR propagates.

5.2 Communication Performance Estimation
We perform two sets of simulations focusing on the estimation of

the communication performance with and without partial informa-

tion of the environment with high ambient noise. We assume that

the vehicles can acquire range measurements during all communi-

cation events.

In Fig. 5, we present the first set of simulations comprising of two

scenarios with two vehicles following different paths. In the upper

row of Fig. 5 the x–marks (black for vehicle 1 and red for vehicle 2)

represent the 150 locations of measurements and the squares (gray

for vehicle 1 and magenta for vehicle 2) the 283 unknown locations

of interest. Note that in both cases we did not collect measurements

from the area with increased ambient noise (depicted in the back-

ground with yellow). For the simulation shown in Fig. 5(a) we seek

to assess communication performance when in the presence of

ambient noise. T hat is significantly different from the measured

communication performance, i.e. without any knowledge of the
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Figure 5: The first set of simulations with the vehicles paths
and their correspondingmeasurements. (a) The vehicles fol-
low similar zig-zag paths at the same direction and they col-
lect 150 measurements right before the high-varying envi-
ronment. (b) The vehicles follow opposite zig-zag paths at
the same direction and they collect 150 measurements.

high variability of the environment. The corresponding SNR and

range measurements are provided in the bottom row of Fig. 5. In

Fig. 5(a), the vehicles follow similar zig-zag paths, and they are al-

ways facing in direction. As a result, the measurements are almost

identical at all locations. The correlation coefficient of the normal-

ized SNR and range measurements yields ρ = −0.098. In Fig. 5(b),

the vehicles follow opposite zig-zag paths at different directions

and the correlation coefficient is computed ρ = −0.993. Therefore,

not only the measurements are highly varying, but also produce

different amplitude. Since, in both cases the measurements were

collected at a similar environment, the communication performance

measurements are only affected by variations in range.

In Fig. 8, we show the absolute error of the SNR estimation with

the ground truth of the ordinary kriging (OK) in red, and the multi-

collocated ordinary cokriging (MCOK) in blue. The shaded areas

represent the variation of the estimation and the dashed lines the

mean of the absolute error. In the first case, OK and MCOK have

identical estimation outcomes, yet for large indices which corre-

sponding to being far from locations where measurements were

acquired, the MCOK provides more reliable estimates. Also, the

MCOK mean is slightly lower, 4.35% from the OK mean. The higher

error values of both techniques from the first estimate to approxi-

mately the 160-th estimate indicates the high ambient noise in the

center of the environment. In the second case, the OK estimates are

more accurate at points of interest close to the last measurements,

yet the error increases much faster for the OK estimates at distant

locations of interest to the acquired measurements. Thus, MCOK

outperforms in long-term estimates and its mean is significantly

lower, 28.94% from the OK mean.

Figure 6: The second set of simulations with the vehicles
paths and their corresponding measurements. (a) The vehi-
cles follow similar zig-zag paths at the same direction and
they collect 250measurements includinghalf of the thehigh-
varying environment. (b) The vehicles follow opposite zig-
zag paths at the same direction and they collect 250measure-
ments.

The second set of simulations is shown in Fig. 6. We consider two

cases following identical paths with the previous set of simulations,

but with more measurements to cover half of the high ambient noise

area, appearing in the center of the environment. Our objective is

to provide more measurements to both methodologies with infor-

mation on the high ambient noise area of the environment. More

specifically, we gather 250measurements as illustrated in the upper

row of Fig. 6 with black and red x-marks corresponding to vehicle 1

and vehicle 2 respectively. The unknown locations of interests are

represented by gray and magenta squares corresponding to vehicle

1 and vehicle 2. The correlation coefficients result in ρ = −0.064

and ρ = −0.957 for the first and the second case respectively. Sur-

prisingly, the second set of simulations provides insufficient results

for both techniques with radially unbounded errors, even with

more measurements, as presented in Fig. 8. In Fig. 8(a) the OK and

MCOK provide sufficient estimates for locations of interest close

to the last measurements, yet for distant locations of interest the

estimation error is unsatisfactory. The MCOK produces lower mean

error, 18.71% from the OK mean. In Fig. 8(b) both techniques show

poor performance with high error measurements. Although, both

techniques have unsatisfactory performance, the MCOK produces

significantly lower mean in the order of 32.92% from the OK mean.

The high absolute errors appear because ordinary kriging assumes

constant means which consequently lead to locally biased kriging

estimates.

In all cases theMCOK produces lowermean errors, revealing that

the effect of the range is crucial to obtain better estimation results.

Although in long-term estimates the MCOK provides more accurate

results, in close proximity to the measurements the OK provides
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Figure 7: The absolute error values with their variance for
the first set of simulations. The mean of the average error
of the multicollocated cokriging and the ordinary kriging
are illustrated in blue and red dashed lines respectively.

similar or even better results. In the second set of simulations both

techniques demonstrate poor performance. This is occurred due to

the nature of ordinary kriging that assumes a stationary constant

mean, as discussed in (14). In practice, the spatial global mean is

a conservative assumption, as usually the mean follows a trend
over the spatial domain. An alternative kriging method with a

non-stationary mean is the universal kriging, that considers basis

functions to capture the underlying trend in the mean value.

6 CONCLUSION
Our work illustrates deficiencies in kriging for generating commu-

nication performance estimates, arising mainly from the structure

of the assumptions. Moreover, our work shows that using range

as a secondary variable in a cokriging formulation of the problem,

yields lower absolute errors and performs better in long-term esti-

mates. More specifically, we compare the proposed methodology

with ordinary kriging and we show that the proposed framework

provides better communication performance estimates with lower

absolute errors in all simulation scenarios. Only in short-term es-

timates and in certain cases the ordinary kriging computes lower

absolute errors. However, at distant locations of interest from the

acquired measurements the proposed methodology provides better

results. The simulations reveal that for realistic applications the

assumption of stationary global mean of both techniques is rather

conservative and develops unacceptable absolute errors.

Future work will focus on formulating and implementing an on-

line, distributed communication performance estimation algorithm

for underwater vehicles with anisotropic sensing. We will consider

a nonlinear relation of the primary with the secondary variable.

Moreover, we will conduct field trials to validate the efficacy of the

estimation algorithm.
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